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CIRCLE ACTIONS AND FUNDAMENTAL GROUPS

FOR HOMOLOGY 4-SPHERES

BY

STEVEN PLOTNICK

Abstract. We generalize work of Fintushel and Pao to give a topological classifica-

tion of smooth circle actions on oriented 4-manifolds 2 satisfying Hx(1.) = 0. We

then use these ideas to construct infinite families of homology 4-spheres that do not

admit effective circle actions, and whose fundamental groups cannot be 3-manifold

groups.

0. Introduction. This paper studies several questions related to circle actions on

homology 4-spheres, and their fundamental groups. The main result is a construction

which yields infinite families of homology 4-spheres 24 (more generally, 24 satisfy-

ing //,(2; Z) = 0) which do not support effective circle actions, and whose funda-

mental groups cannot be 3-manifold groups. This construction makes it clear that

the gap between fundamental groups of homology 3-spheres and 4-spheres is quite

large, as one might expect.

The paper is organized as follows. §1 quickly reviews Fintushel's classification of

Sx actions on simply connected 4-manifolds [F1-F3] and Pao's work on the

topological classification [P], and gives a simple generalization to the case where

//,(2; Z) = 0. We prove

Theorem 1.2. Assume that 24 is an oriented, smooth 4-manifold with //,(2; Z) = 0,

and that Sx acts effectively on 2. Then 2 may be decomposed as a connected sum of

copies of S2 X S2, ±CF2, and a "spun" homology 3-sphere M3. Hence, ttxCS,4) =

7T,(Af3).

§2 describes a construction of homology 4-spheres which generalizes the equi-

variant construction of §1. If A is a smooth knot in some homology sphere A/3, we

produce 24 with

7r,(24)s(w,(M3- AX/)2) | 1 =mlh= [Ia, x],Vx),

where m and / are meridian and preferred longitude, b and a are arbitrary integers.

§3 analyzes the case of torus knots in S3 using the theory of Seifert manifolds, and

we use these results in §4 to prove
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394 STEVEN PLOTNICK

Theorem 4.1. Let M3 be any homology 3-sphere with ttxik I. Pick an (r, s) torus

knot, pick b and a so that gcd(| brs — 1 | , a) = 8 =h 1, and let y8 = | a \ . If [r, s, 8} —

{2,3,5}, assume y is odd. Then the plumbing construction (of §2) will produce a

homology 4-sphere 2 with 7r,(2) s (7r,2(r, s, 8) * ■nxM\ iy central). 2 does not admit

an Sx action, and 77,2 is not a 3-manifold group.

This theorem demonstrates a large gap between the groups which arise as

fundamental groups of homology spheres in dimensions 3 and 4. Kervaire has shown

that the groups which arise as fundamental groups of homology «-spheres, « a» 5, do

not depend on «, and are exactly those finitely presented groups G satisfying

HX(G) — H2(G) = 0 [K]. Whether there is a gap between dimensions 4 and 5 seems

to be a difficult problem.

This paper is part of the author's doctoral dissertation, written at the University of

Michigan under the direction of Professor Frank Raymond. I would like to express

my warmest appreciation to Professor Raymond for his guidance and encourage-

ment over the years. I would also like to thank Walter Neumann for many helpful

and interesting conversations.

1. Circle actions on 4-manifolds satisfying //,(2; Z) = 0. We first summarize some

results in [F1]-[F3] and [P]. Assume that Sx acts smoothly and effectively on 24, a

homotopy 4-sphere. For a set A in 2, let A* denote its image in the orbit space. We

have the following information:

(i) The fixed set F is either S2 or 5° (Smith theory). In the first case, 2* is a

homotopy 3-cell with boundary F*, and there are no exceptional orbits. In the

second case, 2* is a homotopy 3-sphere.

(ii) Let E denote the exceptional orbit set; i.e., those orbits with nontrivial finite

cyclic isotropy subgroup. There are at most two exceptional orbit types. If there is

one, then E* U F* is a closed arc, and F* is the set of endpoints. If there are two,

E* U F* is a simple closed curve separated by F* into two open arcs, on each of

which the orbit type is constant. Furthermore, if ZA and Z,p represent the stabilizers

of the two exceptional orbit types, k and p are relatively prime.

Thus, given an S' action on 24, we associate to it the orbit data as follows:

(i) {2*} if there are no exceptional orbits,

(ii) {2*, k] if there is one orbit of type Zk, or

(iii) {(2*, E* U F*), k, p) if there are two exceptional orbits of types Zk,Zp.

Fintushel proved [Fl, Theorem 1.5] that Sx actions on 24 are determined up to weak

equivalence by the orbit data.

We shall mostly be interested in the case where there are two exceptional orbit

types. In this case, we may construct the action as follows: Let F4 be the manifold

obtained by plumbing together two copies of S2 X D2 at two points. Then dP = F3

= Sx X Sx X Sx. Let Sx act on one copy of S2 X D2 by rotating S2 about itself k

times, and rotating D2 about itself/? times. If we reverse the roles of k and p for the

other copy of S2 X D2, we get an Sx action on P. The two points where we plumbed

are fixed points of the action, and the S2 cores of the plumbing represent excep-

tional orbits of type Zk and Zp. The quotient space of this action is a solid torus

Sx X D2, with its core circle representing E* U F*.
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Now take 2*, a homotopy 3-sphere, and remove an open tubular neighborhood of

a knot A. On (2* - (A X D2)) X S', let S' act by translation in the second factor.

Now glue P to (2* — (AX D2)) X Sx by an equivariant diffeomorphism of the

boundary F3. The result is an Sx action on 2 with orbit data as described above in

(iii).

24 = P U (2* -(AX D2))X Sx

i/s' i/s1 i/s1

2* = AXD2 U 2*-(AX/)2)

T2

In [P] Pao shows that if 2* = S3, then 2 = S4. In general, 24 is one of two

possible manifolds obtained by "spinning" 2* (see Definition 1.1).

The situation where 24 is only assumed to be simply connected is somewhat more

complicated. The fixed point set will have Euler characteristic x(^) — x(^) — 2 +

rank //2(2). 2* will be simply connected with 32* a collection of 2-spheres

contained in F*, and the closure of E* will be a collection of arcs and knots in 2*.

The components of E* are open arcs on which orbit types are constant, and the

closure of the arcs have endpoints in F* — 32*. Again, one constructs plumbing

manifolds, using possibly nontrivial Z)2-bundles over S2, with Sx actions giving

tubular neighborhoods of these arcs, knots, boundary components, and isolated

fixed points as quotient spaces. Using equivariant connected sums and Pao's result

above, Fintushel shows [F3, Theorem 13.2] that, modulo the three-dimensional

Poincaré conjecture, 24 must be a connected sum of copies of S4, CP2, —CP2, and

S2 X S2. If we do not assume the Poincaré conjecture, we must worry about

"spinning" homotopy 3-spheres, as mentioned above.

Let us now drop the simple connectivity assumption, and assume //,(24) = 0.

Our goal is to show that the same result holds; namely, that 24 is a connected sum

of copies of ±CF2 and S2 X S2 with a "spun" homology 3-sphere.

Definition 1.1. Let M3 he a homology 3-sphere. Pick * G M. Let 24 be one of

the two possible manifolds resulting from surgery on * X 5' in M X Sx. Then 24 is

a homology 4-sphere, and it is called a spun homology sphere.

It is easy to see that both spun homology spheres admit (distinct) circle actions.

One might ask whether these two spinnings of M3 are distinct manifolds. As far as I

know, nothing is known about this except when M = S3, in which case 24 is always

S4. Notice that ir,(24) s 7r,(Af3) in both cases.

Theorem 1.2. Assume that 24 is an oriented, smooth 4-manifold with //,(2; Z) = 0,

and that Sx acts effectively on 2. Then 2 may be decomposed as a connected sum of

copiesofS2 X S2, ±CP2, and a spun homology 3-sphere M3. Hence 77,(24) = nx(M3).

Proof. Since E* U F* — 32* has codimension at least two, we can assume that

any element of 7r,(2*) is represented by a loop a in 2* — (E* U F*). Now

(«S1, 2 - E U F) is a free circle action, so 2 - (E U F) ^>2* - (E* U F*) is a

principal S '-bundle. Using the lifting property of this fibration and the path-con-

nected fiber, we see that a is the image of a loop in  2 — (E U F).  Hence,
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77"

77,(2) ^77,(2*) is onto, and induces a surjection 0 = Hx(1) -» //,(2*). Thus, 2* is

an oriented 3-manifold, with possibly nonempty boundary, satifying //,(2*) = 0. A

standard duality argument now shows that 2* is a homology 3-sphere M3 minus

some number of open balls. Boundary spheres correspond to fixed points of the

action.

We now show that there are no simple closed curves in E*. One way to do this is

to use Fintushel's presentation for 77,(2) and abelianize [F3, Theorem 10.1]. A more

direct way to see that there are no circles in E * is the following. Suppose A is a knot

in E* with isotropy subgroup Z„. Find a Seifert surface G with 3G = K, G n F* = 0

and G n E* = points. Let G and K represent their inverse images in 2. Then

K = T2 and G is a 3-chain with 3G = « • K (look locally about A to see this). Hence,

K is «-torsion in #2(2). But #,(2) = 0 implies H2(2) is free abelian, so [K] = 0 G

//2(2; Z). Now the map 24 - K X D2 -> 2* - A X F>2 induces a surjection Z s

HXC2 - K X D2) ■* #,(2* - A X D2) s Z as in previous arguments. But these

groups are generated by meridians, and a meridian upstairs is mapped to «

meridians downstairs, which is a contradiction.

We have shown that the orbit data is identical to that of Sx actions on simply-

connected 4-manifolds, except that 2* satisfies //,(2*) = 0 instead of 7r,(2*) = 1.

By [F3, Corollary 10.2], we have 7r,(2) s 7r,(2*). In fact, 2 can be shown to

decompose as a connected sum of copies of ±CF2 and S2 X S2 with a spun Af3.

This is proved in [F3, Theorem 13.2] for the simply-connected case. The argument

there carries over in a straightforward fashion to this case, so we omit details.

Remarks. It is easy to deduce, using the above reasoning, that certain manifolds

with boundary cannot support ^'-actions. Suppose Sx acts on an oriented 3-

manifold N3 without fixed points so that the quotient is a closed oriented surface F

of genus g > 0. It is well known that this action bounds, and the standard plumbing

construction gives a 4-manifold with rank Hx = 2 g [O]. Suppose N3 = 3A/4, where

rank HX(M) < g. Then the action cannot extend over M4—if it did, we would have

a surjection HX(M) -* HX(M*). But rank HX(M*) > g, since F C dM* and a sub-
i^

space of dimension g must survive under the map Hx(dM*; Q) -^HX(M*; Q).

2. Constructing some homology 4-spheres. We have seen that an Sx action on a

homology 4-sphere consists of the following: take a knot A C M3 = homology

3-sphere and form (Af3 — A X D2) X Sx Ur3 P, where P consists of two copies of

S2 X D2 plumbed at two points. The manifold P has a circle action with the two

plumbing points fixed, and the rest of the 2-sphere cores are comprised of excep-

tional orbits with stabilizers Zk and Z , (k, p) — 1. The Sx action on (M — A X

D2) X Sx is in the second factor, and we glue by an equivariant diffeomorphism of

F3.

Let us now determine all glueings of the above two pieces which yield homology

4-spheres. From now on, M3 will denote a homology 3-sphere, K E M will be a

smoothly embedded knot, and P will be the plumbing manifold described above.

Suppose we form 24 = (M3 - K X D2) X Sx Ur3F. Since P deformation re-

tracts to two copies of S2 which have been identified at two points, ttx(P) = HX(P)

s Z, generated by, say,y. Also, HX(M — AX D2) atZ, generated by a meridian m.
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We assume that orientations are chosen so that the linking number lk(m,K)— +1.

Let « = * X Sx, where * is a basepoint on the boundary of M — AX D2.

The Mayer-Vietoris sequence for 24 yields

HX(T3) HX((M - A X D2) X S') HX(P) ff,(2)-0

zezez zez
<m><«> </)

In order that 77,(2) = 0, we must be able to pick a basis {x, y, z] for HX(T3) =

77,(3F) so that, on the homology level, xnm, yn/i, zh> j. Notice that irx(P) s

//i(P)aZ implies that x and y include trivially in 77,(F). In these homology

considerations, the preferred longitude / of the knot is irrelevant. (By a preferred

longitude we mean a simple closed curve on 3(Af — A X D2) which has zero linking

with A. Then m and / are a basis for the homology of 3(M — A X D2).) But it is not

irrelevant when we consider fundamental groups. We have the following:

7r,(T3 oP) = Z<BZ®Z
(x)  (y)   <z>

/

Z © Z © Z^n.(d(M-K x ¿2) x S1) — n,((M- K x D2) x S1)
(m)   (h)   (I)

where b and a are arbitrary integers.

By Van Kampen's theorem, we have

7r,(24)s(Wl(M3- KXD2),h,j\[h,a] = mlh = «/" = jl±x = I,

Va G77,(M3 - AX D2))

= (irx(M3-KXD2),h\[h,o] =mlh = hla= l,Va)

= (t7,(A/3 - KXD2)\[r,a] =mlh=l,\to).

The notation is a bit informal here. We suppress the generators and relations for the

knot group. We shall often take the liberty of writing this as (trx(M - K X D2)\la

central, mlb — 1). The notation "Ia central", of course, refers to the relations [/", a],

Va Gt7,(M- AX D2).

Now that we have arranged for //,(2) = 0 and computed 77,(2), everything else

goes nicely. By Poincaré duality and the Universal Coefficient Theorem [Sp] we have

that 0 = 77,(2) s 773(2) and 773(2) = 77'(2) = 0. Therefore, 772(2) is free abelian.
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again by Universal Coefficients. We now have

0 -» 772(F3)   *   H2((M- A XT)2) X Sx)   ®  H2(P)  -»  7/2(2)   4   0

11/ III 111

Since 772(2) is free, <j> must be an isomorphism, forcing 772(2) = 0, and 2 is

therefore a homology 4-sphere. We have proved

Theorem 2.1. G/t>e« a knot K in a homology 3-sphere M3, and two integers b, a,

there exists a homology 4-sphere 24 with

77,(24) s(t7,(A7- KXD2)\l =mlb= [Ia, a], Va G t7,(A/ - A X t32)).

Remark. How close is this construction to Fintushel's? If we were trying to make

the glueing equivariant, we would put an Sx action on P, with quotient space a solid

torus. Over a meridional disk will be a solid torus, corresponding to equator X D2 in

one copy of S2 X D2. The fundamental group of the boundary of this solid torus is

generated by x and y (recall x and v die in 77,(F), while z "goes around" P). We may

put an Sx action on P so that y is an orbit, x is a section to the action over a

meridian downstairs, and z is a section over the longitude downstairs. The identifica-

tion x h» mlb is perfectly fine. Downstairs, we are glueing the solid torus into the

knot complement, sending a meridian to a meridian plus b longitudes, i.e., doing a

Dehn surgery on A with surgery coefficient l/b (see [R]). The identification zi-> l±x

is also fine. Downstairs, up to orientation, we are matching longitudes. The identifi-

cation vh> «/" is not fine. We are not matching orbits unless a = 0. The "nonequi-

variance" factor is given by a.

If a = 0, we have glued equivariantly. There is an 5 ' action on 2 with quotient

space equal to the homology sphere obtained from M3 by l/b surgery on A. When

the knot A is clear from context, we will denote this space simply by Mb. The

fundamental group of Mb is given by trx(Mb) s (77,(M — A X 7)2) | 1 = mlb). Notice

that this is exactly 77,(2). This should not be surprising in view of the discussion in

§1. Indeed, 2 is just a spun Mb.

Suppose we form MbX Sx. Let « = * X Sx, and surger the curve «/". This

produces a homology 4-sphere with the same fundamental group as in Theorem 2.1,

and it is plausible that the two constructions are the same. This is almost true.

Choosing explicit coordinates for P gives a basis for 77, (3F = T3), and the above

construction can be described by an element of GL(3, Z). Both (M — K X D2) X Sx

and P admit self-homeomorphisms which allow us to simplify this matrix to a

particularly simple form, which yields the following description of these homology

spheres:

Theorem 2.2. The homology sphere of Theorem 2.1 is the result of surgery (with one

of two possible framings) on the curve hi" in Mb, X Sx, where b' — b (mod a).
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The integer b' can be found in any given example if one is willing to go through

the matrix simplifications alluded to above. It is not hard to see that the fundamen-

tal groups of these homology spheres depend only upon the equivalence class of b

(mod a), as Theorem 2.2 suggests.1

We do not need Theorem 2.2 for what follows, so we omit the proof. Notice that

the two 2-sphere cores of P determine knots in homology 4-spheres. It turns out that

these include an interesting class of fibered knots in 5"* which generalize twist-spun

knots. To describe them, we need the explicit matrix description and the proof of

Theorem 2.2. This will appear in [PI2].

3. The case of the missing torus knot. We now specialize to torus knots in S3.

Using the theory of Seifert manifolds (see [ORÍ] or [NR]), we shall be able to

completely describe this situation. As usual, we try to glue P to (5'3-torus knot X

732) X Sx "nonequivariantly", but the presence of a circle action on the knot

complement will make this impossible.

It will be convenient to use unnormalized Seifert invariants. For a review of this,

see[NR],

The manifolds obtained by Dehn surgery on torus knots are completely classified

(see [Mo]). We shall consider Dehn surgery of type 1 /b only. Let A be a right-handed

(r, s)-torus knot, where r, s > 0, (r, s) = 1. Writing S3 as ((z,, z2) | | z,, |<S 1, i =

1,2}, give S3 the Sx action defined by eiB ■ (zx, z2) = (eir8zx, e's6z2). Then A is a

principal orbit of this action, and S3 has Seifert invariants (0; (r, u), (s, v)), where

rv + su = 1. We need

Lemma 3.1. Two principal fibers of the above Sx action have linking number = rs.

Proof. Given two principal fibers, deform one to wrap r times around the

singular fiber of type (r,u), and deform the other to wrap s times.around the

singular fiber of type (s, v). These two singular fibers form a trivial link in S3, 'xy,

and thus have linking number = 1 (where we have picked orientation to assume + 1).

Since linking is bilinear, this completes the proof.

It is standard to use the symbol « for a principal orbit. Unfortunately, we have

already used h, so let i denote a principal orbit. Now do l/b, b G Z, surgery on the

torus knot A. We have the following, presumably well-known, lemma.

Lemma 3.2. The result of l/b surgery on an (r, s) torus knot is a Seifert homology

3-sphere, 2(r, s, \ brs — 1 |), with three exceptional orbits of type r, s, and \ brs — 1 | .

Proof. Since the torus knot is a principal orbit, a meridian m of a tubular

neighborhood will be a section to the action. We have shown that an orbit on the

boundary of the tubular neighborhood has linking number rs with the knot, so

therefore a preferred longitude / = im~". Remove this tubular neighborhood and

glue in a solid torus by sending a meridian to «1/* = ibmx~brs. This is exactly how

one creates an exceptional orbit of type (| brs — 1 | , — | b |). The result of the surgery

will therefore have Seifert invariants (0; (r, u), (s, v), (| brs — 1 | , — | 6 |)). The order

of the first homology group is given by us \ brs — l\+vr\brs — l\—\b[rs= ±1,

'Added in proof. In fact, the manifold itself only depends on a and the equivalence class of b (mod a).

See [P12].
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giving a homology sphere as expected. As a final check, notice that + 1 surgery on a

right-handed trefoil knot ((r, s) — (2,3)) yields 2(2,3,5), so our ± signs are correct.

Now construct a homology 4-sphere 2 as described above. First we examine

fundamental groups. We have

77,(2) s(trxI,(r,s,\brs - l\) | Ia central).

The fundamental group of 2(/% s, \ brs — 1 |) is well known [ORÍ] to be given by

(qx,q2,q3,i\i central, 1 = qxq2q3 = q\iu = qs2iv = $"- 'I i~W ),

where the q¡ are sections to the action about exceptional orbits, and i represents the

class of a principal orbit. In the construction of 2(r, s, \ brs — 1 |), the longitude /

becomes the third exceptional orbit, denoted t3. We have that q3 = f3*l and i = rjf"-1!

[ORÍ], so that t3 = (if^™)* , depending on whether b is negative or positive.

Thus, we see that

77,(24) ^ (qx,q2,q3,i\i central,

1 = ftftft = M" = QÍ}° = q3brs~xU-W , (iq3rs)±a central)

= ( <71. ft. ft > ' I ' central, q%rs central,

i = ?,?2<73 = M" = ti'" - gf*-,'r'it>.

This group may look new, but it is in fact a Seifert manifold group. To see this,

divide by its center

^i(24)       / , ,„ _,, \
/.     g„v    = \?1. ft> ft I !  = ftftft = 1\  = Í2 = ft '= ft""/
\'>ft   7

= (ft, ft. ft 11 = <7,ftft = ?, = ti = ftgcd<1*"",|,a")),

which is a centerless Fuchsian group (see [Mag]). For the rest of this section, it will

be convenient to define the following numbers.

8 — gcd(| brs — l\ ,\ rsa |) = gcd(| brs — 1 | , | a \),

ox = | brs — 1 | ,       8 y — \ a \ ,       \b\m + nx = I.

The center of 77,(2) is generated by / and q3. By using /'|ft| = q3brs~ '', we see that

( ;n„Sm\x —  ¡nx„Smx —  :\-\b\m„m8x _   ;_-m|f>rj- II „m\brs- II _  !
y i q3    )    — i    q3      — i q3      — iq3 q3 — i

and

(;n„Sm\\b\— ¡n\b\ _mS|ft| _  „nlftrs- I| +Sm\b\ — „n$x + Sm\b\—  _Ä
V '  ft     I    ~ '       ft        — H3 ~~ ft — ft •

So the center is actually cyclic, generated by i"q3m. It is now a simple matter to

verify the following isomorphism:

77,(24) ^;{ql,g2,q3,i\V= qxq2q3 = q[i" = q*2iv = #*-»lrW ,Í«q¡m central)

9i      '

I     I

Pi r

q,     inq\m

I 1

Pi        J

{PuPi,Pi*J\ 1 =P\P2Pi = P\JU* = pUvx = pV m , y central).



CIRCLE ACTIONS AND FUNDAMENTAL GROUPS 401

We have shown that 24 has the same fundamental group as the Seifert homology

sphere 2(r, s, 8), which has Seifert invariants (0; (r, ux), (s, vx), (8,-\b\)). For

future reference, notice what this above isomorphism does to /":

/- = (/ft")±a *+ U^pi"")*1 = Ox|a|/>i"SjT'

_ ( M-àym**- - ( jMy-nfflh** - /*KI«*-*-tl-|*t«) L j±y

The reason we are not getting a new group is because we are not getting a new

manifold. Since S3 — K X D2 has an S1 action, there are many Sx actions on

(53 - A X 7)2) X S\ and it is actually impossible to glue P to (S3 - A X 7J2) X Sx

"nonequivariantly". We omit these calculations (see [PU]), since we do not need this

information for what follows, and summarize the state of our knowledge:

Theorem 3.3. Let Kbe the (r, s) torus knot in S3. Attach P to(S3 - K X D2) X Sx

to construct a homology 4-sphere 2 with

77,2s(w,(S3- A XT)2) | 1 = mlb, Ia central) = -nx1(r,s, 8).

Then there is an Sx action on 2, and 2 is a spun 2(/\ s, 8).

4. Homology spheres without Sx actions. In this section we show that we can get

new fundamental groups and manifolds with our construction. We shall construct

homology 4-spheres 2 (more generally, 2 satisfying 77,(2; Z) = 0) that do not

support Sx actions, and whose fundamental groups cannot be those of 3-manifolds.

Recall from §1 that if Sx acts effectively on 2, and 77,(2; Z) = 0, then 2 is a

connected sum of copies of S2 X S2 and ± CP(2) with a spun homology sphere A3.

In particular, 77,(24) s -¡tx(N3). All we have to do is produce 24 with fundamental

groups that could not be 3-manifold groups.

To do this, we invoke some powerful theorems of 3-manifold theory. (See [H] for

definitions and proofs.) Suppose a group 77 has nontrivial center and is the group of

a homology 3-sphere N3. Write N uniquely as a connected sum of irreducible

manifolds Nx# • ■ •# Nn. Since 77, N has center, all but one of the N, must be homotopy

spheres, and the N, with nontrivial 77, must have trxN, = trxN. Therefore, 77 is the

group of an irreducible homology 3-sphere N¡. If 77 is infinite, a standard 3-manifold

argument shows that N, is aspherical, and therefore we have

77,(77; Z) ^ H,(K(w, 1); Z) s H,( A,; Z) s 77,(S3; Z).

If we produce groups 77 with homology in dimension 4, we are done.

The construction of 24 produces center in 77,. The problem is that for a knot

picked at random, the group (irx(M — K X D2) | /" central, 1 = mlb) is not readily

understandable. Conceivably, the relations [Ia, x]= 1 might trivialize the group

(e.g., if b = 0 (a)). The torus knot situation was eminently computable, but did not

produce new groups. So the idea is simply to embed the torus knots in homology

spheres in a trivial fashion, and deal with them not where they normally live, namely

S3, but in S3# homology sphere, thereby destroying the Sx action on the knot

complement.
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With this in mind, let M be any homology 3-sphere with trxM ¥= 1. In a small ball

B3 in Af, draw an (r, s) torus knot A and construct 24 as usual.

24 = F U (Af-AX 7)2) X Sx,

7-3

and

7r,(2) s(t7,(A/- AXT)2)! 1 =mlb,la central).

The preferred longitude / is unchanged by embedding A into Af. Since l/b surgery

on A will obviously produce 2(r, s, \ brs — 1 |) # Af, we can write 77,(2) ~

(77,2(r, s, | brs — 1 |) * 77,M \ Ia central). Note that /" commutes with ttxM as well as

with 77,2(/-, s, I brs — 1 |).

Remark. Before analyzing 77,(2), note that we can construct the same group

another way. The plumbing is attached to 3(A X D2) X Sx, and basically ignores

Af. So first think of this construction as going on inside 53. From Theorem 3.3, we

see that this creates a spun 2(/% s, 8). To embed this in A7, we must remove 7?3 X Sx

from the spun 2(r, s, 8), where the Sx corresponds to « =* l~a. Now add in

(M — B3) X Sx to create 2. (M — B3) X Sx is the complement of a knot in a spun

A7, hence a homology circle. What we have just done is

24= (spun 2(r, s,8) - Sx X B3)    U    (M3 - B3)XSX,

s'xs2

i.e., remove a circle from a homology sphere and replace by a homology circle. By

Van Kampen's theorem,

77,(24) at (t7,2(/-, s, 8) * (t7,A7 X Z(h)) \h = la)

= (trxI.(r,s,8) * 77,A/1/"central).

In any case, we have constructed 24. Recall that the isomorphism

(t7,2(/-, s, I brs - 1 |) I Ia central) ^77,2(r, s, 8)

takes the element /" to i±y, where i generates the center of 77,2(r, s, 8), and

8y =| a I , o = gcd(| brs — I \ , \ a \). Therefore, we can write 77,(24) =

(77,2(r, s, 8) * 77,A/1 i±y central). Assume S =£ 1.

We now determine some of the structure of 77,(2). Dividing by the normal closure

of 77, Af, we get

77,(2) ->-* ̂ 77,2(r, s, 8) * 77, M \ i±y central, x = 1, Vx G 77, Af)

s? ^77,2(r-, s, 8) I i±y central) s 77,2(r, s, 8).

For the moment, exclude [r, s, 8} = (2,3,5). Then it is well known [O] that the

center of 77,2(r, s, 8) is infinite cyclic, generated by i. Since i±y generates a copy of

Z in a quotient of 77,2, it generates a copy of Z in 77,2. Dividing by this normal

subgroup, we have

1 ^Z ^77,(2) -(ir,2(r, s,8) * trxM\iy = 1>- 1,

or

1 - Z - 77,(2) - 77,2(r, s, 8)/(iy) * -nxM - 1,

a central extension.
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As we have pointed out, since 77,2 has center and is infinite, the presence of an A1

action on 2 would force 77,2 to be the fundamental group of an aspherical homology

3-sphere, say A3. Writing M — Mx# ■■■ #Mm as a sum of prime homology

spheres, suppose that some M, is aspherical. Pull back the above extension via the

natural inclusion trxM, «» 77,2(r, s, 8)/(iy) * itxM to get Z X 77,AF as a subgroup of

77,2 (since H2(M,) = 0, there are no nontrivial central extensions). The homology of

Z X 77,Af, can be computed from a covering space of A3 and is therefore trivial

above dimension 3. But this is absurd, since 774(Z X 77, A/.) s Z. If any irxM, is finite,

we have an immediate contradiction, since 77,2 will contain torsion.

Finally, the problem with {r, s, 8} — {2,3,5} is that the center of 77,2(2,3,5) is

just Z2. If we accidentally pick y even, then iy = 1 and we get 77,2 s

77,2(2,3,5) * 77, A7, which is certainly a 3-manifold group. If y is odd, however, we

get a Z2 center, yielding 77,2 as an infinite group with center and with torsion, which

we have already pointed out cannot be the group of a 3-manifold.

We have proved

Theorem 4.1. Let M3 be any homology 3-sphere with 77,M ̂  1. Pick an (r, s) torus

knot, pick b and a so that gcd(| brs — 1 | , a) = 8 =/= I, and letyS =\a\ . If {r, s,8} =

(2,3,5), we demand that y is odd. Then the plumbing construction will produce a

homology 4-sphere 2 with 77,(2) s (77,2(r, s, 8) * trxM \ iy central). 2 does not admit

an Sx action, and 77,2 cannot be a 3-manifold group.

Generalizations. (1) If we take a connected sum of one of the above 2 with any

homology 4-sphere, the same result holds, since Kneser's conjecture [H] says that

any splitting of a 3-manifold group as a free product must reflect a splitting of the

manifold as a connected sum.

(2) Since the same criterion on 77, holds for 24 satisfying 77,(2) = 0 by Theorem

1.2, connected sums of manifolds in the above theorem with standard simply

connected 4-manifolds such as S2 X S2 or ±CF(2) will also yield 4-manifolds

without Sx actions.

Question. As remarked earlier, Kervaire showed that 77,(G) = H2(G) = 0 are

necessary and sufficient conditions for a finitely presented group G to be 77,(2"),

« > 5. If « = 4, and we make the stronger assumption that 77,(G) = 0 and G has a

presentation with an equal number of generators and relations, Kervaire constructs

24. Also, fundamental groups of homology 3-spheres have such presentations. It

seems reasonable to conjecture that the groups in the above theorem do not have

such presentations. Can this be proved?
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