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AMPLENESS AND CONNECTEDNESS IN COMPLEX G/P
BY

NORMAN GOLDSTEIN1

Abstract. This paper determines the "ampleness" of the tangent bundle of the

complex homogeneous space, G/P, by calculating the maximal fibre dimension of

the desingularization of a nilpotent subvariety of the Lie algebra of G.

1. Introduction. Let G be a connected semisimple complex Lie Group. Let £ be a

parabolic subgroup of G, and define the homogeneous space Z = G/P. Let <¡>:

P(T*Z) -* PN be the map determined by the global sections of TZ, the tangent

bundle of Z; see §3. Define the ampleness of TZ, amp(TZ), to be the maximum

fibre dimension of <^, and the coampleness, ca(Z), to be dim Z — amp(£Z).

In this paper, I calculate ca(Z). The results are in Table 1 at the end of this

section. I have also determined the number of irreducible components in a largest

fibre of the ampleness map <f>. This result is described in §5.

The following theorem of Sommese [21A, §3] is a generalization of the Barth-

Larsen Lefschetz theorems.

Lefschetz theorem. Let f\ X -» Z be a regular immersion of the connected

compact complex manifold X into Z. Let Y be a connected compact complex submani-

fold of Z. Let k be the ampleness of NY, the normal bundle of Y, i.e. k is the largest

fibre dimension of the restriction of<f> to P(N*Y). Sommese [21C, Corollary 1.4] shows

that Z\Y is k + cod Y convex in the sense of Andreotti-Grauert. Assume that

2 ■ dimY>k + dim Z and dim^r<dimT+ 1. Then tr¡(X, f'](Y), x) = 0 for i<

dim X - cod T - k.

It is difficult to compute k exactly, but the inequality k < amp(£Z) may be used.

The following theorem of Faltings [10, p. 148, Satz 5, Korollar] is a generalization

of a theorem of Fulton and Hansen [11] on Z = Pr. See also Hansen [15] for the

case G = SL„C.

Connectedness theorem. Let f: X -» Z X Z be a regular map of the compact

irreducible variety XtoZXZ and let A C Z X Z be the diagonal embedding of Z. Let

I — min{rk(g,)} where g = ©g, is the decomposition of the Lie algebra of G into
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362 NORMAN GOLDSTEIN

simple ideals. Then

(i) dimf(X) > 2dim(Z) - / =>/_1(A) ¥* <f>.

(ii) dim /(X) > 2 dim(Z) - / =>/"'(A) is connected.

From Table 1, we see that / < ca(Z). In [10A], Fairings explains that, in the above

theorem, "/" may be replaced by the better bound "ca(Z)".

For Z other than projective space, it is not clear what are the higher homotopy

results implied by the connectedness theorem; see Fulton and Lazarsfeld [12, §10.1].

I should mention, also, that part (i) of the connectedness theorem follows from

work of Sommese [21, Proposition 1.1].

Example 1. G = SL(« + 1,C), / = n = rk(G), and ca(G/£) = n for each para-

bolic P. See Hansen [15, p. 3], for examples that the results (i), (ii) are sharp.

Example 2. G = 0(2n,C), 1 = n = rk(G), and ca(G/£) = 2n - 3 for each

parabolic P. Let ZCP2"^1 be the 2n — 2 dimensional quadric given by the

equation I2", zf — 0. The above results imply that X fl Y ¥= 0 whenever X and Y

are closed subvarieties of Z satisfying

dim(A-) + dim(y) > 2(2« - 2) - (2n - 3) = 2« - 1.

This result is sharp:

Let X and Y be the images, respectively, of the maps P""1 =* Z given by

jci-»(x, ix) andy*-*(y,-iy). Clearly, X n Y= 0, while dim(X) + dim(Y) = 2n-

2.

Example 3. G = 0(2« + 1, C), / = n = rk(G), and

2« — 1     for one special P,
ca(G/£)

1 2« — 2     for every other parabolic P.

Let Z be the 2« — 1 dimensional quadric. The above results imply that

X n Y ¥= 0 whenever X and Y are closed subvarieties of Z satisfying

'*'       dim(A-) -l-dim(r) 3= 2n.

In fact, as pointed out to me by Sommese, one has a stronger (and sharper) result by

replacing 2« by 2« — 1 in (*). Sharpness follows from Example 2 since the 2n — 2

dimensional quadric is contained in Z. The validity follows from the fact that

H*(Z, C) is ring isomorphic to ZZ*(P2"- ', C).

The computational part of the paper concerns a desingularization of the unipotent

variety of G. This map has been studied by Springer [22] and Steinberg [25]. Their

results on fibre dimensions deal largely with the case £ = a Borel subgroup of G. R.

Elkik [8] has also noticed the connection between this desingularization and the

cotangent bundle of G/P (see Remark 3.3 for more details). In [26], Steinberg

explains that, following my letter to him, he did the computations for determining

ca(G/£). For the case £ = B a Borel subgroup, he gives the succinct formula

ca(G/£) = | p* | , where p is a highest root for the simple group G and p* is its dual,

or coroot. This formula is equivalent to Theorem 4.2.

The notion of fc-ampleness is due to Andrew Sommese [20, §1], and I would like to

thank him for suggesting that I consider doing these computations for G/P. The

preprint of Faltings provided further motivation to compare ampleness and rank in

the simple groups.
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I would like to thank James Carrell, Hanspeter Kraft, George Maxwell, Peter

Slodowy and Robert Steinberg for helpful letters and conversations. A special
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ca(G/£e) = ca(G/£) + min{d(a): a G 6}

ca(Z, X Z2) = min{ca(Z,),ca(Z2)} (cf. (3.4))

I p I is the height of the highest root

d(a) = no. of nodes from a to the long roots

2. Background material. In this section, I describe the notation that is used in the

paper. The references Borel [3, 4, 5], Carter [6], Humphreys [16], Samelson [18], Serre

[19] and Steinberg [24] contain proofs and elaborations.

Let G be a connected complex semisimple Lie group. The centralizer of a subset,

A, of G is Z(A) — {g E G: ga = ag Va G A). The normalizer of A is N(A) = {g E

G: gAg-' C A}.

Let g denote the Lie algebra of G, with Lie bracket [ , ]. For each b E g,

ad(b) E End(g) is defined by ad(b)(c) = [b, c]. The Killing form on g is given by

(b, c) = Trace(ad(¿>) ° ad(c)). This pairing is nondegenerate and induces an identifi-

cation, DC, of g*, the vector space dual of g, with g.

For g E G, let C(g)(x) = gxg~\ and denote by Ad(g): g -> g the differential of

C(g) at the identity element of G. Let exp: g -> G be the exponential map. For each

<¡6fl,ÍK exp(/a) is the 1-parameter subgroup of G whose tangent vector at t = 0 is

a. One has

Ad(exp(a)) = ead<"> =   ¿  (ad(a))m/w!.

m = 0
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Fix a maximal torus H in a Borel subgroup B of G. Let í) be the Lie algebra of H.

Let REif* be the root system with respect to H, and R+ (resp. R~) the positive

(resp. negative) roots with respect to B. We write a > 0 (resp. a < 0) for a E R+

(resp. a ER'). Let 2 = {a,,. ..,<*„} denote the simple roots, i.e. a basis for £;

n = dim( ZZ) = rank(G).

Each a G £ may be expressed as a — 1niai with either all n > 0 (i.e. a G £+ ) or

all «, < 0 (i.e. a G R~). The height of a is | a | = 2 «,. An element p of £ is a highest

root when p + a G £ whenever a > 0. For simple G there is a unique such root.

Also, £ is a reduced root system, i.e. for each a E R, the only multiples of a that

again belong to £ are ±a.

One has the decomposition

g = b©{g":aG£}

where g" = {a G g: ad(b)(a) = a(¿>)aV¿>Gí)} is the 1-dimensional root space

associated to a. Moreover, [ga, g^] C ga+^, so that [gD, g°] = 0 when p is a highest

root and a > 0. Also (ga, g^) = 0 when a + ß ¥= 0 while g" and g"a are perfectly

paired by the Killing form. The homomorphism

xa = exp\Qa:qa^XaEG

is an isomorphism onto Xa, the root subgroup associated to a. One has Xp C Z(Xa)

when p is a highest root and a > 0.

For each subset 0 C 2, one has the standard parabolic subgroup

(2.1) £ = £e = H • Il i*«'- « e (0)} ■J\{Xa.a>0,aE <0>}.

The products are taken in any fixed order, and (0) denotes the span of 0 in £. The

third factor is the unipotent radical, UP of £, and £ C N(UP). Every parabolic

subgroup of G is conjugate to some standard parabolic.

Similarly, the Lie algebra of £e is

p = b© {ga:aG<0>} ® (g":«>0,«í{9)).

The third summand is the nilpotent radical NP of £ and is also the annihilator of p in

g with respect to the Killing form.

(2.2) We denote U = UB = Il{Xa: a > 0}. Then Xp E Z(U) when p is a highest

root. The map

HXCN ^ B       (N= #(£+)),

(t,c)»t-l[{xa(ca):a>0}

is an isomorphism of varieties.

(2.3) The finite group 6aT = N(H)/H is the Weyl group of G with respect to H.

For each to G 6W, let nu be a fixed representative in N(H). The group ^li embeds as

a group of linear transformations on b*, leaving £ invariant. One has n^X^'J =

Xu(a) for each root subgroup Xa and « G 6¡iS.

For each a E R, let aa E % be the reflection through a. Let a, = aa for each of

the simple roots a,. Then, ^ is generated by the simple reflections (ax,...,an}. The

length, / = /(«), of an element co G % is defined as the least number of simple
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reflections by which one may write w = a, ■aiai. One has also that 1(a) —

# [a > 0: w(a) < 0}. The simple reflection a, permutes the elements of £+ \{a,). It

follows that

{UOi)      {/(co)-l,     «(a,.)<0.

There is a unique element, w0, of % taking £+ to £". One has l(œœ0) = #(£+)—

/(w) for each a E %.

Let (, ) denote a ^-invariant positive definite pairing on b*. When G is simple, at

most two root lengths occur in £ (long and short). If only one length occurs, it is

called long.

Squared length ratio (long : short)

A„, Dn, E„

Bn' Si' M

G,

all roots long

2:1

3:1

The roots of a given length form an orbit of the Weyl group in £. The reflection aa is

given by the formula aa(ß) = ß — a*(ß)a where a*(ß) = 2(a, ß)/(a, a) G Z.

Lemma 2.4. Assume that g is simple. Let a, ß E R such that a ¥= ±ß, (a, ß) ¥= 0

and (a, a) =£(/?,/?). Then

(i)a*(ß) ■ ß*(a)= 1,2 or 3,

(ii) if (a, ß)>0 then a*(ß) = (fi, ß)/(a, a) and ß*(a) = 1, and

(iii) // a and ß are simple then (a, ß) < 0 and a*(ß) — -(ß, ß)/(a, a) and

/**(«) =-I-

Proof, (i) a*(ß) • ß*(a) = 4(a, ß)2/(a, a)(ß, ß), so a*(ß) ■ ß*(a) = 0,1,2,3 or

4 by Schwarz's inequality, but the hypotheses preclude the values 0 and 4.

(ii) a*(ß)/ß*(a) = (ß, ß)/(a, a), so the result follows from (i).

(iii) Serre [19, V8, Lemme 3], for example, shows that (a, ß) < 0, and the result

now follows from (ii).

3. Ampleness of the tangent bundle. With the notation of §2, Z = G/P is a

compact complex homogeneous space with group G. Sommese [20, §1] defines the

^-ampleness of a vector bundle over a compact complex space. This notion is

discussed, in particular, for the tangent bundle, TZ, in Goldstein [14, §2] which

notation is reviewed below.

The global sections S0,...,SNof TZ determine the "ampleness map"

<i,:£*Z-g*

where g * is the vector space dual of the Lie algebra, g, of G. Explicitly,

<f>(a) = z**(a)    where a E T*Z,z#: G -» Z,

gv^gz   and   z**: T*Z ^ £^G = g*.
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The bundle TZ is A>ample when

amp(£Z) := sup{dim(<>-1(a)): a G g* \ {0}}

has value at most k. The coampleness is ca(Z) : = dim(Z) — amp(£Z).

This section reduces the determination of ca(G/£) to a calculation with Weyl

groups (Proposition 3.6). First, the ampleness map is translated into Lie group data

(Lemma 3.2).

Notation. Recall that p C g is the Lie algebra of the parabolic subgroup £. Let

£-"- = (a E g*: p C ker(a)}.

Let $: G X g* -» g* be the map

(g,a)~(Ad(g))*-\a).

Let $: G X p-1^ g* be the restriction of 4> to G X p1-.

Define an action of £ on G X p-1- by

/I-(g,a) = (g«-',(Ad(«))*-1(a)).

The map $ is constant on the orbits of £, and so induces a map

¿:(GXpx)/£-g*.

The group G acts on G X px by

" • (#>«) = {hg,a).

This action commutes with the action of £ just described, thus defining a G-action

on the space (G X px)/£. The map <$> is G-equivariant, where the action of G on g *

is the dual adjoint action.

Lemma 3.1. There is a commutative diagram (3.1.1), where T is a G-equivariant

isomorphism of vector bundles over Z.

a i

G        <- GXp1

3>

IT   I b   \r \

(3.1.1) G/P     I     (GX^)/P      t

II rj, ?

Z        «- T*Z

The maps a, b, -n, p and p are the natural projections.

Proof. It remains to construct T. Define, first, a map

f : G X p1-     -» T*Z,

(g,a) -     g*~^*-\a)).

Here, let z0 denote the point m(e) of G/£ represented by the coset £,

■n*: 7?Z-> £*G = q*
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Note that it* is 1-1 and has image equal to px. It is elementary to verify that f is

G-equivariant, is constant on the orbits of £, that the induced map

T: (G X px)/£ * T*Z

is an isomorphism, and that <f> ° T = <í>.    D

Lemma 3.2. There is a commutative diagram (3.2.1).

T*Z {GXNP)/P     t2      (GXUP)/P

(3.2.1) $1 $1 4,1
% „_ exp

a*        ^flD 91 -» V

The map A, is a vector bundle isomorphism, and A2 is an isomorphism of varieties.

Here, UP and NP are the unipotent and nilpotent radicals, respectively, of P. The

action of £ on UP is given by

h- (g,x) = {gh-\hxh'x).

The action of £ on NP is given by

h-(g,v) = {gh-l,Ad(h)(v)).

The map DC is the Killing identification, and the exponential map, exp, takes the

nilpotent elements 91 of g isomorphically onto the unipotent variety F of G (cf.

Springer [22, §3]). We have ib(g, x) = gxg~\ and $(g, v) = Ad(g)(v).

Proof. One verifies that DC(ad(c)*) = -ad(c) for each c E g. Thus, DC(Ad(g)*) =

Ad(g)"'. Also, DC(px) = NP and exp(NP) = UP. Using these facts, together with

Lemma 3.1, diagram (3.2.1) may be constructed.    D

The goal in the remainder of this paper is to calculate the largest fibre dimension

of the ampleness map <p (or \p or \p).

Remark 3.3.1. The map \p has been studied by Springer [22] and Steinberg [25]

when £ = B. Let

W.= {(gP,u)EG/PX V:g-'ugEUP).

The projection it: W -» V is equivalent to the map \p of Lemma 3.2. Springer shows,

in the case £ = B, that w is generically 1-1 and each fibre of -n is connected.

Steinberg extends these results to general parabolics. In the case £ = B, he shows

that

dim(ir-\u)) = { X (dim(Z(w)) - rk(G))

and obtains some results on the number of irreducible components in each fibre of

IT.

Remark 3.3.2. The space (G X NP)/P has also been studied by Elkik [8, §1], the

identification with T*(G/P) being done in the language of schemes.
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We next reduce the computation of ca(G/£) to the case where G is simple.

Without loss of generality, assume that G is simply connected, so G = X™=XG¡,

where the G, are simple normal subgroups of G. From the description of standard

parabolics, one has £ = X™ , £,, so that G/P ~ X^=I(G/£,). Let Z, = G/£, and

let Z = G/P — X "=, Z,. Let

</>,: T*Zt r» g*

be the ampleness maps. Then

mm m

4> = ®<í>,: ©(^^©gf
<=i       1=1 i=i

is the ampleness map of Z. It follows that

(3.4) ca(Z) = min{ca(Z,):/ = \,...,m).

For the remainder of the paper, we assume that G is simple.

Proposition 3.5. Let G be a (simple) complex Lie group. Let p be the highest root

of G with respect to some ordering, and let xp be any nonidentity element of Xp, the root

subgroup of G associated to p. Let P be a parabolic subgroup of G, with unipotent

radical UP. Then

ca(G/£) = codc{g G G: g~\g E UP).

Proof. We use the notation of Lemma 3.2. The projectivization of the ampleness

map

P(*): (G X P(NP))/P - P(9L)

is proper and G-equivariant. The space P(9l) possesses a unique closed G-orbit 0,

which is the orbit of a highest root-vector line.2 Thus, any point of P(9l) may be

specialized, within its orbit, to a point of 0 and we have that the maximum i//-fibre

dimension (over 9L\ {0}) occurs at vp E 91, where vp is a highest root vector.

Viewing the ampleness map now as

4>: (G X UP)/P - V,

the maximum fibre dimension of y¡/ is

dim{r\xp)) = dim({(g, m) G G X UP: gug'x = xp}) - dim(P)

= dim({geG:g-1xpgei/J,}) -dim(£)

where xp — exp(up). Thus,

ca(G/£) = dim(G/£) - dimf^'i*,))

= dim(G) - dim{g G G: g~'xpg E UP).    D

-

2This fact, as related to me by H. Kraft and P. Slodowy, is well known: The adjoint action of G on g is

irreducible. So, there is a unique line in g which is invariant under the Borel group viz. the highest

root-vector line (see e.g. [24, §3, 4a]). Using the fact that any two Borel subgroups of G are conjugate, one

concludes that the orbit of this line in P(9l) is the unique closed orbit.
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The last result of this section expresses ca(G/£) in terms of the length function of

the Weyl group of G.

Proposition 3.6. Let P be the standard parabolic subgroup of the simple group G

associated to the subset 0 C 2. Then

(3.6.1)       ca(G/P) = min{l(u): u E eHS, u(p) < 0 andw(p) £ <0>}.

Moreover, the irreducible components of a largest fibre of the ampleness map are in 1-1

correspondence with those u's which minimize (3.6.1).

Proof. By the Bruhat decomposition, each g E G may be expressed uniquely in

the form

g = unj>     with u E U,u E <¥and b E B.

By Proposition 3.5, we have that

ca(G/£) = codc{g G G: g~\g E UP).

Now,

g~xXpg = b'ln-Ju-]xpunub E UP <=> n^x„nu E UP

« co-'(p) ENP~ œ~\p) > 0 and w~\p) É <©>.

The first equivalence follows from £ C N(UP) and xp E Z(U). The last two follow

from 2.2, 2.3 and 2.1.

We conclude that the maximum fibre dimension for the ampleness map is

M = max{dim(UnuB): w"'(p) > 0, oTl(p) G (©>} - dim(£)

= dim(£) -dim(£) + max{/(w): w(p) > 0, u(p) É <©>}•

Here we have used the formula

dim(UnaB) = dim(B) + l(u)

and then made the substitution u for to"1. Hence

ca(G/£) = dim(G/£) - M

= #(R+) -max{/(w):<o(p)>0,<o(p) G <©>}

= min{/(íow0): w(p) > 0, co(p) G (©>).

(Recall that dim(G/£) = #(£+) and that l(uuQ) = #(£+) - /(w) where w0 is

the Weyl group element taking £+ to £".) The proposition now follows by making

the substitution ío -» iow0 and noting that w0(p) = -p.    □

4. Computing ca(G/£). The calculation is divided into three parts (recall that G is

simple):

(i) Determine ca(G/£) from the expression of the highest root p = 2 «,a, in terms

of the simple roots 2 = {a,,... ,a„}, as in Theorem 4.2.

(ii) For each standard maximal parabolic £, : = P^^ai), determine ca(G/£).

Let d(i) be the least number of steps, in the Coxeter-Dynkin diagram of G, from

a, to the long roots. Then, by Theorem 4.7

ca(G/£,) = d(i) + ca(G/£).
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(iii) Now, let £ = £0 be any standard parabolic. By formula (3.6.1), we have

ca(G/£) = min{/(w): cop < 0 and cop involves some a¡, with a, G 0}

= min{ca(G/£,): a, G 0}

= min{cZ(/'): a, G 0} + ca(G/£).

The results are summarized in Table 1 in §1.

From formula (3.6.1), we see that, in particular,

(4.1.1) ca(G/£) = min{/(co):co(p) <0}.

To each simple root a, associate the integer

(4.1.2)

1, a, long,

2, a, short, G ¥= G7,2

3, a, short, G = G2.

Suppose that ß is a long root of height at least 2, and that (a,, ß) > 0 for some i.

Then

(4.1.3) |a,(ß)| = |ß|-,,

since a*(ß) = p¡, as in Lemma 2.4.

Theorem 4.2. Let p = 2«,a, be the expression of the highest root p in terms of

simple roots. Then

ca(G/£) = 2«,A.

(The v¡ are defined in (4.1.2).)

Proof. It is well known that for each ß > 0 there is some simple root a, with

(a¡, ß) > 0. This, together with (4.1.3) and formula (4.1.1), proves the theorem.    D

Table 1 contains the results of calculating ca(G/£) for each of the simple Lie

groups.

We turn next to calculating ca(G/£;) where P¡ is the maximal parabolic £Sv{a).

Lemma 4.3. Let co G % minimize /(co) in formula (4.1.1). Then

(i) co(p) = -ajor some (long) simple root a¡, and

(ii) ar'(a ■) > 0 for every other simple root a,.

Let ak be any long simple root. Then there exists a unique <ck minimizing /(co) in

formula (4.1.1) and satisfying oik(p) = -ak.

Proof. Suppose that «"'(a ) < 0 and co(p) ¥= ~a¡. Then l(OjU) < /(co). But a,-

permutes £+ \{a }, so that a co(p) < 0. This contradicts the minimality of u, and

proves (i) and (ii).

The subdiagram of the Coxeter-Dynkin diagram for G consisting of the long roots

is connected, so we may assume that (a¡, ak) ¥= 0. Then, as in Lemma 2.4,

<(«J = «*(«,) = -i.
so

ai°k(ai) = °Âa, + « k) = -a, + <*k + a, = ak-
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To see that co^ = a¡aku is the required Weyl group element, it remains to see that

l(uk) = /(<o). This follows from properties (i) and (ii) of co:

«"'(«*) >0=>/(a¿w) - /(co) + 1    and

co-'a^a,) = co-'(«, + ak) = -p + «"'(a*) < 0

=» l{a¡akw) = l{oku) - 1 = /(co).

The uniqueness of co^ is a standard result on parabolic subgroups of %, since co ̂ is

the unique element for which min{/(co): co(p) = -ak) is attained, e.g. see Carter [6,

§2.5].    D
For the maximal parabolics, formula (3.6.1) reads

(4.4.1) ca(G/£,) = min{/(co): co(p) < Oandco(p) involves a,}.

For each simple root a, let

(4.4.2) k(i) :— min{/(co): to (a-) involves a, for some long simple root a¡\.

Remark 4.5. k(i) = 0 *=> a, is long, and k(i) = 1 <=> a, is short and is adjacent to a

long root in the Coxeter-Dynkin diagram for G.

For each simple root a¿, let d(i) — the number of nodes, in the Coxeter-Dynkin

diagram for G, from a, to the long roots.

Lemma 4.6. For each i, we have k(i) — d(i).

Proof. The only diagrams having more than one short root are those for C„ and

£4. By Remark 4.5, it remains only to verify the lemma for these two cases. Samelson

[18, pp. 79-86] contains the descriptions that I will be using of the root systems. The

short roots are underlined. In each case, 2 = {a,,... ,a„} is the implicit labeling of

the simple roots, and a, is the reflection through a,.

I. G = C„.

£+ =    2a,., a, ±a.,i <j  ,

2= (a, - a2,..., a„_, -a„,2an).

Figure (4.6.1) shows the only paths (without backtracking) between the long positive

roots '.

an-\ an-2 a2 a\

(4.6.1) la„ -^'2ä„_, -» ••• ->2a2^2ö,.

It follows that k(i) = n — i = d(i).

II. G = £

R+ = { a£) a,.± äj , i <j, {X (a, ±a2±a3±a4) },

2 = { {-X (ax- q2- g3 - a4) , a±,a3- a4, a2 - a3],

"\02(a^ = ax(a3 + a4) = {- X (a, - a2 + a3 + a4).

Thus, k(\) = 2 = d(l).    G
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Theorem 4.7. Let £, = P?.\{a,} oe a maximal parabolic subgroup of the simple group

\j. i nen

ca(G/£,) = d(i) + ca(G/£).

Proof. By Lemma 4.6, it suffices to prove the result with k(i) in place of d(i). Let

co = o, • • • a¡a¡ be a reduced expression for some co minimizing /(co) in formula

(4.4.1). By considering the sequence,

ßr -% • ' ; «^.(p).        r = 0,...,m,

one sees that co may be written as co = to2cox where co, minimizes /(co) in formula

(4.1.1), co2 minimizes /(co) in formula (4.4.2), and /(«) = /(to,) + /(to2).    D

5. Let £2 denote the long roots in the basis 2 of the root system £ of G, a simple

complex Lie group. Let n(P) be the number of irreducible components in a largest

fibre of the ampleness map \p (cf. Remark 3.3.1). By Proposition 3.6 and Lemma 4.3,

we have that n(B) = #(£2). (In fact, when £ contains only long roots, then

n(£e) = #(2 \0).) For the maximal parabolics, «(£,) = 1. To see this, one need

only verify the uniqueness of minimizing elements for formula (4.4.2). More gener-

ally,

w(£e) = max{l,#(£2\0)}.
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