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QUADRATIC FORMS PERMITTING TRIPLE COMPOSITION
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KEVIN McCRIMMON

Abstract. In an algebraic investigation of isoparametric hypersurfaces, J. Dorfmeis-

ter and E. Neher encountered a nondegerate quadratic form which permitted

composition with a trilinear product, Q({xyz}) = Q(x)Q(y)Q(z). In this paper we

give a complete description of such composition triples: they are all obtained as

isotopes of permutations of standard triples {xyz} = (xy)z or x(yz) determined by

a composition algebra, with the quadratic form Q the usual norm form. For any

fixed Q this leads to 1 isotopy class in dimensions 1 and 2, 3 classes in the dimension

4 quaternion case, and 6 classes in the dimension 8 octonion case.

Throughout we work with finite-dimensional vector spaces X over a field $ of

arbitrary characteristic. (Charactristic 2 will cause us a few headaches, and we

sometimes pass to an infinite extension ß D $ to perform linearizations, but

otherwise the field plays no role in the arguments.) A quadratic form is nondegener-

ate if Rad(<2) = {z \ Q(z) = Q(z, X) = 0} vanishes, and is nonsingular if the sym-

metric bilinear form Q(x, y) — Q(x + y) — Q(x) — Q(y) is nondegenerate, i.e.

Bilrad(ö) = {z\ Q(z, X) = 0} vanishes. These two concepts coincide if the char-

acteristic ^ 2. A triple system T — ( X, ( }) consists of a vector space X together with

a triple product, which is simply a trilinear map X X X X X -» X; it is not assumed

to be in any sense commutative or associative or uni tal. A composition triple (T,Q)is

a triple system T together with a nondegenerate form Q which permits composition

(0.1) Q({xyz}) = Q(x)Q(y)Q(z).

Note that if Q permits composition so does -Q, and that aQ permits composition

with respect to the triple product a{xyz}.

Two triple systems T, V are isomorphic (written T =s T) if there is a linear

bijection F: X -> X' with

(0.2) F({xyz})={F(x)F(y)F(z)Y.

More generally, two systems are isotopic (written T ~ 7") if there is a quadruple of

linear bijections F¡: X -» X' (i = 0,1,2, 3) with

(0.3) F0({xyz}) = {F](x)F2(y)F3(z)y.

(For example, the scalar multiple {xyz}' — a{xyz} is isotopic to {xyz} via F0 =

ai, F, = F2 = F3 = I.) Given any quadruple of bijections and a triple product {xyz}

on A", we can induce a triple product on X' isotopic to the original via {x'y'z1}' =

Fq{F\~Xx')E2~\y')F3~'(z')}.  If T is a composition triple and  the F¡ are norm
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108 KEVIN McCRIMMON

similarities Q'(F¡(x)) = a¡Q(x) of (X, Q) to (A", g') with a0 = aia2a3 =£ 0, then

the induced triple product on X' permits composition with Q'. If (T, Q), (T, Q') are

composition triples then by an isotopy of composition triples we mean an isotopy of

triple systems consisting of norm similarities with a0 = otla2a3 # 0; an isomorphism

of composition triples is the special case where all F¡ — F and all a, = 1, i.e. an

isometric isomorphism.

Thus we can obtain new composition triples from old ones via any quadruple of

isometries. This suggests that we classify the composition triples up to isotopy rather

than up to isomorphism.

In the classical theory of composition algebras due to Albert, Kaplansky, and

Jacobson, a general algebra permitting composition is shown to be isotopic to a

unital one, and the unital composition algebras are shown to be isomorphic to 4

types. Similarly, for composition triples the arbitrariness of isotopy is needed for

nonunital systems: once a composition triple is unital in the sense that is has a unit

element u G X with

(0.4) {uux} = {uxu} = {xuu} = x   for all x G X

then it can be described up to isomorphism. Note that if T is a unital composition

triple then (0.4) and (0.1) imply Q(u)2 — 1, so Q(u) = ±1; replacing Q by -Q if

necessary, we can always assume the unit has

(0.5) Q(u) = \.

The unit element u is certainly not unique: -u will do just as well.

We make frequent use of the linearization principle that any identity which holds

identically (in the sense that it remains valid in all scalar extensions Ta — T ®$ Í2,

not just in T itself) can be linearized: we can replace x by x + Xy and equate

coefficients of X in the resulting expression (e.g. over $(a) the powers of the

indeterminate X are independent over i>). Note that (0.1) and all consequences

thereof hold identically in a composition triple, since (0.1) is quadratic in all its

variables, and quadratic identities remain valid in all scalar extensions.

We will also on occasion make use of the density principle that to prove a certain

polynomial relation F(xx,... ,xn) = 0 on a composition triple, it suffices to prove it

for a Zariski-dense set of x/s. This of course is the whole point of the Zariski

topology, but it makes sense only for infinite fields. Rather than pass to an infinite

extension in the middle of the proof, let us observe once-and-for-all that to prove

F = 0 on T it suffices to prove F = 0 on an infinite extension Ta, and in this

extension it is enough to establish the relation on some dense set.

1. Composition algebras. We begin by reviewing the properties of composition

algebras we will need in the sequel. A composition algebra (C, Q) consists of an

algebra C — (X, ■) together with a nondegenerate quadratic form (called the norm

form) which permits composition,

(11) Q(xy) = Q(x)Q(y).

Two composition algebras C, C are isotopic if there exists a triple F0, Fu F2 of norm

similarities (X, Q) -» (A", Q') such that

(1.2)   FJx ■ y) = FAx) ■ 'F2(y),    Q'(Fi(x)) = aiQ(x),   «0 = «,a2 * 0.
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A composition algebra is unital if it has a unit element u with u ■ x = x ■ u = x for

all x, in which case (1.1) forces Q(u) = 1. Any composition algebra is isotopic to a

unital one [3,p. 957]: if Q(u) ¥^ 0 then w, ■ u2 — u implies the left and right

multiplications L(ux), R(u2) are bijective norm similarities, and x -u y = R(u2)~lx ■

L(ul)~iy has unit u and permits composition with respect to Qu(x) — Q(u)'xQ(x).

(This passage to a unital isotope is the only place where finite-dimensionality is

needed.) We make repeated use of the following basic facts about unital composition

algebras C (see [1,3,4]); denoting the unit by 1, we have

(1.3) x = T(x)\ — x for T(x) = Q(x, 1) defines an involution on

C with the properties

(i) Q(xy, z) = Q(y, xz) = Q(x, zy),

(ii) xx = xx — Q(x)l, so x is invertible iff Q(x) # 0, in

which case x'x — Q(x)'xx,

(iii) xyx = Q(x, y)x - Q(x)y,

(iv)x2= T(x)x- Q(x)\.

( 1.4) The composition algebras are built up by the Cayley-Dickson

process: if B is any proper subalgebra of C on which the norm

is nondegenerate, then C D B ® Bl with

(i) (bx ® c,/) • (b2 ® c2l) = (b{b2 + ¡ic2cx) ® (c2bx + cxb2)l,

(ii) Q(b ® cl) = Q(b) - MÔ(c).    b®cl = b-cl

for any / G ß"1 with Q(l) = -ju ¥= 0.

(1.5) Every composition algebra is one of 4 types.

Type I. A purely inseparable field extension 2 of $ of

exponent 1, with Q(o) = a2(so 2 = Í» has dimension 1 if $

has characteristic ^ 2, but 2 may have arbitrary dimension in

characteristic 2). The involution on 2 is trivial, ö — a.

Type II. A quadratic extension S2 of dimension 2, determined

in characteristic ¥= 2 by the Cayley-Dickson process from

$1 (ß= $1 © $/ for r(/) = 0, Q(i) t¿ 0), while in character-

istic 2 ñ = $1 © 3>w with 7X<o) = 1. ß is commutative and

associative, but the involution is nontrivial.

Type III. A quaternion algebra B — ñ © Slj: of dimension 4

determined by the Cayley-Dickson process from a quadratic

extension ß. B is associative but not commutative.

Type IV. An octonion algebra C = B © Bl of dimension 8

determined by the Cayley-Dickson process from a quaternion

algebra 5. C is not associative.

( 1.6) The norm form Q of a composition algebra is nonsingular in

all cases except Type I in characteristic 2, in which case the

bilinear form Q(x, y) vanishes identically.

In particular, all unital composition algebras are alternative algebras in the sense

that the associator [x, y, z] = (xy)z — x(yz) is an alternating function of its three
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arguments; such algebras also satisfy the left, right, and middle Moufang identities

(1.7) (i){xyx)z = x{y(xz)),

(ii) z(xyx) = ((zx)y)x   (xyx = {xy)x = x(yx)),

(iii) x(yz)x= (xy)(zx)

and the inverse identities

(1.8) ^(x"1^) — y — (yx'x)x      whenever xx~x — x~xx = 1

as well as the bumping identities

(1.9) [x, y, xz] = [x, y, z]x,   [x, y, zx] = x[x, y, z).

"Unital isotopy" takes a very simple form for composition algebras C:

(1.10) if t is an invertible element in a composition algebra C then

the elemental /-isotope

(i)C<'\x;y = (xrx)(ty)

is  again  a composition algebra with  the  same unit  and

inversion map; elemental isotope is an equivalence relation,

(ü)  {C<'>}(i) = Ci,s\

(iii) {C(,)}('"') = cm = c.

(1.11) If C and C are composition algebras on X with the same unit

and norm, then C is an elemental isotope or anti-isotope of

C:

x ■ 'y = (xt~x)(ty)    or   x ■ 'y = (yt~x)(tx).

Since (1.11) is not so well known, we sketch a proof: the Cayley-Dickson process

shows a composition algebra is determined by its unit and norm form, so C is

isomorphic to C, F(x ■ 'y) = F(x)F(y) for some isometry F (we do not have

C — C, because even if B' = B and /' = / in the Cayley-Dickson process we need

not have b ■ 7 — b ■ I); but isometries satisfy the triality principle G(xy) =

Gx(x)G2(y) or G2(y)Gx(x)[5,Theorem l,p.l59], so for G = F~x we have x-'y =

Fx(x)F2(y) or F2(y)F](x); in the former case x = 1, y = 1 show F2(y) =

txxy, Fx(x) = xt2 for ti = F((l), txt2 = 1, so x ■ 'y = (xrx)(ty) for t = t2 = if1,

and similarly in the latter case.

2. Certain impossibilities. For our later work we need to rule out certain identities

involving elements t, s in an octonion algebra. Since the identities are of degree 5 in

elements x, y it will make the calculations more manageable to be able to take t

from a quaternion subalgebra, or to take / = /. We first show this entails no loss of

generality.

2.1 Imbedding Lemma. Let t be an element of an octonion algebra C.

(i) If t G $1 is invertible with T(t) = 0, then it can be imbedded as t — I in

C = B®Bl;

(ii) / can always be imbedded in a quaternion subalgebra, C = B ® Bl with t G B; if

t G $1 we can find a basis 1, t, v, tv for B with Q(v) i= 0, T(v) = 0.



QUADRATIC FORMS PERMITTING TRIPLE COMPOSITION 111

Proof, (i) t1- has dimension 7 and contains 1 by hypothesis T(t) = 0; choose

u -L / so ß = 01 © Ow is nonsingular of type (1.5)11 orthogonal to t (i.e. T(u) = 0 =£

Q(u) in characteristic ¥= 2, T(u) = 1 in characteristic 2). Then W = (1, u, f, ¿7/}± =

{ß + ílt}± has dimension > 4. If W is totally isotropic then

H/ c W± = {ß + ßr} J"± = ß + Qt

by nonsingularity of Q, where the former has dimension > 4 and the latter

dimension < 4, hence W = ß + ß/ is 4-dimensional maximal isotropic, contrary to

ß being nonsingular. Thus w G W exists with Q(w) ^ 0, and 5 = ß + fiw is a

quaternion subalgebra of type (1.5)111 orthogonal to r(note w _L t, Ut => w, uw _L / =»

B -L / by (1.3X0), hence by (1.4) C = 5 © J5i.
(ii) All is trivial if / G 01, so assume / G 01. The subalgebra ß = 01 © Oí will

have type (1.5)11 if ß is nondegenerate on ß, and in this case by (1.4) ß is

imbeddable in a quaternion algebra B = ß © ßy with basis 1, t, j, tj for Q(j) ¥= 0

= 7X/). If g is degenerate on ß, so Q(z) = T(z) = 0 for some z G ß (necessarily

z G 01), choose u G C with 7Tu) = Q(v, 1) = 0, ß(u, z) = -1 and ß(t>) ¥> 0 (if

our initial v has 0(d) = 0 replace it by v' = v + w where w E W = {\, z,v}x has

Q(w) ¥= 0, noting that PK of dimension > 5 cannot be totally isotropic). Then

B = 01 + Oz + Ou + Ozt> = ß + ßu is a subalgebra (1, x, y, xy always spans a

subalgebra by (1.3)(iii), (1.3)(iv) and its linearization xy + yx = T(x)y +

T(y)x — Q(x, y)\), on which Q is nonsingular: relative to the basis 1, z, v, zv the

bilinear form has discriminant

det

2     0 0 1
0 0-10
0 -1 20(d) 0

10 0 0

since T(z) = T(v) = 0, T(zv) = Q(z, v) = -Q(z, v) = 1, Q(z) = Q(zv) =

0,Q(z,zv) = Q(z)T(v) = 0,Q(v,zv) = Q(v)T(z) = 0. Thus fi is a quaternion

subalgebra with basis \,t,v, tv where v has T(v) — 0 ^ Q(v).    D

We will also need to be able to cancel certain expressions in a quaternion

subalgebra.

2.2 Cancelling Lemma. If B is a quaternion algebra then Q(b, b) does not vanish

for all b G B, and Q([b, t)) vanishes for all b G B only if t G 01 (i.e. if t G 01 then
[b, t] is invertible for a dense set of b's).

Proof. Q(b, b) = T(b)Q(b, 1) - Q(b, b) = T(b)2 - 2Q(b) does not vanish since

in characteristic 2 we can find T(b) — 1 and in characteristic ¥= 2 we can find

invertible skew elements T(b) — 0 ^ Q(b).

Vanishing of Q([b, t]) means

0 = Q([b, t]) = Q(bt) - Q(bt, tb) + Q(tb)

= 2Q(b)Q(t) - Q(bt,(tb + bt) - bt)

= 4Q(b)Q(t) - Q{bt,T(t)b+ T(b)t- Q(b,t)\)    (linearizing (1.3)(iv))

= 4ß(6)ß(0 - T(tfQ(b) - T(bfQ(t) + Q(b, t)Q(bt, 1);
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so from (1.3)(i)

(*) {4ß(0 - T(tf}Q(b) - T(bfQ(t) + Q(b, t)Q(b, t) = 0.

If this quadratic relation holds for all b we can linearize b -> b + Xc to get

0 = ß((4ß(0 - T(t)2}b - 2T(b)Q(t)\ + Q(b, t)t + Q(b, t)t, c) for all c, so by

nonsingularity 0 = (4ß(i) - T(t)2}b - 2T(b)Q(t)\ + Q(b, t)t + Q(b, t)t, and

since there exists b G 01 + Or + 0/"we must have 4ß(i) - T(t)2 = 0. Going back

to (*), we get -T(b)2Q(t) + Q(b, t)Q(b, t) = 0; since / G 01 we can find b with

T(b) = Q(b, 1) ¥= 0, Q(b, t) = 0, which forces Q(t) = 0; but then Q(b, t)Q(b, t) =
Q(b, t)Q(b, t) = 0 forces Q(B, t) — 0, hence / = 0 by nonsingularity, contrary to

íGOl.    D

Now we can establish the first impossibility.

2.3 First Impossible Identity. No two invertible nonscalar elements /, s G 01 in

an octonian algebra can satisfy

(2.4) Q{[xt,s,y],[x,t,sy]s-y)=0

identically in x and y.

Proof. We assume (2.4) holds identically for t G 01 and prove this forces s G 01.

By (2.1) we may assume C = B © Bl where t lies in the quaternion subalgebra B. We

write s = u + vl for some u,v G B.

First we show s G Bl. Suppose on the contrary that u = 0, s = vl. Linearizing

y -» y + Xs~x in (2.4) and using [C, s, s~x] = [C, C, ss"'] = 0 yields as coefficient of

X

(2.5) Q([xt,s,y],[x,t,sy])=0.

If we take x = y — b G B we see

0 = Q([bt, vl, b], [b, t,(vl)b]) = Q{[b, bt, vl], [b, t, (vb)l])

= Q(v[b,bt]l,vb[b,t]l)    (from [b, c, dl] = {d[b, c]}lby (1.4)(i))

= -Mß(t;6[/3, r], vb [b, t]) = -/xß(ü)ß(e, b )Q([b, t]).

But by (2.2) Q([b, t\) ¥= 0 and Q(b, b) ^ 0 for a dense set of b\ forcing Q(s) =

Q(vl) = -/Ltß(ü) = 0, contrary to the invertibility of s.

Thus s = u + vl for u ¥= 0. We now show v = 0, so s G B. Linearizing y -> c + Xd

in (2.5) and setting x = b for b, c, d G B yields

0 = Q{[bt,u + vl, c],[b, t,(u + vl)(dl)]) + Q([bt, u + vl, dl],[b, t,(u + vl)c])

= Q{- [bt, c, vl], [b, t, (du)l]) + Q{[bt, u, dl] + [bt, vl, dl], [b, t, (vc)l])

(since [B, B, B] =0)

= -Q{v[bt, c]l, du[b, t]l) + Q(d[bt, u]l, vd[b, t]l)

(since [B, Bl, Bl] C B where Q(B,BI)=0 by (1.4))

= + nQ(v[bt, c], du[b, t]) - v.Q(d[bt, u], vc[b, t])

= ixQ{ + v[bt, c][~b~t]u - vc[b, t][~bt~u~],d)    (by (1.3)(i))
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for all d, so nonsingularity of ß and skewness of commutators gives

(*) v[bt, c][b, t]ü- vc[b, t][bt, u] = 0

for all b, c. If u £ 01 we set c — 1 to see v[b, t][bt, u] = 0, and since by Lemma

2.2(h) we can cancel [b, t] and [bt, u] on a dense set of b's we get v = 0. On the

other hand, if u = a\ G 01 (for a =£ 0 since u ¥= 0) then (*) implies v[bt, c][b, t] = 0,

and again by Lemma 2.2(h) we can cancel [b, t] and [bt, c] on a dense set of è's and

c's to get v — 0.

Thus t> = 0 and s — u G B. We will show i G 01. Setting x = b G B and y- =

Xc + I in (2.4) for c G 5 and identifying coefficients of X yields

0 = ß([6/,s,/],[6, f,s/]s ■ c)    (sinceí,í,/3,c G 5 and [B, B,B] = 0)

= Q([bt, s]l, s[b, t]scl) = -\iQ{[bt, s],s[b, t]s¿)

= -nQ([bt, s]c,s[b, t]s) = -pQ(c, [~bï^]s[b, t]s)   by (1.3)(i),

so by nonsingularity of ß and skewness of commutators we must have [bt, s]s[b, t]s

= 0 for all b. Then we can cancel 5 and [b, t] for a dense set of /b's by Lemma 2.2

(ii), so [bt, s] = 0 on a dense set and hence everywhere; then [B, s] = 0 forces

s G 01 by Lemma 2.2 (ii).    D

2.6 Remark. The weaker identity (2.5) is not enough to force / or 5 into 01, since

one can show via (1.9) that it is satisfied identically for s = 2ß(/)l — 7X0'-    D

Our second impossibility is more difficult.

2.7 Second Impossible Identity. A quaternion or octonion algebra cannot

satisfy an identity of the form

(2.8) Q{(yt)x,s-x{(sy){(tx)y-(yt)x}})=0

identically in x and y for invertible elements t, s.

Proof. If s, t can be imbedded in a common quaternion subalgebra B of C (e.g.

when C = B is itself quaternion, or when s or t lies in 01 by Lemma 2.1 (ii)), this is

fairly easy to see. Indeed, for x, y, s, t in the associative algebra B we would have

0 = Q(ytx, y[tx, y]) = Q(y2tx, [tx, y])    (by (1.3)(i))

= T(y)Q(ytx, [tx, y]) ~ Q(y)Q(tx, [tx, y])    (by (l.3)(iv))

= T(y)Q(ytx,[tx, y])

since Q(a,[a, b]) — ß(l,[a, b]ä) = T([a, bä]) = 0. Since T(y) z 0 we can cancel it

to get (replacing x by t~xx) Q(yx, [x, y]) = 0 for all x, y in a quaternion algebra as

in (1.5)111; in particular, for y — w G ß, x =j, we have 0 = Q(wj,(w — w)j) =

Q(w, w - w)Q(j), hence 0 = Q(w, w - w) = Q(w, 2w - T(w)\) = AQ(w) -

T(w)1, whereas by (1.5)11 in characteristic 2 we can find w G ß with T(w) = 1 and

in characteristic ^ 2 we can find invertible skew w — i with T(w) = 0 ¥= Q(w).
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The general octonion case is more complicated. We may assume s, t G 01.

Replacing x by t~xx, (2.8) becomes

0 = Q((yt)(rxx), s~x{[s, y, xy] + s ■ y(xy)})

-Q{s-X{(yt)(rxx)},(sy){(yt)(rxx)})    (by(1.3)(i))

= Q{(yt)(rxx),-s-x[s, y,xy] + T(y)xy - yxy)

-ß(i1{(>'0(r,x)},(,y){(>'i)(r-'x)})    (by (1.8),(1.3))

= -Q{(yt)(rxx), s~x(y[s, y, x])) + T(y)Q{(yt)(rxx), xy)

-Q((yt)(rxx), Q(y, x)y - Q{y)T(x)\ + Q(y)x)

-Q(s-x,sy)Q(yt)Q(txx)    (by (1.9), (1.3)(iii))

= -Q((yt)(rxx), s-x(y[s, y, x])) + T(y)Q((yt)(rxx), xy)

-Q(y,x)Q((yt)(rxx),(yt)rx) + T(x)Q{(yt)(rxx),(yt)(rxy))

~Q(y)Q((yt)(rxx), t(rxx)) - T(y)Q(y)Q(x)    (using (1.8))

= -Q((yt)(rxx), s~x(y[s, y, x])) + T(y)Q((yt)(rxx), xy)

-Q(y, x)Q(y)Q(t)Q(rx)Q(x, 1) + T(x)Q(y)Q(t)Q(rx)Q(x, y)

-Q(y)Q(y,\)Q(')Q(rx)Q(x) - T(y)Q(y)Q(x),

so (2.8) may be rewritten as

(2.9) 0 = T(y){Q((yt)(rxx), xy) - 2Q(y)Q(x)}

-Q((yt)(rxx),s-X(y[s,y,x])).

The impossibility of this is easily seen // the characteristic i^ 2 or if T(s) ¥= 0: in

this case T ¥= 0 on the subspace 01 + Oj, and for y in this subspace [s, y, C] = 0,

therefore (2.9) for such y becomes T(y)F(x, y) = 0, whence nonvanishing of T(y)

forces F(x, y) = 0, and we would have Q((yt)(t~xx), xy) - 2Q(y)Q(x) = 0. In

particular, y = s would yield

2Q(x)Q(s)Q(t) = Q((st)(rxx),xs)Q(t) = Q{st,(xs)(xrx))Q(t)

= Q(st,(xs)(xt))    (by (1.3)(ii))

= Q(st, (xs){Q(x, f)l - tx}) - Q(x, t)Q(st, xs) - Q(st, x(st)x)

(by(1.7)(iii))

= Q(x, t)Q(xs, st) - Q(st, Q(x, ts)x - Q(x)ts)    (by (1.3)(iii))

= Q(x, t)Q{x, sts) - Q(x, ts)Q(x, st) + Q(x)Q(st, ts)    (by (1.3)(i)).

We can choose x ± t, st with Q(x) ¥=Q (since {/, st}x has dimension 6 and the

maximum possible dimension of a totally isotropic subspace is 4) to see Q(st, ts) =

2ß(i)ß(0, and hence 0 = Q(x, t)Q(x, sts) - Q(x, ts)Q(x, st). Since 5 G 01 we

cannot have sts G Otó or t G Otó (cancelling tó or t), so we can find an x with

Q(x, sts) ¥= 0, Q(x, t) ¥= 0, but Q(x, ts) = 0, contrary to the above relation.
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Finally, assume the characteristic is 2 and T(s) = 0. Here (2.9) becomes via

(1.3)(ii)

(2.9') T(y)Q((yt)(tx), xy) = Q{(yt)(tx), s~x(y[s, y, x])).

By Lemma 2.1 (i) we can write C = B + Bl for I = s; let t = u + vl, x = s = l, y — b

for u,v,bE B, so the associator on the right collapses and (2.9') becomes

0 = T(b)Q(b(u + vl) ■ (Ü + vl)l, lb) = T(b)Q((bu + (vb)l) ■ (Ul + /it)), bl)

= T(b)Q({u(bu) + ¡i(vb)v}l,bl)    (sinceB ± Bl)

= nT(b)Q(ubu + ¡xvbv, b )

identically in b. Since T i= 0 on B we can cancel it and use (1.3)(i) to get

0 = T(ubub + iivbvb) = T(ü{Q(b, ü)b + Q{b)U} + iiv{Q(b, v)b + Q(b)v})

(by (1.3)(iii) in characteristic 2)

= {Qib, ü)Q(b, u) + tiQ(b, v)Q(b, v)} + Q(b){T(ü2) + ¡iT(v2)}.

Choosing b ±u,v with Q(b) ¥= 0 shows T(u2) + ¡j.T(v2) = 0, so

(*) Q(b,u)Q(b,U) = iiQ(b,v)Q(b,v).

Then b A. v in (*) forces b A. u or b -L U, hence u = Xv or ü = Xv by nonsingularity

of ß on B; then choosing b X v, v in (*) yields X2 = ju; but then Q(t) = Q(u) —

juß(ü) = X2Q(v) — iiQ(v) = 0 by (1.4), contrary to the invertibility of /.    D

3. The standard composition triples. We now examine the basic examples of

composition triples, the composition algebras with standard triple products. A

permutation of a triple product {xxx2x3} has the form

(3-1) {*1*2*3L =  {^(1)^(2)^(3)} (feS3).

Notice that if the original triple permits composition, so does any permutation

thereof: Q({xxx2x3}„) = ß(^(1))ß(^(2))ß(^(3)) = Q(xx)Q(x2)Q(x3). In any

nonassociative algebra A the left and right standard triple products are

(3.2) {xyz}L= (xy)z,    {xyz} R = x(yz),

and the standard triple products on A are the permutations of the left and right

standard products. Notice that if A is a composition algebra with norm Q, then all

the standard triple products T permit composition with ß, yielding the standard

composition triples (T, Q).

Thus a nonassociative algebra gives rise to 12 standard products {xyz} given by

(3 3) (xy)z>   (yz)x>   (zx)y>   (y*)z>   (zy)x,   {xz)y,

x(yz),    y(zx),     z(xy),     y(xz),     z(yx),     x(zy).

In general (see 3.11) these are nonisotopic. However, if A has an anti-automorphism

/ (e.g. an involution), then any standard product is isomorphic to its opposite (the

same product taken in the opposite algebra): (xy)z = z(yx) and x(yz) = (zy)x by

setting F = J in (0.2). For a composition algebra A this leads to the following

classification of standard triple products.
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3.4 NoNisoTOPY Theorem. Let A be a finite-dimensional composition algebra.

(i) If A is commutative and associative (Types I—II), then all 12 standard products

coincide with {xyz} — xyz.

(ii) If A is associative but not commutative (Type III), then there are 6 distinct

standard products {xyz} consisting of '3 nonisotopic pairs

xyz ~ zyx,   yzx ~ xzy,   zxy s yxz.

(iii) If A is not associative (Type IV), then there are 12 distinct standard products

{xyz} consisting of 6 nonisotopic pairs

(xy)z =z(yx),     (yz)x s x(zy),     (zx)y =y(xz),

x(yz)=(zy)x,    y(zx)^(xz)y,     z(xy) ={yx)z.

Proof. An intrinsic characterization of the various standard products can be

obtained by means of the concepts of "outside" and "adjacent" in a triple product.

We say x¡ is outside in a triple product {xxx2x3} if there is a rational map G:

X -» End( X) which "cancels" x¡, i.e.

(3.5) G(xi)({xxx2x3}) = H(xJ,xk)       ({;', j, k} = {1,2,3})

for some bilinear map H: X X X -* X which is "injective" in the sense that there

exists u G X such that H(x, u) = 0 => x = 0. Two variables x¡, Xj (i <j) in {xxx2x3}

are adjacent if there exists an invertible linear operator H G End(A") and a rational

map G: X -* X such that

(3.6) M,J{x„G(x,))=H

where the multiplication operator A/,- ■ is defined by Mij(xj, Xj)(xk) = {xxx2x3}.

These properties are isotopy-invariant: if {xxx2x3}' = F0~x{Fx(xx)F2(x2)F3(x3)} is

an isotope as in (0.3) then x¡ will remain outside via G'(x,) = G(Fj(x¡)) ° F0,

H'(Xj, xk) — H(FJ(Xj), Fk(xk)),u' = Fk~x(u), and x¡, Xj will remain adjacent via

//' = F0-x » H o Fk, G'(x,) = Ç-i(G(/•(*,.))).

Note that in the standard product (xy)z in an alternative algebra we have z

outside (via G(z) = R(z)~x, H(x, y) = xy, u = 1), and x, y and y, z are adjacent

(via H = I, G(a) = a~x by the inverse identities (1.8)), and similarly in the product

x(yz) the x is outside and x, y and y, z are adjacent.

We claim that if A is not commutative then x, z are not adjacent in the products

(xy)z and x(yz). It suffices to consider the first case. Suppose (xy)G(x) = H(y) for

rational G; then y = 1 would yield xG(x) = H(\) — t, so G(x) = x~xt is defined at

x — 1, in which case x = 1 shows yt — H(y) (in particular, H = R(t) invertible

implies t is invertible), and adjacency reduces to (xy)(x~xt) = yt. But then x = t

would yield ty = yt for all y, and in a composition algebra this implies / is a scalar,

so we can cancel it to get xyx~x = y, i.e. that A is commutative.

Next, we claim that if A is not commutative and associative thenj> is not outside in

the products (xy)z and x(yz). Again it suffices to consider the first case. Suppose

G(y)((xy)z) = H(x, z) for rational G and bilinear injective H. Setting x = y~x

yields G(y)(z) = H(y~x, z), so H(y~x,(xy)z) = G(y)((xy)z) = H(x, z); replacing

y by y~x,x by xy yields H(y, xz) = H(xy, z) for a dense set of x, y, hence

everywhere. Setting y — 1 we see H(x, z) = H(xz) for H(a) = H(\, a), therefore
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H(y(xz)) = H((xy)z), i.e. H([y, x, z]) = H([y, x]z); in particular, z = 1 shows H

vanishes on commutators, H([y, x]) = 0. Injectivity means H(xu) = 0 => x = 0, so

altemativity //([>>, u]u) — H([y, u, u]) — 0 forces [y, u] — 0, then H([y, u, z]u) =

H([y, u, uz]) (by (1.9)) = H([y, u]uz) = 0 forces [y, u, z] = 0 too, so u lies in the

center of A; then H([x, y]u) = H([x, yu]) — 0 forces commutativity [x, y] = 0, and

H([x, v, z]u) = H([x, y, zu]) = H([x, y]zu) = 0 forces associativity [x, y, z] — 0.

Finally, we claim that if A is not associative then x is not outside in the product

(xy)z, nor z in x(yz). As usual if suffices to consider the former case. Suppose

G(x)((xy)z) = H(y, z); then y = x~x shows G(x)(z) = H(x~x, z), hence

H(x~x,(xy)z) — H(y, z), so replacing x by x~x and y by xy yields H(x, yz) =

H(xy, z) on a dense set and therefore everywhere. Setting z = i we see H(x, y) =

H(xy) for H(a) = H(a, 1), therefore H(x(yz)) = H((xy)z) and H vanishes on

associators. Teichmiiller's Identity x[y, z, u] + [x, y, z]u = [x, y, zu] — [x, yz, u]

+ [xy, z, u] then shows H([x, y, z]u) = -H(x[y, z, «]). In particular, altemativity

H([x, y, u]u) = -H(x[y, u, u]) = 0 forces [x, y, u] — 0 by injectivity, hence

H([x, y, z]u) = -H(x[y, z, «]) = 0 forces [x, y, z] — 0, so/I must be associative.

We now apply these concepts to the proof of the theorem, (i) is clear. For (ii), if A

is associative but not commutative then there are 6 distinct products in (3.3), coming

in 3 pairs of isomorphic products via the involution on A. The nonisotopy of

products from different pairs follows because they have different adjacency patterns

(or different outsideness patterns): in xyz we have x, y andj>, z but not x, z adjacent

(or x and z but not y outside). Similarly, in (iii) if A is not associative (hence not

commutative either) then all 12 products (3.3) are distinct, coming via the involution

in 6 pairs as in Theorem 3.4 (iii). The nonisotopy of products from different pairs

follows because they have different adjacency plus outsideness patterns: (xy)z has

x, y and y, z but not x, z adjacent, and z but not x or y outside, while x(yz) has the

same adjacency pattern but now x but not^ or z is outside.    D

We now digress from composition algebras to make a few remarks about isotopy

of standard triple products in general nonassociative algebras; these results will not

be used in the rest of the paper.

3.7 Remark. The above proof works in any alternative algebra A with a dense set

of invertible elements for which [t, A] — 0 =» [t, A, A] — 0 (e.g. if A has characteris-

tic # 3).    D

3.8 Remark. A different characterization can be used to distinguish (xy)z and

x(yz) in any unital alternative algebra. We say a triple product has the isotopic left

Moufangproperty if there exists an invertible operator H(y) and a map G(x; y) on

X quadratic in x and linear in y such that

(3.9) L(x,y)HL(x,z) = L(G(x; y),z).

It is easy to see this is isotopy-invariant and satisfied by x(yz) in an alternative

algebra (H = I,G(x; y) — xyx by (1.7)(i)), but as in (3.4) one can show (xy)z

satisfies (3.9) only when A is associative.    D

3.10 Remark. If A is unital associative but not commutative, of arbitrary

dimension, then the only standard triple products xyz, zyx, yzx, xzy, zxy, yxz which

can be isotopic are the opposite products xyz ~ zyx, yzx ~ xzy, zxy ~ yxz, and this
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occurs precisely when A possesses an anti-automorphism. It suffices to prove xyz is

isotopic only to zyx, and this only when A has an anti-automorphsm.

Throughout we suppose F0(xxx2x3) = Fx(x„(X))F2(xn(2))F3(x„(3)) as in (0.3) and

set/ = /• (1) (so/0 =/,/2/3). Then F0(a) =fxf2F3(a) = F,(o)/2/3 shows L(/,/2) =

F0F3~], R(f2f3) = F0FX~X are invertible, hence/,/2 and/2/3 are invertible elements,

so all/,, /2, /3 are invertible elements. Then

F3(a)=f2-xfx-xF0(a),   Fx(a) = F0(a) f3'x f2~x,   F2(a) = fx-%(a)f3~x

so G(a) = F0(a)f0'x has

G(l) = 1,   /o"' =/3~'/2~V,    G(x,x2x3) = G(^(1))(J(xw(2))G(xw(3)).

For the transpositions jcvz and yxz it suffices to show xyz -*- xzy, and for the cyclic

permutations yzx, zxy it suffices to show xyz ■*■ yzx. If xyz ~ yzx then G(xy) =

G(y)G(x),G(yz) — G(y)G(z) forces A to be commutative, similarly xyz ~ xzy

forces commutativity, and if xyz ~ zyx then G(xy) = G(y)G(;t) so G is an anti-

automorphism of A.    D

3.11 Remark. The nonisotopy results of (3.10) can be extended to arbitrary unital

nonassociative algebras if we impose the finiteness condition that L(a) or R(a)

surjective implies L(a) or R(a) is bijective (e.g. if A is finite dimensional): if A is

neither associative nor commutative then the only possible isotopies among the 12

standard products (3.3) are between opposites ((xy)z ~ z(yx), etc.) or between

transpositions (x(yz) ~ x(zy), (xy)z ~ (yx)z,etc.) which happens only if A is iso-

topic to its opposite.

More precisely, one can show (i) if A is not associative then xx(x2x3) -*■

(xxx2)x3, x3(x2xx),(x2xx)x3, x3(xxx2); (ii) if A is not commutative associative then

xx(x2x3) ■+■ x2(xxx3), x2(x3xx), (x3xx)x2, (xxx3)x2, (x2xx)x3, x3(xxx2); (iii)

xx(x2x3) ~ xx(x3x2) iff there is an autotopy F(xy) = G(x)H(y) of A such that H is

an anti-autotopy H(xy) = K(y)L(x), dually that xx(x2x3) ~ (x2x3)xx iff there is

an anti-autotopy F(.x)') = G(y)H(x) such that Gis an autotopy G(xy) = K(x)L(y);

(iv) xx(x2x3) ~ (x3x2)xx iff there is an anti-autotopy F(xy) = G(y)H(x) such that

G is also an anti-autotopy G(xy) = K(y)L(x).

By right-left symmetry of the hypotheses, it suffices to work with xx(x2x3); in all

cases one assumes F0(xx(x2x3)) = Fx(x„{X))F2(xw(2))F3(x„(3)) (with some distribution

of parentheses on the right), and sets f — F¡(1); if the distribution is a(bc) then

F0(a) = fx(f2F3(a)) shows L(fx) is surjective and hence by hypothesis bijective,

while if the distributiion is (ab)c then F0(a) = (Fx(a)f2)f3 shows R(f3) is surjective

and hence bijective. From this one argues as in (3.10) by subsituting xx = \, x3 = I

to get in (i) F0(xx(x2x3)) = F0((xxx2)x3); (ii) = F0((xxx3)x2) or F0(x2(xxx3)); (iii)

F0(xy) = Fx(x){L(f2)F3(y)} and L(fxyxF0(yz) = F2(z)F3(y) and dually; (iv)

F0(yz) = R(f3){Fx(z)F2(y)} and F0(xy) = {R(f3yxF0(y)}F3(x).    D

4. Reduction to the unital case. We begin the study of abstract composition triples

by showing each one is isotopic to a unital one, and that a unital one inhabits the

same space as a unital composition algebra. We denote the left, middle, and right

multiplications as usual in a triple system by

(4.1) L(x,y)z = M(x,z)y = R(y, z)x = {xyz}.
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In complete analogy with the composition algebra case we have

4.2 Unital Isotope Theorem. Any finite-dimensional triple (T,Q) is isotopic to a

unital one (TU,QU): if Q(u) # 0 then Qu(x) = Q(u)~xQ(x) has ß» = 1 and

permits composition with respect to the u-unital product

ixyz)u = [R(un u3yXx, M(ux,u3)'ly, L(w,, w2)Mz}

whenever {uxu2u3} = u.

Proof. For given u we can always choose m, G A" with {uxu2u3} — u (for example,

we can take ux = u2 = u, where by (0.1) L(u, u) is a similarity Q(L(u, u)z) =

Q(u)2Q(z), therefore injective by nondegeneracy of Q, therefore bijective by finite-

dimensionality, so L(u, u)u3 = u for some u3). Since Q(ux)Q(u2)Q(u3) = Q(u)

¥= 0 we have Q(u¡)^0, hence again by (0.1) the multiplications M, =

R(u2, u3), M(ux, u3), L(ux, u2) are invertible similarities with ratios Q(u!)Q(u/).

Then (0.1) shows Q({xyz}u) = Q(uy2Q(x)Q(y)Q(z), therefore Qu({xyz}u) =

Q(uy3Q(x)Q(y)Q(z) = Qu(x)Qu(y)Qu(z) and ß„ permits composition. For

unitality (0.4) we have

{uuz}u = [R{u2, u3)   u,M(ux,u3)   u,L(ux,u2)   z]

= {«,, u2, L(ux, u2)~ z] = L(ux, u2)L(ux, u2)   z — z

since u = L(ux, u2)u3 = M(ux, u3)u2 = R(u2, u3)ux, and similarly {uyu}u = y and

{xuu}u = x.    D

Throughout the rest of this paper we will concern ourselves solely with unital

composition triples. (The passage to a unital isotope is the only step in our argument

that requires finite-dimensionality.) A unital composition triple necessarily has finite

dimension 1,2,4,8 (except for the inseparable Type I in characteristic 2), since it is

based on a unital composition algebra.

4.3 Associated Algebra Theorem. // (T, Q) is a unital composition triple with

unit u, then x -u y — {xuy} defines a unital composition algebra C(T, u) with the same

unit u and norm Q. The products x • L y = {uxy} and x ■ R u y = {xyu} also define

composition algebras with the same unit u and norm Q, and therefore are elemental

isotopes or anti-isotopes of C(T, u).

Proof. The formula defines a bilinear product having u as unit, u ■ uy = {uuy} = y

and x ■ uu = {xuu} = x by definition (0.4) of u being a unit for T. This algebra

permits composition with respect to Q: Q(x -uy) = Q({xuy}) = Q(x)Q(u)Q(y) =

Q(x)Q(y) by (0.1),(0.5). The same argument applies to x ■ Luy and x ■ R uy, so by

(1.11) these must be elemental isotopes or anti-isotopes of C(T, u).    D

We call C = C(T,u) the composition algebra associated with the composition

triple T and the unit u. We say T has Type I-IV if the associated C has Type I-IV

of (1.5). Our main tool in investigating composition triples is linearization of the

fundamental identity (0.1). Such linearizations involving Q(x, y) will be no help if

this vanishes identically, and by (1.6) this happens as soon as Q(x, y) is singular
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(namely Type I characteristic 2), so we have to use a different argument in this case.

But Type I is easily taken care of in general.

4.4 Theorem. A unital composition triple of Type I is standard: {xyz} = xyz in

terms of the product in the associated composition algebra.

Proof. Either C = Om in characteristic ¥= 2, or else C = 2 is a purely inseparable

field extension of exponent 1 in characteristic 2. The first case is trivial: the product

Ou is completely determined by {uuu} = u by unitality (0.4). In the characteristic 2

case Q(x) is injective (Q(x, y) vanishing identically means ß is additive, and

nondegeneracy reduces to anisotropy of ß, so ß has zero kernel), therefore Q({xyz})

= Q(x)Q(y)Q(z) = Q(xyz) by (4.3) implies {xyz} = xyz.    D

From now on we will concern ourselves with nonsingular unital composition

triples T of Types II—IV. We will consistently denote the given unit of T and C by 1.

One would expect that once a composition triple is forced to co-exist with a

composition algebra of dimension 1,2,4, or 8, it should be a simple matter to show it

is standard. We will have to work surprisingly hard to show this.

5. Reduction to the strictly unital case. Our next step is to analyze the associated

left and right products to show that a unital composition triple necessarily has a

permutation which is either strictly unital in the sense that the unit is "central"

(5.1) {xy\} = {xly} = {Ixy} = xy

or is left t-unital

(5.2) [jcyl] = (xrl)(ty),    {xly} = {\xy} = xy

or is right s-unital

(5.3) {xy\} = {xly} = xy,    {Ixy} = (xs-x)(sy)

for invertible nonnuclear elements t, s. (If t or s were nuclear in (5.2), (5.3) we could

cancel it and have the strictly unital case (5.1).)

If T is unital with associated C as in (4.3), then we saw {xyl} = (xt'x)(ty) or

(yt~x)(tx), {lyz} — (ys'x)(sz) or (zs~x)(sy) for invertible t,s. This leads to 4

possible combinations;

(A) {xyl} = (xrx)(ty), {lyz} = (ys-x)(sz),

(54) (B) {xyl} = (xrx)(ty), {lyz} = (zs-x)(sy),

(C) {xyl} = (yrx)(tx), {lyz} = (ys-*)(sz),

(D) {xyl} = (yrx)(tx), {lyz} = (zs~x)(sy).

We must show cases (B), (C) are permutations of case (A), that case (D) never

occurs, and that in case (A) at least one of /, í must be nuclear so we can cancel one

or both and obtain right-i or left-/ or strictly unital product as in 5.3,5.2,5.1.

We begin by reducing cases (B), (C) to case (A).

5.5 Lemma. A unital triple {xyz} as in case (B) is a permutation of a triple

{xyz}' = {xzy} of case (A); a triple {xyz} of case (C) is a permutation of a triple

{xyz}' = {yxz} of case (A).
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Proof. If {xyz} falls under case (B) then the triple {xyz}' = {xzy} has associated

composition algebra the r-isotope C = C(,) of C: x ■ 'z — x -,z = (xt'x)(tz) as in

(1.10X0, and

{xyl}'= {xly} =xy = (x-'t)-'(rx • >),

(Bl) {xlz}' = {xzl} = (xrx)(tz) = x-'z,

{lyz}' = {Izy} = (ys~x)(sz) = (y • V"') ■ ' (s'■ 'z)

for s' = t'x • 's = t'xs (where we have used (1.10)(iii),(ii) to see C = C'u_l) is

recoverable from C, and the product ( ys-x)(sz) is that of C(i) = {C'u'')}(s) = C'(l)

for í' = r1 ■ 'í = t'ls). This shows {xyz}' falls under case (A).

Similarly, in case (C) the product {xyz}' = {yxz} has C = C(i), C = C'*1"'',

{xyl}' = {yxl} = (xr')(/y) = (x • '/'"') •'(/'• 'y),

(Cl) {xlz}' = {lxz} = (xs~x)(sz) = x • 'z,

{lyz}'={ylz}=yz = (>;-'í)-'(í-|-'z)

for t' — s~x • 't = s~xt, and therefore falls under case (A).    D

Next we get rid of case (D). If C is commutative (Type I or II) then all cases

reduce to case (A), so case (D) never occurs as a distinct case. If C is noncommuta-

tive (Type III or IV) then case (D) never appears at all.

5.6 Lemma. There are no unital composition triples of Type III or IV falling under

case (D) in (5.4).

Proof. By (D), linearizing x -» x, 1 and z -» z, 1 in (0.1) yields

(0      Q({xyz},(zs-x)(sy)) = T(x)Q(y)Q(z.),

(ii)     Q({xyz},(yrx)(tx)) = Q(x)Q(y)T(z)

and further linearizing y, z to 1 in the first of these yields (using (1.8))

(D2)  (i)   Q((xyz}>z) = T(x>>T(y)Q(z)-Q(xz>(zs~[)(sy))'

(ii)     Q({xyz},y) = T(x)Q(y)T(z)-Q((yrx)(tx),(zs-x)(sy)).

Since these hold identically we deduce

0 = Q(y)T(y)Q(tx) - Q({t'x, y, y},{yrx)(t(tx)))    (by (Dl)(ii))

^ Q{y\ y)Q{t)Q{x) - Q{{tx, y, y),{y't)x)    (by (0,l),(1.3)(ii))

= Q{(y2i)x,(yt')x) + Q{{tx,(yt)x,y},y) - T(tx)Q{y,{yt)x)T(y)

+ Q{(yrx)(t(tx)),(ys-X)(s{(yi)x}))

+ Q{{((y¡)*Vl}{t(tx)},(ys-x)(sy)) I

(linearizing^ -> y, (yt )x in (D.2)(ii))
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= Q{U2t)x,(yt)x) +[T(ix)T((yt)x)Q(y)

- Q((tx)y,(ys-X){s{(yt)x}))]

-T(tx)Q{{yt)x,T(y)y) + Q{{yt)x,(ys-X){s{{y¡)x}))

+ Q({((yi)x)i}x,y2)    (by (D2)(i), (1.3)(ii), (1.7)(iii))

= Q{(yt)x,(y2t)x) + Q({yt')x,(y2x)t)

+ T(tx)Q{{y~t)x,Q(y)l - T(y)y)

+ Q(s{(s-xy)[(yt)x-(ix)y]},(yi)x)    (by(1.3)(i))

= Q{(yi)x, y2Q(t, x)) - Q(t, x)Q({yt)x, y2)

+ Q{(yi)x,s{(s-Xy)[(yt)x - (t'x)y]})

(linearizing (zx)x = ß(x)z and using (1.3)(iv))

= Q((yi)x, s-x{(sy)[(yt)x - (t'x)y}})    (by (1.3)(ii))

identically, which is impossible in Types III and IV by Second Impossibility 2.7 D

Finally, we must show that in case (A) one of /, s is forced to be nuclear. Case (A)

products such as {(xt'x)(ty)}z and x{(yx'x)(sz)} exist having one nonnuclear

factor, but products like {[(xt~x)(ty)]s~x}{sz} which seem to have two nonnuclear

factors do not have {xlz} = xz (and when we reformulate them in terms of

x • z = {xlz} = (xs~x)(sz) we see s disappears).

5.7 Lemma. A unital composition triple falling under case (A) in (5.4) must have

either t or s in the nucleus of C.

Proof. Nuclearity of t, s is trivial if C is associative, so we may assume C in (4.3)

is octonion. By (A), linearizing x or y to 1 in (0.1) yields

(A1) (i)      Q{{xyz},{ys-X)(sz)) = T(x)Q(y)Q(z),

(ii)     Q({xyz},xz) = Q(x)T(y)Q(z)

and further linearization yields

(i)       Q({xyz}, z) = T(x)T(y)Q(z) - Q(xz,{yS-x)(sz)),

(A2)     (ii)      Q({xyz},y) = T(x)Q(y)T(z) - Q((xrx)(ty),(ys-X)(sz)),

(hi)     Q({xyz}, x) = Q(x)T(y)T(z) - Q{(xrx)(ty), xz).

From these we use nonsingularity of ß to see

(A3) 0)       {xyy} =xy2-s'x{(sy)[xt-x,t,y]},

(ii)     {xxy} = x2y + { [x, s~x, sy](xt )}/"'
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hold identically. For (A3)(i),

Q({xyy} - xy2 + S-l{(sy)[xrl, t, y]},w)

= [-Q({xyw}, y) + T(x)T(y)Q(y,w)

-Q{xw,(ys-X)(sy)) - Q(xy,(ys-l)(sw))]

-Q{y2, xw) + Q{[xrx, t, y],(ys)(s-xw))

(using (1.3)(i) and linearizing z -» y, w in (A2)(i))

= -[T(x)Q(y)T(w) - Q{(xrx)(ty),(ys-X)(sw))] + T(x)T(y)Q(y,w)

-Q(y2,xw) - Q{xy,(ys'x)(sw)) - Q(y2,xw)

+ Q{xy-(xrx)(ty),{ys-x)(sw))    (by (A2)(ii), (1.8), (1.3)(ii))

= -T(x)Q(y)T(w) + T(x)T(y)Q(y,w) - Q(y2,T(x)w)    (by (1.3))

= T(x)Q{-Q(y)l + T(y)y - y2,w)

= 0   (by(1.3)(iv)).

Dually, for (A3)(ii)

ß({xxj} -x2y~ {[x,s-x,sy](xt)}rx,w)

= [-Q({wxy}, x) + Q(x,w)T(x)T(y)

- Q((xrx)(tx),wy)   -Q{(wrx)(tx),xy)]

-Q(x2,wy) - Q((xs-X)(sy) - xy,(wrx)(tx))

(using (1,3)(i) and linearizing x -» x, w in (A2)(iii))

= -[T(w)T(y)Q(x) - Q{(wrx)(tx),(xs-X)(sy))] + Q(x,w)T(x)T(y)

\-Q{x2,wy) - Q(x2,wy) - Q((xs-X)(sy),(wrx)(tx))    (by (A2)(ii))

= -T(w)T(y)Q(x) + Q(x,w)T(x)T(y) - Q(x2,wT(y))

= T(y)Q{-Q(x)l + T(x)x-x2,w)

= 0    (by(1.3)(iv)).

Now from (0.1) and (4.3) we have

Q({xyy} - xy2,{xxy} - x2y)

= Q{{xyy}, {xxy}) - Q{{xyy}, x2y) - Q(xy2, {xxy}) + Q(xyy, xxy)

= Q(x)Q(y)Q(x, y) ~ T(x)Q({xyy}, xy) + Q(x)Q({xyy}, y)

~T(y)Q(xy,{xxy}) + Q(y)Q(x, {xxy}) + Q(x)Q(y, x)Q(y)

(linearizing (0.1) and using (1.3)(iv))
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= 2Q(x)Q(y)Q(x, y) - T(x)[Q(x)T(y)Q(y)]

+ Q(x)[T(x)T(y)Q(y) - ß(xy, {ys'^sy))]

-T(y)[Q(x)T(x)Q(y)] + Q(y)[Q(x)T(x)T(y) - Q((xrx)(tx), xy)]

(by(Al)(ii), (A2)(i),(A2)(ih))

= 2ß(x)ß(y)ß(x, y) - ß(x)ß(xy, yy) - Q(y)Q(xx, xy)    (by (1.7)(iii))

= 2ß(x)ß(y)ß(x, y) - ß(x)ß(x, y)Q(y) - ß(y)ß(x)ß(x, y)

= 0.

By (A3) this implies

Q{s-X{(sy)[xrx, t,y]}, {[x, s~\ sy](xt)}rx) = 0.

From Q(a, b) = Q(ä, b) and skewness of associators we obtain

Q(r\{tx)[x,s-\ sy]},{[xrx, t, y](ys)}s-x) = 0.

Replacing xby xt, yby s~xy, and using ( 1.7),(1.8), we get

Q{x{t[xt, s-x, y]}, {[x, t, s-xy]s)Q(s)-ly) = 0.

Linearizing x -» x + Xt~x and equating coefficients of X yields (noting [1, C, C] =

[r',i,C] = 0)

Q([xt,s-x,y],{[x,t,s~x]s-xy}y)=0

identically (using (1.3)(ii) and (1.8) as well). But this forces t or s in the nucleus of

the octonion algebra C by First Impossibility 2.3.    D

Summarizing the results of 5.4-5.7, we have

5.8 Theorem. Any unital composition triple is a permutation of a composition triple

which is strictly unital, left t-unital, or right s-unital.    □

It remains to analyze these 3 kinds of triples. We begin with the strictly unital

ones.

6. The strictly unital case. Just as the unital composition algebras have a simple

structure, so do the strictly unital composition triples.

6.1 Strictly Unital Theorem. A strictly unital composition triple is left or right

standard; {xyz} is {xyz}L = (xy)z or {xyz}R = x(yz).

Proof. By (4.4) we may assume C is of Type II-IV. Linearizing respectively

x,y,z to 1 in (0.1) yields Q({xyz}, {lyz}) = T(x)Q(y)Q(z), Q({xyz}, {xlz}) =

Q(x)T(y)Q(z), Q({xyz}, {xyl}) = Q(x)Q(y)T(z). By strict unitality (5.1) the triple

products involving 1 are yz, xz, xy respectively. Note further that T(x)Q(y)Q(z) =

Q((xy)z,(\y)z) — Q(x(yz), l(yz)) (using (0.1) and peeling off factors until we get

to ß(x, 1) = 7Tx)). Similarly for the other terms on the right, so

Q({xyz},yz) = Q((xy)z, yz) = Q(x(yz), yz),

(6.2) Q({xyz},xz) = Q((xy)z, xz) = Q(x(yz), xz),

Q({xyz},xy) = Q{(xy)z,xy) = Q(x(yz),xy).
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If we introduce the "error terms"

EL(x, y, z) - {xyz} - {xyz}, = {xyz} - (xy)z

ER(x, y, z) = {xyz} - {xyz}R = {xyz} - x(yz)

then our unitality hypothesis (5.1) can be expressed by saying that EL, ER vanish if

one of the variables is replaced by 1, while (6.2) can be expressed by

(6.2')      Q(E(x, y, z), yz) = Q(E(x, y, z), xz)

= Q(E(x,y,z),xy) = 0       (E = EL, ER).

Such functions E have a very special form.

6.4 Key Lemma. Let E be a trilinear function on a unital nonsingular composition

algebra C of Type II-IV, which vanishes whenever one of the variables is replaced by 1,

and such that 2 of the 3 identities

(6.5) Q{E(x,y,z),yz) = 0,    Q{E(x, y, z), xz) = 0,    Q(E(x, y, z), xy) = 0

hold.  Then all 3  identities hold, and E(x, y, z) and Q(E(x, y, z), w) are both

alternating functions of their variables which vanish if any variable is replaced by I. If

C is associative (Types II—III) then E vanishes identically.

If C = B + Bl is octonion (Type IV) then we have the further identities

(6.6) E(x, y, xy) = E(x, y, yx) = 0,

(6.7) E(x, y, yz) = E(x, y,z)y= yE(x, y, z),

E(x, y, zy) = yE(x, y,z) = E(x, y, z)y,

(6.8) E(x, y,(xy)z) = (E(x, y,z)x)y

and E is completely determined by the element e = E(u, v, I) = wl where l,u,v, uv is

any basis for B of invertible elements such that T(u)T(v) — 0, and where w G B is

orthogonal to 1, u, v:

(i) E(B,B,B) = 0,

(ii) E(B,B,Bl) = E(u,v,Bl) = eB = (wB)l,

('' (hi) E(B,Bl,Bl)c(eB)(Bt) = BwB,

(iv) E(Bl, Bl, Bl) C {(eB)(Bl)}(Bl) = (BwB)l

so that e = 0 or w = 0 implies E — 0. Furthermore, e and E will vanish as soon as

Q(e,(uv)l) = 0, which will be the case if

(6.10) Q(E(x,y,z),(xu-i)(uy)) = 0   forallx,yGC.

Proof. The hypothesis that 2 of the 3 expressions (6.5) vanish guarantees that all

3 variables x, y, z appear in products p in terms ß(£(x, y, z), p) = 0; since these

are quadratic, we can linearize each variable to 1 in turn and use the hypothesis that

E(x, y, z) vanishes if x, y or z is replaced by 1, to see

ß(£(x, y, z), x) = Q(E(x, y, z), y) = Q(E(x, y, z), z) = 0.

This says that ß(£(x, y, z), w) alternates in the 1st and 4th, 2nd and 4th, and 3rd

and 4th variables; but then it alternates in all variables. In particular, holding w
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fixed and using nonsingularity of ß we see E(x, y, z) itself is alternating in all

variables. Once E alternates, as soon as any 1 of the 3 identities (6.5) holds then all 3

do. Since ß(£(x, y, z), w) vanishes if any of the first 3 variables is replaced by 1,

the same must be true if the 4th variable is replaced by 1.

If C is associative of Type II or III (dimension 2 or 4) then Q(E(x, y, z), w) is an

alternating function of 4 variables supported on a space lx of dimension 1 or 3,

hence vanishes identically. Because ß is nonsingular, once Q(E(x, y, z), w) = 0 for

all w we must have E(x, y, z) — 0.

If C is octonion then E need not vanish (an example is the associator E(x, y, z) =

{xyz} L— {xyz} R). (6.6) follows via nonsingularity from Q(E(x, y, xy),w) =

-Q(E(x, y, w), xy) = 0 (by (6.5)) and dually. To get the first bumping formula

(6.7), use nonsingularity and Q(yE(x, y, z) — E(x, y, yz), w) = Q(E(x, y, z), yw)

+ Q(E(x, y, w), yz) (by (1.3)(i) and alternation) = 0 (linearizing z -> z, w in (6.5));

since Q(E(x, y, z), w) vanishes for w = 1 we see all E(x, v, z) are skew, hence

applying the involution to yE(x, y, z) = E(x, y, yz) yields E(x, y, z)y =

E(x, y, yz). The bumping formulas for zy follow from those for>>z by passing to the

opposite algebra Cop (note that (6.5) continues to hold in Cop by alternation of E).

For (6.8) we have

{E(x,y,z)x}y-E{x,y,(xy)z)= {E(x, y, z)x){T(y)l -y}

+ E(x, z, (xy)y) + E(xy, y,xz) + E(xy, z, xy)

(linearizing x -» x, xy and y -» y, z in (6.6))

= -T(y)E(x, z, y)x - E(x, y, xz)y + E(x, z, xy2)

+ E(x, y, xz)y + 0   (by (6.7) and alternation)

= -T(y)E(x, z, xy) + E(x, z, T(y)xy - Q(y)x)

(by(6.7)and(1.3)(iv))

= 0    (by alternation)

By alternation and (6.5) we know e — E(u, v, I) is orthogonal to

I, u, v, I, uv, ul, vl; then e ± B, so e = wl G Bl where wl ± I, ul, vl implies w ±

I, u, v. For (6.9)(i), by alternation and vanishing of £ on 1, E(B, B, B) is spanned

by E(u,v, uv), which vanishes by (6.6). For (6.9)(ii) we note by alternation and

vanishing at 1 that E(B, B, Bl) is spanned by E(u, v, Bl), E(u, uv, Bl) =

E(u, v, u(Bl)) (by (6.7) twice) = E(u, v,(Bu)l) = E(u, v, Bl) (by the assumed in-

vertibility of u), similarly E(uv, v, Bl) = E(u, v,(Bl)v) — E(u, v, Bl). Here

E(u, v, Bl) is spanned by E(u, v, I) = e, E(u, v, ul) = E(u, v, l)u =

eu, E(u, v, vl) = ev, E(u, v, (uv)l) = {E(u, v, l)u}v = (eu)v = e(vu) (by

(6.7), (6.8), and e - wl). Thus E(u, v, Bl) = e(01 + 0« + Ou + Ou«) = eB. For

(6.9)(iii),(iv) note that we can reduce a factor Bl to B via E(x, bl, Bl) =

E(x, bl,(bB)l) = E(x, bl,(bl)B) = E(x, bl, B)(bl)(by (6.7)) C E(x, bl, B)(Bl) for

the invertible basis elements b G B, hence for all b. This finishes (6.9).

We know e = wl is orthogonal to all the basis vectors for C except possibly

(uv)l, so Q(e,(uv)l) = 0 => Q(e, C) = 0 => e = 0 by nonsingularity. We must show
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(6.10) forces Q(E(u, v, l),(uv)l) = 0.  In characteristic  ¥=2 the proof is easy.

Linearizing x -* xu, u in (6.10) and setting z = x gives

0 = Q(E(xu, y, x), uy) + Q(E(u, y, x), x(uy))

= Q(xE(u, y, x), uy) + Q(E(u, y, x), x(uy))    (by (6.7))

= 2Q(E(u,y,x),x(uy))    (by (1.3)(i)),

so setting x = v, y = / shows 0 = 2Q(E(u, I, v), v(ul)) = -2Q(E(u, v, l),(uv)l).

To establish ß(e\(wt>)/) = 0 for arbitrary characteristic we set x = bu, y = I, z = c

in (6.10) for b, c G B to get Q(E(bu, I, c), b(ul)) = 0. By linearized (6.7) this implies

0 = Q(-E(lu, b, c) + bE(u, I, c) + ¡E(u, b, c), b(ul))

= -Q{E(Ul, b, c), b(ul)) + Q(E(u, I, c), b2(ul)) + 0

(by (1.3)(i), (1.7)(i), and (6.9)(i) since u,b,cEB)

= -T(u)Q(E(l, b, c), b(ul)) + Q(E(ul, b, c), b(ul))

+ T(b)Q(E(u, I, c), b(ul)) - Q(b)Q(E(u, I, c), ul)    (by (1.3))

= -T(u)Q(E(l, b, c), b(ul)) + 0 + T(b)Q(E(u, I, c), b(ul)) - 0

(by (6.5) and the alternation of E). If T(u) = 0 then T(b)Q(E(u, c, I), b(ul)) = 0

for all b,cEB, hence T ¥= 0 on B forces Q(E(u, c, I), b(uly) = 0, whence c = b = v

yields Q(e,(uv)l) = 0. If on the other hand T(u) ¥= 0 then by hypothesis T(u)T(v)

— 0 we must have T(v) — 0, so setting b = v,c = u yields T(u)Q(E(l, v, u), v(ul))

= 0, and once more Q(e,(uv)l) = 0. Thus Q(e,(uv)l) = 0 in all cases. This

completes the proof of the lemma.    D

Returning to the proof of Theorem 6.1, we see that if C is associative then EL — 0

and the strictly unital triple T is standard: {xyz} — {xyz}L = xyz. If C is octonion

we expect one of EL or ER to vanish, but we cannot predict which one; we will show

that the "product" of EL and ER vanishes, forcing one of the "factors" to vanish. It

suffices to establish this in some scalar extension, so we can assume | O | > 2. In this

case we can by (1.5) choose a basis l,u,v, uv for B with u, v invertible, T(v) = 0,

and {1, u, t>}x = Ow for invertible w (namely u = i,v — j,w = ij in characteristic

¥= 2, and in characteristic 2 u — cd + u,v = w =j where a2 + a ^ ß(w), using

| O |> 2). By Lemma 6.4 EL, ER are completely determined by eL = wLl, eR = wRl

for wL = aLw, wR = aRw in the 1-dimensional space Ow = {1, u, u}x . Now

<S>aLaR = aLaRiiQ(w)Q(B, B)    (since Q(w) ¥= 0 and Q(B, B) = O)

= ocLaRQ((wl)B,(wl)B) = Q(eLB, eRB) = Q(eL,(eRB)B~)

(by (1.3)(i))

= Q(eL, eRB) = Q(EL(u, v, I), ER(u, v, Bl))    (by (6.9)(ii)),

so if we can prove

(*)
Q{EL(u,v,l),ER(u,v,Bl)) = 0
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then aLaR = 0, one of aL or aR is 0, so one of EL or ER is 0 as desired. But for any

z G C we have

Q(EL(u, v, 1), ER(u, v, z)) = Q({uvl} - (uv)l, {uvz} - u(vz))

= Q({uvl}, {uvz}) - Q({uvl}, u(vz)) - Q((uv)l, {uvz}) + Q((uv)l, u(vz))

= Q(u)Q(v)Q{l, z) - Q(EL(u, v, 1), u(vz)) - Q((uv)l, EL(u, v, z))

-Q((uv)l,(uv)z)    (by linearized (0.1))

= Q(uo)Q(l, z) + Q{EL(u, v, u(vz)), I) - Q{EL(u, v, z),(uv)l)

-Q(uv)Q(l, z)    (by alternation of EL)

= Q((EL(u, v, z)v)u, 1) - Q(EL(u, v, z), (uv)l)    (by (6.7))

= Q(EL(u, v, z),(lü)v - (uv)l)    (by (1.3)(i))

= 0    (for u,vEB).

Thus (*) holds, and either EL = 0(so {xyz} = {xyz}L) or ER = 0(so {xyz} =

{xyz}R).    D

7. The left-Minital and right-s-unital cases. It remains to analyze the left-/ and

right-5 unital cases (5.2) and (5.3) for invertible nonnuclear elements /, s. The

archetypal products of these forms are {(xt'x)(ty)}z and x{(ys'x)(sz)}; these are

not permutations of strictly unital triples, rather they are isotopes of the strictly

unital triples (xy)z and x(yz). In the left-/-unital case the natural isotopy {xyz}' =

{xt, t'xy, z} restores left unitality but destroys middle and right unitality. Rather

than find another isotopy, or prove the natural one does indeed produce a strictly

unital triple, it turns out to be just as quick to carry out a classification similar to

that of 6.1 directly. Note that we do not have to hesitate between left or right

standardness: only the left association is possible for /, and only the right association

for s.

7.1 Left-Right Unital Theorem. A left t-unital composition triple (for non-

nuclear t ) is left t-standard,

{xyz}=[(xrx)(ty)]z,

and a right s-unital triple is right s-standard,

{xyz} = x[(ys-x)(sz)].

Thus both are isotopic to left or right standard products.

Proof. Nonnuclearity of /, s means C is octonion in 1.5. We carry out the proof

for the left /-unital case, that for the right i-unital case being dual (apply the /-case

to the dual triple {xyz}* — {zyx}). We must show the error term

(7.2) E[(x,y,z)={xyz}-[(xt-x)(ty)]z
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vanishes identically. As in (6.1) we linearize the basic relation (0.1) and use left

/-unitality (5.2) to get Q({xyz}, (xrx)(ty)) = Q(x)Q(y)T(z), Q({xyz}, xz) =

Q(x)T(y)Q(z), Q({xyz}, yz) = T(x)Q(y)Q(z). Here

Q(x)Q(y)T(z) = Q(xrx)Q(ty)T(z) = Q({(xrx)(ty)}z,(xrx)(ty)),

Q(x)T(y)Q(z) = Q(xrx)Q(t)Q(y, l)Q(z) = Q(xrx)Q(ty, t)Q(z)

= Q{{(xrx)(ty)}z, {(x/-')/}z) = Q{{(xrx)(ty)}z, xz)

(by (1.8)), similarly

T(x)Q(y)Q(z) = Q{{(xrx)(ty))z, yz),

so by (7.2) we have

(i) Q{E,(x,y,z),(xrx)(ty))=0,

(V.3) (ii) Q{E,(x,y,z),xz) = 0,

(in) Q{Et(x, y, z), yz) = 0.

The last two of these show 2 of the 3 identities (6.5) hold; furthermore Et vanishes if

any variable is set equal to 1 by left /-unitality (5.2) and by (1.8)(Et(x, y, 1) = {xyl}

- (xrx)(ty) = 0, Et(x, 1, z) = {xlz} - xz = 0, Et(\, y, z) = {lyz} - yz = 0).

Therefore we may apply Key Lemma 6.4 to E = Er Moreover, since / G 01 is

invertible we can by (2.1)(ii) imbed it in a quaternion subalgebra, C — B + Bl where

B has basis 1, /, v, tv with v invertible, T(v) = 0. By (6.10) with t — u, E, will vanish

as soon as Q(Et(x, y, z), (xt~x)(ty)) = 0, and this holds by (7.3)(i). Thus E, — 0 and

{xyz} — {xyz}Ll is left /-standard.    D

7.4 Remark. The same type of arguments based on Key Lemma 6.4 can be used

to show for nonnuclear /, s that

{xyl} =(xrx)(ty),{xlz} = xz,{lyz} = (zrx)(ty)    ^ {xyz} =[(xz)rx](ty),

{xyl} = (ys~x)(sx),{xlz} =xz,{lyz} = (ys~x)(sz)    ^ {xyz} = (ys~x)[s(xz)],

etc.    D

Summarizing our results 5.8,6.1,7.1 we have

7.5 Theorem. Every unital composition triple is a permutation of a left or right

t-standard triple {xyz} = [(xt~x)(ty)]z or x[(yt'x)(tz)} for an invertible element t in a

composition algebra.    □

If / is nonnuclear we can pass to an isotope to obtain a standard triple as in (3.3).

Using (4.2) and our classification of (3.4) of standard triples, we have our main

7.6 Classification Theorem. Every composition triple is isotopic to a standard

composition triple on a unital composition algebra C, thus to one of the following types.

(I) C = 2 inseparable field extension: {xyz} = xyz;

(II) C = ß quadratic extension: {xyz} — xyz;

(III) C = B quaternion: {xyz} is one of

(i) xyz,

(ii) xzy,

(ïû)yxz;
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(IV) C octonion: {xyz} is one of

(i) (xy)z,

(ü)(xz)y,

(iii) (yx)z,

(i\)x(yz),

(v)x(zj),

(vi)y(xz).

Two composition triples are isotopic iff they are associated with isomorphic composition

algebras (i.e. equivalent norm forms) and have the same type (N) and («) above.    D

If O is algebraically closed then there is precisely one composition algebra or

quadratic form of each type I-IV, so there are precisely 11 nonisotopic composition

triples. Similarly, if O = R there are precisely 11 nonisotopic triples with positive

definite forms ß (the case of geometric interest).
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