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NORMAL SUBGROUPS OF Diff S(R")

BY

FRANCISCA MASCARO

Abstract. Let 0 be a volume element on R". Diff a(R") is the group of ß-preserving

diffeomorphisms of R". DiffJJ,(R") is the subgroup of all elements whose set of

nonfixed points has finite fl-volume. Diff"(R") is the subgroup of all elements

whose support has finite ñ-volume. Difff(R") is the subgroup of all elements with

compact support. Diffc„(R") is the subgroup of all elements compactly i2-isotopic to

the identity.

We prove, in the case voln R" < oo and for n > 3 that any subgroup of Diff "(R"),

N, is normal if and only if Diff£(R") C N C Diffcfi(R"). If vol^R" = oo, any

subgroup of Diffa(R"), N, satisfying Diffc"0(R") C N C Diffc"(R") is normal, for

n > 3, there are no normal subgroups between DiffJJ,(R") and Diffö(R") and for

n > 4 there are no normal subgroups between Diff"(R") and Diff"(R").

0. Introduction. Ling [8] and McDuff [12] have proved that any nontrivial normal

subgroup N, of the group of smooth diffeomorphisms of R", Diff(R"), satisfies

Diffco(R") CJVC Diffc(Rn) where Diffc(R") is the subgroup of all diffeomorphisms

with compact support and Diffco(R") is the subgroup of all diffeomorphisms isotopic

to the identity by an isotopy with compact support.

The purpose of this paper is the study of the normal subgroups of the group of

smooth diffeomorphisms of R" which preserve a given volume element Í2, Diff ß(R"),

in order to get similar results.

To start with we have the following chain of normal subgroups of Diff Q(R"):

{id} C Diffc"0(R") C Diffcn(R") C Diff^R") C Diff£(R") C Diffû(R")

where Diffc"(R") is the subgroup of all elements isotopic to the identity by an

fi-isotopy (i.e. an isotopy F, such that, for any /, Ft preserves Í2) with compact

support. Diffcß(R" ) is the subgroup of all elements with compact support. Diff^(R" )

is the subgroup of all elements with support of finite ß-volume. Diff^(R") is the

subgroup of all elements with set of nonfixed points of finite i2-volume.

Thurston [20] proved that if « 3= 3 there is no normal subgroup between {id} and

Diff^R"). It is clear from [6] and [16] that essentially we only have to discuss two

different cases, namely vola R" < + oo and vola R" — + oo. In the first case, we have

obviously Diff/^R") = Diffß(R") and we prove that if « > 3 there is no normal

subgroup between Diff^R") and Diff a(R") (3.4). Therefore, we get the same result

as in the nonvolume preserving case. For volaR" = +00 the normal subgroups in

the chain are all different from each other (see §5) and we prove that if « > 3 there is
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no normal subgroup between Diff £(R") and Diff n(R") (5.1) and if « > 4 there is no

normal subgroup between Diffcß(R") and Diff^R") (5.3). The question remains

unsolved for Diff/p(R") C Diff^,(R") since the methods used do not work in this

case. Also they do not work when n = 2. In fact, Banyaga [1] and Thurston [20]

proved that in this dimension, even DiffCo(R") is not perfect.

The crucial technique used in this paper is the decomposition of elements of

Diff a(R") in a finite product of volume preserving diffeomorphisms with support in

strips (1.7). This method owes very much to Ling [8] who worked out the decomposi-

tion of a diffeomorphism of R" in a finite product of diffeomorphisms with support

in a locally finite union of disjoint cells. The modification has been necessary since

two strips with the same ß-volume are diffeomorphic by an element of Diffa(R")

while the same is not true for locally finite unions of disjoint cells.

We could consider another set of normal subgroups of Diffn(R"), that is the

closures of the subgroups of the chain with respect to the different topologies on

Diff ß(R") that make it a topological group. For instance with the compact-open C°°

topology Diff£(R") is dense in Diff a(R") and with the Whitney C°° topology both

Diffcn(R") and Diff g,(R") are closed.

The paper is organised as follows. In §1 we prove the main decomposition

theorem. In §2 we give some technical results on strips used in §§ 3 and 5. In §3 we

consider the case volñR" < +co. In §4 we prove the extra technical results needed

only when vola R" = + oo, proving the results for this case in §5.

I wish to thank Dusa McDuff for her many suggestions and helpful criticisms.

This paper would not have been written without her stimulus and encouragement.

This research was done during my stay at the University of Warwick and it is

going to be part of my Ph.D thesis.

1. Decomposition theorems. The aim of this section is to prove some decomposi-

tion results for volume preserving diffeomorphisms. We need some definitions and

properties about strips and extensions of volume preserving diffeomorphisms.

Definition 1.1.,4 straight strand is a UneR+ X{x}, where x is a point in R"~x and

R+ = [0, oo). A strand is the image under an element of Diffn(R"), of a straight

strand. A tangle is a finite union of disjoint strands. A tangle T is said to be unknotted

or trivial if there is an element of Diff a(R") which straightens all the strands in T

simultaneously.

By [14, Lemma 1.6] every tangle is trivial if « > 4. This result is not true for « = 3

but in this case we have the following result.

Proposition 1.2. Let sx and s2 be two disjoint strands. Then there is a strand s0,

disjoint from both, such that the tangles sx U s0 and s2 U s0 are trivial.

It is proved in [15, Lemma 1.4] but such a strand sQ can be constructed directly by

an easy generalization of [13, Lemma 8].

Definition. 1.3. A strip is the image under some element o/Diff(R"), g, of the tube

{x E R": li>2xf <l,xx> 0}.

Notice that a strip may have finite i2-volume since g may not be volume

preserving.
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Using [14, Lemma A.2] as in [14, Lemma 1.4], one can easily prove the following

two properties.

Proposition 1.4. Let Vx and V2 be two strips with the same Q,-volume and also

satisfying vola(R" — Vx) = volß(R" - V2) if \ola Vx - volQ V2 = oo. TAe« there is an

element o/Diffn(R"),/, such that f(Vx) = V2.

Proposition 1.5. Let g be an element of Diff(R") with support in a strip V,

containing a strand s in its interior. Then there is an element o/Diff fl(R") with support

in V which equals g on s. Furthermore, if g is volume preserving on a strip V

containing s in its interior we can choose f equals g on a smaller strip V".

Notice that if voln V = oo we can get the strip V" also of infinite ß-volume.

We need the following extension theorem for volume preserving diffeomorphisms.

Proposition 1.6. Let s be a strand and let f be any element o/Diff Ü(R") that is the

identity on s. Then:

a. There is an element f E Diffß(R"), with support in a strip V of finite Si-volume

and equal to fon a strip V" C V containing s in its interior.

b. If vola R" = oo, there is an element f E Diff(R") that has support in a strip V of

infinite ti-volume, vola(R" — V) — oo and f equals f on a strip V" C V also of

infinite Q-volume and containing s in its interior.

Proof, a. Let Vx and V2 be strips of finite ß-volume containing s in its interior

and V2 U f(V2) C Vx. Both int V2 and int f(V2) are tubular neighbourhoods of s. So

(see [11]) there is a smooth isotopy F: R" X I -» R" X / from Fx to the identity with

support in Vx and an automorphism of the trivial bundle on s inducing a diffeomor-

phism <j>: V2 --> V2 such that Fx ° <f> — f\y. Since § is isotopic to the identity we can

construct a diffeomorphism »p: V2 -* V2 such that <p equals <p on the image of the unit

disc bundle and \p is the identity outside the image of the disc bundle of radius 2. It

can be extended to a diffeomorphism \p: R" -> R". Thus, Fx ° <// is an element of

Diff(R") with support in V2 and equal to /on a strip containing s in its interior.

Since / is volume preserving we can apply 1.5 to Fx ° ip getting an element

/' E Diff a(R") with support in Vx = V and /' equals / on a strip V" EV2EV

containing s in its interior.

b. Inductively we construct a locally finite union of disjoint cells C^iC, such that

vol0( II C,. ) = oo,    voiJr" - ( H C,. U U f(C,)\ ) - oo

and int Ct D s ¥= 0 for any i. Then, joining C, to C,+, by a small bridge around s for

any i, we get a strip V2 and similarly we get another strip Vx satisfying f(V2) U V2 C

Vx and volp/R" - F,) = oo.

Now, the same proof as in case a works here with a little extra care in the

construction of ip.

Now we can prove the main factorization theorem.

Theorem 1.7. Let f be any element of Diff a(R" ). Ifn>3we can decompose f as the

product of five elements of Diff ß(R" ), /, ,f2,fi,f4,f^ where f has support in some strip

V¡ for any i.
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Proof. Let s be a straight strand. By transversality there is a diffeomorphism/,"1

with support in an arbitrarily small strip Vx containing/(s) in its interior and such

that/,"1 o f(s) n s — 0. By 1.5 we can assume that/, is an element of Diff a(R").

There is a strand t such that both t U /,"' ° f(s) and t U s are unknotted (by 1.2

when « = 3, and we can take t a straight strand for n > 4). Let M be a surface in R"

joining t and s and diffeomorphic to R+X [0,1].

Let V3 be a neighbourhood of M that is a strip of finite ß-volume. There is a

diffeomorphism of R", f3 with support in V3 sending s onto t. By 1.5 we can assume

that f3 is volume preserving.

Repeating the same process with the trivial tangle t U /f1 ° f(s) we get an

element f2 of Diffn(R") with support in a strip V2 of finite ß-volume and such that

/2(0 =/,-'"/(*)■
Then we have /2 ° f3(s) =/f' ° f(s). Let g be g =ffx ° f2~x ° /f1 ° /• We can

choose/2 so that g is the identity on s. So, by 1.6 there is an element/, of Diff a(R")

with support in a strip V4 such that/, equals g near s.

Let /5 be the composite map /5 =/4"' ° /3_1 ° /2_1 ° /," ' ° /. It has support in a

strip V5 since the closure of the complement of a strip is itself a strip.

So, / = /5 ° /4 o /3 o /2 o /, is the product of five volume-preserving diffeomor-

phisms of the appropriate type.

Notice that in the proof of 1.7 we can get the strips Vx, V2, V3 of ß-volume as

small as we like and either the ß-volume of V4 is finite or vola(R" — V4) = oo, and

vola(R" - V5) = oo.

Corollary 1.8. // / is any element of Diff/^R") and «>3 then / =

h ° h ° fi ° fi ° f\ where / G Diff^PiR") and it has support in a strip V¡ for any i.

Furthermore, vola Vt < oo for i < 5.

It is an immediate consequence of the proof of 1.7. Since the support of /5 is

included in supp/4 U supp/3 U supp/2 U supp/, U supp/we have volasupp/5 <

oo.

Theorem 1.9. // V is a strip of finite ü-volume and f is any element of Diff a(R")

0,-isotopic to the identity by an Sl-isotopyf with support in V, then for any e > 0, we can

factor fas a finite product f — /, ° ■ ■ ■ ° fm where, for any i — 1,... ,m,f\ E Diff 0(R")

Aai support in a strip of ü-volume less than e.

Proof. Let A be a closed ball in R" such that vola(F- (supp/n A)) < e/2.

There is a cell (a smoothly embedded closed «-disc) C in R" such that, for any

t E [0, l],ft(A) C C and C C A U V. Thus, by Krygin isotopy extension theorem [7]

we get an element/, G Diff a(R") with support in C that equals/on A. Then we can

apply [13, Lemma 2] to /, and write /, as a finite product of volume-preserving

diffeomorphisms each one with support in a cell of ß-volume less than e. So, since

every cell is contained in a strip of ß-volume as near to the ß-volume of the cell as

we like, we can decompose/, as a finite product of elements of the appropriate type.

The theorem follows since/2 = /,"' ° /has support in a strip of ß-volume less than

e.
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2. Technical results. In this section we give the technical results needed to prove

the main theorems of this paper.

Let X be any subset of R". We denote by Gx the subgroup of Diff a(R") of all

elements with support in X.

First of all let us prove

Proposition 2.1. If V is a strip, Gv is connected with respect to the compact-open

Cx-topology.

The proof is based on the following generalization of Theorem 1 of R. E. Greene

and K. Shiohama [6].

Proposition 2.2. Let V be a strip on R" and let a, be a smooth family of volume

elements on R" such that a0 = ax, a, = a0 on R" — V for any t E [0,1] and vola V =

vol0 V for any t. Then there is an isotopy <#>,: R" -* R" such that <i>0 = </>,= id and

</>,*(*,) = % M any tE [0,1].

It is proved in the usual way. See [10].

Proof of 2.1. Let V = g(T) where T is the standard tube T = {x E R": 2^2x2

< I, xx> 0} and let / be any element of Gv. Then Ht — g° Ft° g~x is an isotopy

from/to the identity with support in V, where Ft is the isotopy from g"1 »/»gto

the identity given by glueing the standard one (l//)g~' ° f ° g(tx) from g"1 ° f° g

to its derivative and the lineal one from this derivative to the identity.

Notice that //, is not an ß-isotopy. So H*(Q) — ot is a smooth family of volume

elements on R" satisfying the hypothesis of 2.2. So we get a smooth isotopy 4>,:

R" -» R" such that H, ° <j>, is an ß-isotopy from / to the identity with support in V.

Therefore, G v is connected.

Remark 2.3. a. The above lemma proves that any element of Diff a(R"), /, with

support in a strip V is ß-isotopic to the identity by an ß-isotopy with support in V.

Thus, in 1.9 the hypothesis that / must be ß-isotopic to the identity by an ß-isotopy

with support in V is superfluous. We only need supp / C V.

b. If vola R" < oo and « s* 3, then for any e > 0 we can decompose any element of

Diff a(R") as a finite product of volume-preserving diffeomorphisms, each of them

having support in a strip of ß-volume less than e (it is an immediate consequence of

1.8, 1.9 and 2.3. a).

McDuff in [13] proved that Diff a(R") is perfect. With some easy modifications we

get

Lemma 2.4. // « > 3 and V is a strip in R", Gv is perfect.

The next three lemmas are the main tools in the proofs of §3 and §5.

Lemma 2.5. Let X be a subset ofR" and let f be an element o/Diff a(R") satisfying:

a.f(X) D X= 0.
b. There is an element h G Diff a(R") such that h(X) D X = 0 and h(X) D f(X)

= 0.

Then, the commutator subgroup [Gx, Gx] of Gx is contained in the normal subgroup

N(f)of Diff a(R" ) generated by f.
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Proof. For any two elements of Gx, g, and g2, we have [g,, g2] = [[g,, /], [g2, A]].

Since [g,, /] lies obviously in N(f), we have [g,, g2] E N(f).

Lemma 2.6. Let n > 3 ana" /e/ / ¿>e awj> element of Diff Ö(R") such that there is a

disjoint union of cells (i.e. a locally finite union of disjoint cells) ü/^iC,-, satisfying:

/(LU.C,) n OUiCi) = 0, vola(R" - nia.,Cf) = oo // volaR" = oo ana1

vol n(U, » i C, ) < ( 1 /4)vol a R" i/ vol a R" < oo. TAe« íAere ú a sinp F containing II, >, C,

in its interior and an element f E N(f) such that f'(V) <~) V = 0.

Proof. Let s be a strand such that s D int C,<¥= 0, s C\ C¡ connected for any i and

s n (II,»i/(C,)) = 0. Applying transversality and Krygin isotopy extension theo-

rem [7] we get a volume-preserving diffeomorphism m, with support in a disjoint

union of cells Ut>lD¡, and such that m ° f(s) f) s — 0. Furthermore, we can choose

the above disjoint union of cells satisfying:

a. vola D¡ < (l/2)vola C, for any i.

b.oi/>lz);)n(n/>,c/)= 0.
c(n/>,A')n(n/>1/(c,))= 0.
Let us now construct an element m' of N(f) that equals m on f(s).

By an obvious generalization of [13, Lemmas 3 and 4] we get a disjoint union of

cells II,;, |C/ satisfying:

a'. D¡ C int C[ for any /'.

b'.(Ii,slC/)n(II,&1C,) = 0.

c'.(U,&1C/)n(U,al/(C,))= 0.

d'. vola C/ = vola C, for any /,

and an element A G Diffa(R") such that A(C,) = C[ for any i. Let D, = h~\D¡).

Since /); C int C, and vola D¡ = vola /),' < (l/2)vola C, we can construct, for any i, a

new cell £, C int C, such that E¡ D D¡ = 0 and vol^/T, = vola/),. So, we have

constructed a disjoint union of cells II i5> ,£■,■. Thus, by a generalization of [13, Lemma

4] we get an element g E Diffa(R") such that g(D¡) = E¡ for any i, and g is the

identity on a neighbourhood of R" — H¡^\C,.

Let X — II,:»,C, and let m — A"1 ° m ° h. By construction we have g G Gx, so,

m — [m, g] is an element of [GX,GX\ Furthermore m — m on Mi>xD¡. Since

f(X) n X= 0, h(X) ni=0 and h(X) D f(X) = 0, we can apply 2.5 to get

[Gx, Gx] C N(f). Thus, m is an element of N(f). So, m'= h ° rh ° h~x is an

element oi N(f) that equals «i on/(s).

To finish the proof, we choose F to be a suitable neighbourhood of (11,3,,C,) U í

and f' — m'o /.

Lemma 2.7. Let Vbe a strip and let f be any element o/Diff a(R") with support in a

strip V such that volaF' < volaF and vola(R" - V) = vola(R" - V) = oo if

vola V = volaK= oo. 77ie«, / is an element of the normal subgroup N(GV) of

Diff a(R") generated by Gv.

Proof. By 1.4 there is an element A G Diff(R") such that h(V') C V. So, A ° / ° A-1

is an element of G v and /is in N(GV).

Remark 2.8. Notice that by [13, Lemma 2 and 2.7] we have Diff a(R") C N(GV)

for any strip V.
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3. Case of finite total volume. First of all we give two results valid for any volume

element fi on R".

Theorem 3.1. Let N be a subgroup of Diffa(R") jmcA /Aai Diffa(R") C N C

Diff a(R"). TAe« N is normal.

Proof. If g is an element of Diffa(R") and /lies in Diffa(R") then [g, /] has

compact support. Furthermore, let F: R" X I -* R" X / be an fi-isotopy from /to the

identity (see[13]). The ß-isotopy from [g, /] to the identity given by Ht = [g, Ft] has

compact support since it is included in ttx ° .F(supp X /), itx being the projection of

R" X / to the first factor.

Thus, we have [Diffca(R"), Diff a(R")] C Diffa(R"). So [N, Diff a(R")] C

Diffca(R") C N.

Notice that the quotient Diff a(R")/Diffca(R") is an abelian group since it is

isomorphic to Diffc(R")/Diffco(R") by Moser's theorem [16] and the quotient

Diff<.(R")/Diffco(R") is an abelian group as proved in [3] and in [4].

Up to the end of the section ß will denote a volume element of R" wifli finite total

volume.

Lemma 3.2. Let f be any element o/Diff a(R") with noncompact support. Then there

is a disjoint union of cells Il,^iC,, such that (II ̂ iC,-) n (II^i/ÍC,)) = 0.

Proof. Since the support of/is noncompact we can always choose a locally finite

set of points of R", {x¡}, such that f(xt) ¥= Xj for any i, j. Then, we can choose

neighbourhoods of x¡, C¡, satisfying C, n f(Cj) = 0 for any /', j.

Theorem 3.3. Let « > 3 and let f be any element of Diff a(R") with noncompact

support. Then N(f) = Diffa(R").

Proof. By 2.6 and 3.2 there is an element f E N(f) and a strip V with

f'(V) n V = 0. Clearly, we can choose V such that vola V < (l/4)vola R".

Let A be any element of Diffa(R"). By 2.3.b. we can decompose A in a product

A = A, o ■ ■ • ° hm where, for any i, A, G Diff a(R") and supp A, C V¡ with V¡ a strip

such that vola V¡ < vola V. Then, by 2.7 A lies in N(GV).

It remains only to prove that N(GV) E N(f). Since volaF< (l/4)volaR" we

have room enough to construct a new strip V such that V C\ V = 0, V D f'(V) =

0 and vola V = vola V. Thus, by 1.4 there is a g in Diff a(R") such that g(V) = V.

So, by 2.5, [Gv, GV]C N(f'). As Gv is perfect (2.4), we have GvCN(f). Therefore

N(Gv)CN(f).

Corollary 3.4. // « > 3, there is no normal subgroup between Diff a(R") and

Diffa(R").

Thurston in [20] proved that if « > 3 there is no normal subgroup of Diff a(R")

between {id} and Diffca(R"). So we have the following chain of normal subgroups:

{id}_Diffa0(R") C Diffa(R")_Diffa(R")

where_means that there is no normal subgroup in between.
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4. Extra results for the case of infinite total volume. In this section we will prove

the extra results needed when the total volume is infinite. Thus, throughout this

section ß will be a volume element on R" of infinite total volume.

Let /be any element of Diff a(R"). We denote by Wf the subset of R", Wf = {x G

R": f(x) ¥= x}. Notice that the support of/is the closure of Wf.

Lemma 4.1. Let f be an element of Diff a(R" ) and let X be any open subset of Wf with

compact closure. Then, there is a finite number of disjoint cells C,,..., Cm, included in

X such that

a.(U,l,c,.)n(iir=l/(C,))= 0.
b. 2r=,volaC,>(l/16)volaX

Proof. For any e > 0, the set Xe = {x G X: \\x — f(x)\\ > e} is open and X —

Ue>0Xe. Therefore, there is some e' > 0 such that vola Xe, > (l/2)vola X. Applying

Vitali Covering Lemma [19] to the covering of Xe, given by the set of all open balls of

radius r<e'/2 we get a finite number of such balls BX,...,B pairwise disjoint

satisfying 2jL ,vola B¿ > (l/2)vola Xe.. By construction, we also have/(/?,) (~) Bj= 0

for any/

Now we will construct the set of disjoint cells Cx,...,Cm inductively.

Let C, be a closed ball included in Bx with volaC, > (l/2)volafi,. If we define

y, = f(Cx) U f~x(Cx) we have vola Yx < 2 vola C,. Applying Vitali Covering Lemma

to the covering of B2 — Yx n B2 of all open balls we get C2',.. .,Cj, disjoint open

balls such that 2?l2\olQC¡ > (2/3)vola(52 - Yx n B2). Let C, be a closed ball in

C[. So, we have C2,..., C„ disjoint closed balls with

¿volaC,>(l/2)vola(52-7, nfi2).
i=2

Now we define

n=yx u (8 my] u|n/-'(c,)J

and Y2 = Y^ - Yx; we have vola Y2 ̂  22%2vóla C¡.

Thus, applying inductively Vitali Covering Lemma to Bj — Yf_xC\ Bj we get

C„C2,...,Cni,...,C = Cm disjoint closed balls in X¿ satisfying /(Il,™,C,) n

(Ur=,C,)= 0and

m

2 voloQ > (l/2)vola5, + (l/2)vola(52 - Y, n B2)
i=i

+ • • • + (i/2)voi0(ii, - f;_, n bp)

P P~\ P m

> (1/2) 2 vol0*,. -(1/2) 2 vola Yj > (1/2) 2 vola/?, - 2 vol0C,..
y=i j=\ y=i ,=i

So

m P

2 vola C, > (1/4) 2 vola Bj > (l/16)vol0 X.
i=1 7=1
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Lemma 4.2. Let f be any element of Diff a(R") with vola Wf = oo. Then there is a

disjoint union of cells Ui>xD¡, such that 2,s,vola /), = oo and (II ̂ iD,-) n (II ,->i/(/?,-))

=  0.

Proof. Inductively we construct {Xj} a locally finite sequence of disjoint open

subsets of Wf such that each one has compact closure, 2yS|VolaX/= oo and

X, n Xj = 0,X¡n f(Xj) - 0, X¡ nf~x(Xj) = 0 for any i ¥*j.

Applying 4.1 to X-, for any/, we get a disjoint union of cells üt>\D¡, satisfying

2,s»ivol0Dt > (l/\6)2jS,{volaXj — 00. Furthermore, by construction of {Xj} we

have(ni>,A)n(n/>1/(Di))= 0.
Remark 4.3. From the lemma above and 2.6 we get, for any element / of

Diffa(R") with vol aWj= 00, a strip V of infinite ß-volume and an element

/' G N(f) such that/'(F) n V = 0 if « > 3.

Now we will prove the last of the decomposition results.

Lemma 4.4. Let f be any element of Difff(R" ) with support in a strip V, of infinite

ü-volume. Let « > 4. Then, we can decompose f as f — /, ° f2° f3° f4 where, for any i,

f G Diff^(R" ) and it has support in a strip Vt of finite ü-volume.

Proof. Let us assume that V = g(T) where T is the standard tube of R".

Applying Vitali Covering Lemma, inductively on i, to X¡ = g(int A¡) — supp/where

A¡ = {x E T: i < xx < i + I}, we get a disjoint union of closed balls Ui>xBi C int V

— supp /such that vol^F — II,;,,/?,) < 00.

We can join each ball /?, to dV by a path a, in V satisfying:

a. The set {a,} is locally finite.

b. a, fi a,■— 0 if/ =#=/'.

c. a, D Bj= 0 if i #/ and a, (1 5,. = a,(l).

By transversality and Krygin isotopy extension theorem [7] we get a volume-pre-

serving diffeomorphism /,"', such that it is the identity on a neighbourhood of

II,;,,/?,, has support in a disjoint union of cells II,a,C, of ß-volume as small as we

like, /,"' ° f(ot¡) D a■ = 0 for any i ¥= j and /,"' ° /(a,) and a¿ only meet on a

connected neighbourhood of its end points. Let Vx be a suitable neighbourhood of

LU,C,-
Since V — II/s.i.B(. — IIoi«,- is connected we can join, in this set each ball B¡ to dV

by a new path y,, satisfying similar properties to a, b, c.

Now we construct a volume-preserving diffeomorphism f2 such that it is the

identity on a neighbourhood of (11,3,,/?,) U (IIoiY,) and equals/,"' ° /on 11,^,0,.

To do that, let V be some neighbourhood of (U.¡>XB¡) U (U,s,y,) such that

V — V is a strip. Since « s* 4 we have that/,"1 ° /(a,) U a, is unknotted. So, there is

a smooth family of embeddings 6,': ot¡ -» F — F' such that ^¿ is the inclusion, f?/ is the

identity near a,(0) and a,(l) and 6\ equal /,"' ° / on a,. We now have the same

conditions as in the proof of [14, Lemma 1.6], therefore, following the same argu-

ment we get a volume-preserving diffeomorphism f2 with support in a strip V2 — V

— V of finite ß-volume and equal to/,"1 ° /on II/Ss,a,.

Since/2"' o /,"' o /is the identity on II,s, a,, by 1.6 we get a volume-preserving

diffeomorphism f3, with support in a strip V3 of finite ß-volume and such that it



172 francisca mascaro

equals /2 ' ° /, ' ° f near Il^iot,-. Thus, /, = f3 ' ° f2 ' ° /, ' ° / is the identity near

(U,&ia,) u (Ui;»i/?,■), therefore it is a factor of the appropriate type. Then we have

/ = /,  °/2°/3°/4-

Remark 4.5. a. By 1.8 and 4.4 we have proved that if n > 4 we can decompose

any element of Diff/a(R") in a product of 9 elements of Diff^R") each one having

support in a strip of finite ß-volume.

b. Notice that the proof of 4.4 does not work for « = 3 because/,"1 o f(a¡) U a,

could be knotted. Nevertheless, we think that the lemma is true also in this case.

5. Case of infinite total volume. Throughout this section ß will denote a volume

element on R" of infinite total volume.

Theorem 5.1. Let f be any element of Diff a(R") with vola Wf = oo and let « s* 3.

Then, the normal subgroup generated by f, N(f), is Diffa(R").

Proof. By 4.3 we can find a strip V with infinite ß-volume and an element

/' G N(f) such that f'(V) n V— 0. Without loss of generality we can assume

vola(R"- KU/'(K)) = oo.

Let A be an element of Diff a(R"). By 1.7 we have A = A, o h2 ° A3 ° h4 ° A5 with

h j G Diff a(R") with support in a strip V¡. We can also assume vola(R" — V¡) = oo,

for any i. So, by 2.7 we know that A lies in N(GV).

Now we prove the inclusion N(GV) C N(f) using a very similar method to the

one used in 3.3. Since vola(R" - V U f'(V)) = oo there is a strip V in R" - (V U

f'(V)) of infinite ß-volume. Applying 1.4 to V and V we get an element g G

Diffa(R") such that g(V) = V. So, by 2.5 we have [Gy,Gy] C N(f'). As Gv is

perfect (2.4) we have Gv = [Gv, Gy] C N(f') C N(f). So, N(Gy) C #(/).

Corollary 5.2. // « > 3 íAere « «o normal subgroup between Diff ^(R") and

Diffa(R").

Theorem 5.3. Let f be an element o/Diff^a(R") having noncompact support and let

n>4. Then, N(f) = Diff/iR").

Proof. Repeating the construction made in 3.2 inside the support of / and using

2.4 we get a strip V of finite ß-volume and an element /' G N( f ) such that

f'(V) DV=0.
Let A be any element of Diff^R"). By 1.8, 4.4 and 1.9 we can assume that A is the

product of a finite number of factors each one having support in a strip of ß-volume

less or equal that of volaF. Thus, by 2.7 A lies in N(Gy). The inclusion N(Gy) C

N(f) can be proved as above.

Corollary 5.4. // « ^ 4 there is no normal subgroup between Diff a(R") and

Diff^R").

Remark 5.5. Thurston in [20] proved that there is no normal subgroup between

{id} and Diffca(R") for « s= 3. So from this result, 5.1 and 5.3 we get the following

chain of normal subgroups of Diff a(R") for « > 4:

{id}_Diffa(R") C Diffa(R")_Diff^R") C Diffa(R")_Diffa(R").
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The arguments of 5.1 and 5.3 do not work to prove that there is no normal

subgroup between Diff^iR") and Diffa/(R"). But we know that these groups are

distinct as the following example shows.

Let D be the standard open unit ball of R". There is a countable union of disjoint

annuli in R", A, such that it has finite ß-volume and whose closure is R" — D. If

B(r) denotes the closed ball in R" of centre the origin and radius r, we have

A = Ui:,,/?(r/+1) — B(r¡) for some sequence of r, > 1. There is a smooth function

<i>: R -'[0, oo) such that <j>~x(0) = R - U,a,(/-„ ri+x) (see [17]).

We define, for any r G R, the matrix

' cos<¡>(r)    -sen(f>(r)

M(r)
O

sen<J>(r)       cos<f>(r)

O I
Thus, we can define a diffeomorphism/: R" -» R" by f(x) = x ■ M(||x||). Clearly/is

a smooth volume-preserving diffeomorphism such that Wf = U/;al(y3(r1+,) — B(r¡))

and supp/- R" - D. So/G Diffa(R") and/<2 Diff/iR").
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