
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 275, Number 2, February 1983

KRULL DIMENSION OF DIFFERENTIAL OPERATOR RINGS. Ill:

NONCOMMUTAITVE COEFFICIENTS1

BY

K. R. GOODEARL AND T. H. LENAGAN

Abstract. This paper is concerned with the Krull dimension (in the sense of Gabriel

and Rentschler) of a differential operator ring S[9; S], where S is a right noetherian

ring with finite Krull dimension n and S is a derivation on S. The main theorem

states that S[9; S] has Krull dimension n unless there exists a simple right S-module

A such that A <S>SS[9; S] is not simple (as an S[9; 8]-module) and A has height n in

the sense that there exist critical right S-modules A = A0, A¡,... ,An such that each

A, <0>SS[9; S] is a critical S[9; 8]-module, each A, is a minor subfactor oí Al+X, and

An is a subfactor of S. If such an A does exist, then S[9; 8] has Krull dimension

n + 1. This criterion is simplified when S is fully bounded, in which case it is shown

that S[9; 8] has Krull dimension n unless S has a maximal ideal M of height n such

that either char(S/M) >0 or S(M) C M, and in these cases S[9; 8] has Krull

dimension n + 1.

I. Introduction and preliminaries. If 5 is a right noetherian ring and 8 is a

derivation of S, then we can construct the ring of differential operators T — S[6; 8],

which is also a right noetherian ring. It is well known that the (right) Krull

dimension of T is equal to either r.K.dim.(S') or r.K.dim.(S') + 1, but until recently

little was known concerning the actual value, except in special cases, e.g., [1,

Corollary 5.1; 9, Theorem 3.2; 14, Proposition, p. 83]. In [6], Goodearl and Warfield

have developed a formula for r.K.dim.(T) in the case that S is a commutative

noetherian ring with finite Krull dimension, while in [10] Hodges and McConnell

have looked at certain conditions on the simple modules of S that are sufficient to

specify the Krull dimension of T when S is a right noetherian ring with finite right

Krull dimension. Also, when 5 is a commutative noetherian ring with infinite Krull

dimension, Lenagan has determined the Krull dimension of T in [13]. Here we look

at the general problem and obtain a formula for r.K.dim.(T), whenever S is right

noetherian with finite Krull dimension, that generalizes the results in both [6] and

[10]. In a sequel to this paper, we use these methods to determine the Krull

dimension of a differential operator ring constructed from a commutative noetherian

ring with finite Krull dimension and a finite set of commuting derivations [5].

The approach we adopt uses some of the ideas and methods of both [6] and [10],

so it may be as well to point out the difficulties of trying a direct generalization of
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their methods. We continue to let S denote a right noetherian differential ring and T

the corresponding differential operator ring S[6; S].

In [6] the main result states that if S is commutative with finite Krull dimension,

then r.K.dim.(J) = r.K.dim.(S) unless there is a maximal ideal M in S such that

height(M) = K.dim.(S) and either char(S/M) > 0 or 8{M) E M. The proof pro-

ceeds by a careful analysis of the 5-module structure of induced modules of the form

T/PT, where P is a prime ideal of S. Two important points are present here that are

not available in the noncommutative case (i.e., when 5 is not commutative). First,

the factors S/P are critical modules and in fact compressible, and (-) <8>s T preserves

compressibility, so the modules T/PT are compressible T-modules and, hence,

critical. Second, localization is possible, and this has the effect of producing

/"¿.-modules that are finitely generated as S^-modules, simplifying the calculations. In

our situation, criticality need not be preserved by (-) ®s T. We circumvent this

difficulty by utilizing "clean" modules, i.e., critical ^-modules A such that A ®s T is

critical, and showing that there are "enough" clean modules. The localization

problem is avoided by observing that certain J-modules of the form A ®s T contain

finitely generated S-submodules B such that {A <8>ST)/B is "small" in a sense,

namely, its finitely generated 5-module subfactors have smaller Krull dimension

than B.

If A is a simple right S-module then A ®s T is either a simple or a 1-critical

T-module. Hodges and McConnell obtain results in the following two extreme cases,

when S is right noetherian with finite Krull dimension. If A ®s T is 1-critical for

every simple right S-module A, then r.K.dim.(T) = r.K.dim.(S) + 1. On the other

hand, if A <%>ST is simple for every simple right S-module A, then r.K.dim.(T) =

r.K.dim.(S). The second result is the harder to obtain, and is proved using

arguments about graded modules. We need to obtain similar results and use

arguments in the spirit of graded module arguments, but since not all simple

S-modules necessarily behave in the same way, we prefer to work with ordinary

T-modules and S-modules, rather than pass to the graded modules.

The formula that we obtain gives the Krull dimension of T in terms of

K.dim.(yl ®ST) and the "height" of A, where A ranges over the simple right

5-modules. Hodges and McConnell have a criterion for deciding the value of

K.dim.{A ®ST) when A is a simple right 5-module of characteristic zero, and we

develop a similar, but more complicated, criterion to deal with the positive character-

istic case. The " height" of a simple S-module A generalizes the idea of the height of

a maximal ideal in a commutative ring, and is given by the length of the longest

sequence of clean modules A = A0, Ax,...,An such that each A, is a "minor"

subfactor of A,+ x (i.e., a subfactor that is not a submodule) and An is a subfactor of

S.

In the case that 5 is a fully bounded noetherian ring the additional complications

disappear and we are able to recover the same formula for r.K.dim.(T) as that

provided in [6] for commutative noetherian coefficient rings.

Throughout the paper the term differential ring will refer to an associative ring S

with unit together with a specified derivation 8 on S*. The ring of differential operators
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T = S[0; 8] is the free left S-module generated by the symbols 1, 0,02,..., given a

ring structure by the relations 6s = s6 + 8{s) for s E S, together with the usual

multiplication in 5. This ring is often referred to as an Ore extension of S. The

elements s E S satisfying 8{s) = 0 are referred to as constants, and the set of

constants forms a subring of S that centralizes 0. The derivation 8 satisfies Leibnitz '

Rule, namely

*mW= 2 (")*'0O*"-'O0
i=0

for all x, y E S and n E N, as may be checked by induction on n. In differential

operator form,

9"x= 2 (")o"(x)0"-'
i=0

for all a: G S and n E N.

Given a right S-module A, the elements of A ®ST can be written uniquely in the

form

x = a0 <8> 1 + ax <8> 0 + ■ • • +an 8 6",

for some n E N and a, G /f. We shall usually abbreviate such an expression to

x = 2"=oa,0/, and with this in mind, shall often write A[6] for A ®ST. If a„ =£ 0,

then we say that the order of x is n, written ord(x) = n, and we say that an is the

leading coefficient of x. There is an obvious ascending filtration on A[6] given by the

S-submodules

An=\ia,0-\a,EA\= ^ A0',
11=0 J        ¿=0

and there is an isomorphism of S-modules An + X/An = A, for each n. In particular, if

A is noetherian, then each An is a noetherian 5-module. If / is a T-submodule of

A[0] then we define X„(/) to be ihe set of leading coefficients of elements of / n An

(together with 0), that is,

A„(Z) = \a„ EA I 2 a,0' G /for some a0,...,a„_i EA\,

which is an 5-submodule of A. Obviously, X0(/) < A,(/) < • • -, and the submodule

X(/) of leading coefficients of elements of / (together with 0) is given by \{I) =

U^=0 A„(Z). If A is a noetherian S-module, then \{I) = A„(Z) for some n.

We use Krull dimension in the sense of Gabriel and Rentschler for noncommuta-

tive rings, and for the basic properties of Krull dimension, which we use without

comment, the reader is referred to the monograph [8]. When A is a noetherian right

S-module (5, T as above), then A[0] is a noetherian right T-module, and the Krull

dimension of A[0] equals either Kdim.(,4) or K.dim.(>l) + 1. These results are

proved by easy graded module arguments, as in [15, Théorème 2, p. 65; Théorème 4,

p. 148] where the case A — Ss is covered. In particular, r.K.dim.(T) equals either

r.K.dim.(S) or r.K.dim.(S) + 1. However, r.K.dim.(T) cannot be zero. For, if S is
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nonzero, then the powers of 0 generate a strictly descending chain T> 0T> 02T>

•of right ideals of T, so T is not right artinian.

A module A is a subfactor of a module B if there exist submodules C < D in B

such that A = Z)/C. If also C ^ 0, we say that A is a minor subfactor of ß. We

define the characteristic of a simple module ^4 to be the characteristic of the division

ring End{A). Thus A has characteristic zero if and only if A is torsion-free as an

abelian group, while A has characteristic p > 0 if and only if pA = 0.

II. Simple modules. As mentioned above, in earlier work on the Krull dimension

of a differential operator ring T = S[0; 8], it is important to know how simple

5-modules behave when tensored up to T-modules. In our work this is also true, for

our determination of the Krull dimension of T will involve calculation of the Krull

dimension of A ®s T for simple right ^-modules A. There are two different possibili-

ties: either A ®ST is a simple T-module, or it is a 1-critical T-module (e.g., [10,

Corollary 4.8]). In this section criteria are derived to decide which of these possibili-

ties occurs. If A has no Z-torsion, then such a criterion already exists in work of the

first author [4, Lemma 17] (for the sufficiency of the condition) and in work of

Hodges and McConnell [10, Lemmas 3.1, 3.2]. We present a slightly improved form

of this criterion below. The problem then reduces to the consideration of a simple

module with positive characteristic. We develop a criterion for this case also, but it is

more complicated than the criterion for the Z-torsion-free case, aspth powers of the

derivation must be accounted for. As a consequence, we show that with suitable

finiteness hypotheses on S, simple S-modules with positive characteristic must tensor

up to 1-critical T-modules. On the other hand, in general, simple S-modules with

positive characteristic can tensor up to simple T-modules, and we present examples

of this behavior.

Lemma 2.1. Let S be a differential ring, and let T = S[0; 8]. Let M be a maximal

right ideal of S such that S/M has characteristic zero. Then T/MT is a l-critical right

T-module if and only if there exists a E S such that {8 + a){M) Ç M. If no such

a E S exists, then T/MT is a simple right T-module.

Proof. Since S/M is a compressible noetherian right S-module, T/MT is a

compressible noetherian right T-module and hence is critical [6, Lemma 2.1]. Also,

YL.dim.{S/M) = 0, so K.dim.(T/MT) is either 0 or 1. Therefore T/MT is either

simple or 1-critical.

If {8 + a){M) E M for some a G S, then by [10, Lemma 3.2], T/MT is not

simple. Conversely, if T/MT is not simple, then as observed in [10, Lemma 3.1], the

proof of [4, Lemma 17] shows that {n8 + b){M) E M for some n E N and some

b E S. As S/M is a simple module with no Z-torsion, it must be divisible by n.

Thus b = na + c for some a E S and some c E M. Since cM E M, we obtain

n{8 + a){M) E M, and therefore {8 + a){M) EM.    D

Now consider a differential ring S such that pS = 0 for some prime integer p. As

the binomial coefficients (f ) for i — 1,... ,p — 1 are all divisible by p, we see that 8p

is a derivation on S, and that in S[0; 8], we have 0"x = x0p + 8p{x) for all x E S.
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It follows by induction that for any nonnegative integer k, the map 8P is a

derivation on S, and

0pkx = x6pk + 8p\x)

for all x E S. It then follows that

m
0Pk»>X=   2   (Wl)«'*,'(*)0'*(m~,')

1=0      '

for all jc G S and all nonnegative integers k, m.

We remind the reader that the idealizer of a right ideal M in a ring S is the subring

(xES\xMEM).

Theorem 2.2. Let S be a differential ring, and set T = S[0; 8]. Let M be a maximal

right ideal of S such that S/M has characteristic p > 0, and let R be the idealizer of M

in S. Then MT is a nonmaximal right ideal of T if and only if there exist elements

r0, rx,...,rk_x E R ands0 E S such that

(*) (Spk + rk_x8pk^ + ■■• +rx8p + r08 + s0)(M) E M.

Proof. Since it suffices to work over the differential ring S/pS, we may assume

that pS = 0. We recall that R/M is isomorphic to the endomorphism ring of S/M

[16, Proposition 1.1], whence R/M is a division ring.

First assume that (*) holds for some r, E R and some s0 E S. Set

t = 0pk + rk_x0pk~l + ■■■ +rx0p + ro0 + s0.

Because of equation (*), and the fact that each r,M E M, we compute that tM E MT.

Now tT + MT is a right ideal of T which properly contains MT. Ii tT + MT = T,

then tu + v = 1 for some u ET and some v E MT. Now u G MT, because tMT E

MT, and hence u — u' + u" for some u" E MT and some u' ET whose leading

coefficient is not in M. Then tu' + {tu" + v) = 1 with tu" + v G MT, and hence we

may replace u and v by u' and tu" + v. Thus there is no loss of generality in

assuming that the leading coefficient of u is not in M. But then tu is an operator of

positive order whose leading coefficient is not in M, so the equation tu + v = 1 with

v E MT is impossible. Therefore tT + MT ¥" T, so MT is not a maximal right ideal

of T.

Conversely, assume that T has a proper right ideal J that properly contains MT.

Choose an operator a E J — MT of minimal order n, and note that n > 0. Write

a = an0" + ■■■ +ax0 + a0

with the a, E S, and note that an $. M (because of the minimality of n). Thus

a„x + y = 1 for some x E S and y E M. Now ax + yO" is a monic operator of

order n, and we observe that ax + y0" lies in J — MT, so there is no loss of

generality in replacing a by ax + y6". Thus we may assume that an = 1. Now

az — z6" G J for any z EM, and az — z0" has order at most n — 1, so az — z0" E

MT (by the minimality of n), whence az E MT. Thus aM E MT. On the other hand,

we note that because a is a monic operator of positive order, a G MT + R.
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Let b be an operator in T — {MT + R ) such that bM E MT and b has minimal

order for these properties. Write

b = b,0' + ••• +bx0 + b0

for some b, G S, with b¡ ¥" 0, and note that / > 0, because b G R. If b¡ E M, then

b — bfi' is an operator in T — {MT + R) of order less than / satisfying {b — bfi')M

E MT, which contradicts the minimality of /. Thus b, & M.

For any x E M, the leading term of bx is b,x0', hence b,x E M, because

bx G MT. Thus b¡ E R. Since b¡ G M and R/M is a division ring, yb, + z = 1 for

some j G /v and z G Af. Then 76M E yMT E MT and so {yb + z0')M E MT. As

yb + z0' is an operator in T — {MT + R) of order /, there is no loss of generality in

replacing b by yb + z0'. Thus we may assume that b¡= I.

We now claim, for i = 1,2,...,/, that b, E R, and also that b, E M ii i is not a

power of p.

If this claim is false, let j be the largest index for which ¿>. is not as described.

Write b = c + e where

c = b,0'+ ■■■ +bJ+x0J+i    and    e = bfi1+ • • • +bx0 + b0.

Consider indices i E {j + 1, j + 2,... ,1} (if there are any). If /' is not a power of p,

then b, E M, hence bfi'M E MT. If /' is a power of p, then b, E R and

bfi'x = b,x0' + b,8¡(x) E MO' + S

for  all  x EM,  whence  bfi'M E MT + S.  Thus bfi'M E MT + S  for  all  i =

j + 1,...,/, and so cM E MT + S. As bM E MT, it follows that eM E MT + S.

For any x E M, we now have ex E MT + S. Since

ex = bjX0J + [lower terms]

and j > 0, we obtain bjX E M. This shows that bjM E M, so that 6. G R. As the

claim is assumed to fail for 6-, the index y must not be a power of p, and o- G M.

Thus y = pkm ÍOT some nonnegative integers fc, m such that m > 1 and p\m.

Set s = pk{m — 1) and write e — f0s + g, where

/=fc/ + *rlfiA' + ...H+)HftJ,

g = fV1fA-, + ---+610 + Oo.

For any x E M, we have ex G MT + S, while also

ex=f(xOpk(,"-y) + (m - l)8p\x)0pk(m'2) + [lower terms]) + gx

= (fx + (m- l)bJ8p\x))0pk("'-V) + [lower terms].

Consequently, fx + {m - l)bj8p\x) E MT. Since also 8p\x) = 0pkx - x0p\ we

find that

fx + (m- l)bj0pkxEMT.
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Thus (/+ (m - l)bj0pk)M E MT. As/+ (m - l)bj0p" has order at mostp*, and

pk <j < /, we must have

f+(m- l)bj0pk EMT+ R.

But

/+ (m - l)bjOpk = mbj0pk + [lower terms],

so mbj E M. As m is not divisible by p, it is invertible in S, and hence bj E M.

However, this is a contradiction.

Therefore our claim does hold. Consequently, b = u + v where u E MT and

v = 0p" + rk_x6pk~' + ■•■ +rx0p + ro0 + s0

for some elements r, E R and s0 G S. From bM E MT it follows that vM C MT,

and hence we conclude that (*) holds, as desired.    D

Corollary 2.3. Let S be a differential ring, and set T= S[6; 8]. Let M be a

maximal right ideal of S such that S/M has characteristic p > 0, and let R be the

idealizer of M in S. Assume that Ms is finitely generated and that RS is noetherian.

Then T/MT is a l-critical right T-module.

Proof. We may assume, without loss of generality, that pS — 0. It suffices to

show that T/MT is not simple.

By assumption, M = xxS + ■ ■ ■ +xnS for some x, E M. Set

y,= {8pXxx),...,8p'(xn))

in S" for each i — 0,1,2,_Since S" is a noetherian left /(-module, some yk must lie

in the left /Gsubmodule of S" generated by y0,... ,yk-x. Consequently,

a + rk-\yk-\ + • • ■ +r\y\ + wo - °

for some ri E R, so that

8pk(Xj) + rk_x8pk-\Xj) + ■■■ +rx8p(Xj) + r08(Xj) = 0

for each j= l,...,n.  Set rk— I.  Any x E M may be expressed  as x = xxsx

+ ■ ■ ■ +xnsn for some Sj E S. Since pS = 0, each 8P' is a derivation on 5, and hence

2rM*)= I   Íri(8'<{Xj)sj + xj8*'{sJ))
i=o 7=1 ;=o

= 2   2 Vfi»'^).
7=1(=0

This sum lies in M because each Xj E M and each r,M E M. Therefore

(8pk + rk_x8pk" + ■■■ +rx8p + r08)(M) E M.

By Theorem 2.2, T/MT is not simple.    □

Corollary 2.4. Let S be a right and left noetherian differential ring, and set

T = S[0; 8]. Let M be a maximal right ideal of S such that S/M has positive
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characteristic, and let P = {x G S \ Sx E M}. If the ring S/P is artinian, then T/MT

is a l-critical right T-module.

Proof. If R is the idealizer of M in 5, then by [16, Proposition 3.4], R is also the

idealizer of a semimaximal left ideal of S. By [16, Proposition 1.7, Lemma 2.1,

Theorem 2.2], R is left noetherian and RS is finitely generated. Thus S is noetherian

as a left Ä-module. Since M is a finitely generated right ideal of S, we conclude from

Corollary 2.3 that T/MT is 1-critical.    □

Theorem 2.5. Let S be a right and left noetherian differential ring with finite right

Krull dimension, and assume that all primitive factor rings of S are artinian. If all

simple right S-modules have positive characteristic {e.g., if nS = 0 for some positive

integer n), then

r.K.dim. {S[0; 8]) - r.K.dim. (S) + 1.

Proof. Given a maximal right ideal M of S, there is a primitive ideal P =

{x E S\Sx E M} contained in M, and S/P is artinian by hypothesis. Since also

S/M has positive characteristic, Corollary 2.4 shows that {S/M) <8>s S[0; 8] is

1-critical. Apply [10, Theorem 5.1].    □

In general, simple modules of positive characteristic over a differential ring S need

not tensor up to 1-critical S[0; 5]-modules, and we now construct some examples to

illustrate this behavior. We first isolate the worst of the computations in the

following lemma.

Lemma 2.6. Let K be a field of characteristic p > 0, let {x,j \ i, j E N} be an

independent set of commuting indeterminates, and let

F = K({Xjj 11, j G N})    and   Fx = K({xfj \ i, j E N}).

Define a K-linear derivation 8 on F so that 8{xu) = x,+ XJfor all i,j. Then:

(a)F, = {x EF\8{x) = 0}.

(b) The images of xxx, xX2, xx3,... in the Fx-vector space F/8{F) are linearly

independent over Fx.

Proof, (a) Because of characteristic p, we have 8{xfj) = 0 for all /', j, hence

8{x) = 0 for all x E Fx. Now set

R = K[{x,j\i, j G N}]    and    Rx = K[{xfj\i, j E N}].

Given x E F satisfying 8{x) — 0, write x = a/bp for some a, b E R (with b ¥= 0),

and note that 8{a) = 0. Since bp E Rx (because of characteristic p), we need only

show that a E Rx in order to see that x E Fx. Thus it suffices to prove that any

a G R satisfying 5(a) = 0 must lie in Rx.

Set S0 - K, and set

S„ = K[{X¡j\i= 1,2,3,. ..;y= 1,...,«}],

\n — ^n-ll^ln' X2n>- ■ ■ 'Xkn i

for all n > 0 and k > 0. We show by induction on n that all the constants in S„ lie in

Rx. This is clear for n = 0, so let n > 0 and assume all the constants in S„_, lie in Rx.
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We proceed by a secondary induction on k through the elements of each Skn. As

S0n = Sn_,, we may assume that k > 0 and that all the constants in Sk_, „ lie in Rx.

Consider a E Skn satisfying 8{a) = 0, and write

a = a0 + axxkn+ ■■■ +a,xkn

where a0, ax,. ..,a,E Sk_Xn. Since 8{a) = 0, we compute that

(8(a0) + 8(ax)xkn +■■■ +8(at)x'kn) + (ax + 2a2xkn +■■■ + ta,x'k-l)xk+l,„ = 0.

As each a, E Sk_, „, each 8{a,) E Skn, so the expressions

8(a0) + 8(ax)xkn + ■■■ +8(a,)x'kn,       ax + 2a2xkn + ■■■ +ta,x,knl

both he in Skn. Consequently, each of these expressions must vanish. From the

vanishing of the second expression, we obtain ia, = 0 for i = l,...,t, and hence

a, = 0 for all /' not divisible by p.

Now a = a0 + apxl„ + ■ ■ ■ +aspxskpn, where s is the integer part of t/p, and

8(a0) + 8(ap)xïn + ■ ■ ■ +8(asp)xZ = 0.

For y = 0,...,s, we have ajp E Sk_x „ and so 8{ajp) = b} + CjXkn for some oy, cy in

S*-,,„.Thus

K + c0xkn + bxxpkn + cxxpky + ■■■ +bsxipn + csxf„+1 = 0,

whence all bj = 0 and all Cj = 0. Then all 8{aJp) = 0, so by the induction hypothesis

all ajp E Rx, and therefore a E Rx.

Thus all the constants in Skn he in A,, completing the induction on k. Since Sn is

the union of the Skn, all constants in Sn lie in Rx, completing the main induction.

(b) If not, then axxxx + ■ ■ ■ +anxXn E 8{F) for some a, E Fx, not all zero. Letting

k be the first index for which ak ¥^ 0, and multiplying through by ak \ we obtain

x\k + bk+\xi,k+\ + ■■■ +Kx\n e8(F)

for some 6^ G Fx.

Choose new independent commuting indeterminates x0k, x0k+x,... and set

L = F{x0k+X, xok+2,...),

M — F(x0k, x0k+x,...),

M]=F(xpk,xp,k+x,...).

Extend 8 to M so that 8{x0J) = xXj for all j = k, k + 1,_There is a Jf-algebra

isomorphism <p: M -» F such that (p{x,j) = xi} for i < k while <p{x,j) = x,+ Xj for

/' > k, and we observe that <jp commutes with 8, so that <p is an isomorphism of

differential fields. Consequently, it follows from (a) that Mx = {x E M \ 8{x) = 0}.

Since xXk+x,...,xXn G 8{L), we see that xXk E 8{L), so that xxk = 8{y) for some

y G L. On the other hand, in M we have xxk = 8{x0k), whence 8{x0k — y) — 0, and

so x0k — y E Mx. As L and Af, are both contained in L{xpk), this leads to the

absurdity x0k E L{xpk).

Therefore (b) must hold.    D



842 K. R. GOODEARL AND T. H. LENAGAN

Example 2.7. Let p be a prime integer. There exists a simple, differential, principal

right and left ideal domain S of characteristic p possessing a simple right module A

such that .4 ®sS[f?; 8] is a simple right S[0; á]-module.

Proof. Choose a field K of characteristic p, let {x,j \ i, j G N} be a set of

independent commuting indeterminates, and set F = K{{x,j}). We define commut-

ing AMinear derivations 8X and S2 on F so that

8\ixu) = A+i,7    and    SliXij) = A,7+l

for all i, j. According to Lemma 2.6, the field Fx — K{{xfy¡) is the subfield of

r3,-constants of F. In addition, Lemma 2.6 shows that the images of jcu, xX2, x,3,...

in the F,-vector space F/8X{F) are linearly independent over Fx.

Now set S = F[0X; 8X], which is a principal right and left ideal domain of

characteristic p. Because Fis infinite dimensional over Fx, the ring S must be simple

[3, Theorem 3.2a; 7, Theorem 2.3]. Since F is commutative and 8X, 82 commute, we

may extend á2 to a derivation of S so that 82{0X) — xxx. Set T — S[02; 82}.

Set Af = 0XS, which is a maximal right ideal of S. We claim that AfTis a maximal

right ideal of T. Set R = Fx + M, and note that R is the idealizer of M in 5. If MT is

not a maximal right ideal of T, then by Theorem 2.2,

(82 + rn-\8i~X + ■•■ + rA + so)iM) C M

for some elements r, E R and s0 E S. In particular, since 0X E M, we find that

x\n + '•„-l^i.n-i + ' • • +'i*ii + so0x E M.

Write each r, = a, + u, with a, E Fx and u, E M, and write s0 — ß + v with ß G F

and u G Af. It follows that

*i„ + «„-iA,„-i + • ■ • +«i*h - ôi(/5) = 0.

However, this contradicts the fact that the images of xxx,...,xXn in F/8X{F) are

linearly independent over Fx.

Therefore MT is a maximal right ideal of T, so that T/MT is a simple right

T-module.    D

We do not know whether the differential operator ring S[0; 8] in Example 2.7 has

Krull dimension 1 or 2, because we do not know whether simple ^-modules other

than A stay simple when tensored up to S[0; 8]. To produce an example in which all

the simple modules behave in this manner, we just localize S in a way that destroys

all its simple right modules except A, as follows.

Proposition 2.8. Let S be a principal right and left ideal domain which is not a

division ring, and let w be an irreducible element of S. Set

X — (jc G 51 S/wS is not isomorphic to a subfactor ofS/xS},

Y — {x E S | S/Sw is not isomorphic to a subfactor of S/Sx).

Then:

(a) X = Y.

(b) X is a right and left denominator set in S.

(c) // S is the localization of S with respect to X, then S is a principal right and left

ideal domain.
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(d) All simple right S-modules are isomorphic to S/wS, and all simple left S-modules

are isomorphic to S/Sw.

Proof. Note that since w is irreducible, wS is a maximal right ideal of S, and Sw

is a maximal left ideal of 5.

(a) If x E S - X, then S contains right ideals I > J > xS such that I/J = S/wS.

There are nonzero elements a, b,c E S such that I = aS and J = abS, while

x = abc. Then S/bS = I/J = S/wS, whence S/Sb ~ S/Sw, by [11, Theorem 4, p.

34]. Consequently, we obtain left ideals Sc > Sbc > Sx such that Sc/Sbc ~ S/Sw,

so that x £ Y. Therefore Y E X; by symmetry, X E Y.

(b) Given x, y E X, the module S/xyS is isomorphic to an extension of S/yS by

S/xS. As the simple module S/wS is not isomorphic to a subfactor of either S/xS

or S/yS, it cannot be isomorphic to a subfactor of S/xyS, hence xy E X. Thus X is

multplicatively closed.

Given a E S and x E X, set K = {s E S \ as G xS}, and observe that left multi-

plication by a induces a monomorphism of S/K into S/xS. Since x E X, it follows

that S/wS cannot be isomorphic to a subfactor of S/K. Choosing y E S such that

yS — K, we thus obtain y EX. Also, since y E K, there is some b E S so that

ay = xb. Therefore A" is a right denominator set.

By symmetry Y, and thus X, is a left denominator set.

(c) This is immediate from the observation that all right (left) ideals of S are

induced from right (left) ideals of S.

(d) Any maximal right ideal of S has the form MS where Af is a right ideal of S

maximal with respect to being disjoint from X. Then S contains a right ideal N > M

such that N/M s S/wS but S/wS is not isomorphic to a subfactor of S/N.

Consequently, NS = S and S_/MS = NS/MS^S/wS. Similarly, all simple left

S-modules are isomorphic to S/Sw.    □

Example 2.9. Let p be a prime integer. There exists a simple, differential, principal

right and left ideal domain S (not a division ring) of characteristic p such that

S[0; 8] has right (and left) Krull dimension 1. In fact, S[0; 8] is right (and left)

hereditary.

Proof. Construct the simple principal right and left ideal domain S as in Example

2.7, and note that 6X is an irreducible element of S. Set

X = {x E S | S/0xS is not isomorphic to a subfactor of S/xS}.

By Proposition 2.8, X is a right and left denominator set in S, and the localization S

of S with respect to A1 is a principal right and left ideal domain. Since S is a simple

ring, so is S.

According to [2, Lemma 4.1, Satz 4.4], the derivation 82 on S extends to a

derivation on S where

ô2(îx-') = 82(s)x~l — sx~l82(x)x~l

for all i G S and x E X; moreover, A" is a right and left denominator set in the

differential operator ring T = S[02; 82], and the localization Tof T with respect to X

is naturally isomorphic to S[02: 82].
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If B is a simple right S-module, then B s 5/0,5 by Proposition 2.8, whence

B®sf= T/6xf = (T/0xT) ®Tf.

As 0XT is a maximal right ideal of T (shown in the proof of Example 2.7), it follows

that B ®s T is a simple right T-module. Since B was an arbitrary simple right

S-module, we conclude from [10, Theorem 6.1] that

r.K.dim. (f) = r.K.dim. (S) = 1.

Similarly, l.K.dim.(T) = 1. (This requires showing that T0X is a maximal left ideal

of T, as was done for 0XT in Example 2.7.) Since all simple right or left S-modules

stay simple when tensored up to T, we have another consequence of [10, Theorem

6.1]: No simple right or left T-module has finite length as an S-module.

Suppose that T is not right hereditary. By [17, Theorem 3.8], there must exist a

right T-module C which as an S-module is finitely generated and has projective

dimension 1. Thus Q"is not free, so it is not torsion-free [11, Theorem 18, p. 44]. Let

D be the torsion submodule of Cf. Given d E D, there exist nonzero elements

u, v E S such that du = 0 and d82{u)v = 0. Then

d02uv = (du)02v + d82(u)v = 0,

so that d02 E D. Thus D02 E D, whence D is a T-submodule of C. Now D is a

nonzero T-module which has finite length as an S-module. But then any simple

T-module subfactor of D has finite length as an S-module, which is impossible.

Therefore T is right hereditary. Similarly, T is left hereditary.    D

III. S-subfactors of /"-modules. In calculating the Krull dimensions over a differen-

tial operator ring T = S[0; 8] of modules of the form A ®ST, we shall need to

consider the kinds of S-modules that can occur as subfactors. The following series of

results considers various cases that arise. Recall that we may identify A <8>s T with

the right T-module A[0] of differential operators with left-hand coefficients from A.

Also, for any T-submodule I oí A ®s T we use \(/) to denote the submodule of A

consisting of leading coefficients of operators in / (together with 0).

Proposition 3.1. Let S be a differential ring, and set T — S[0; 8]. Let A be a

noetherian right S-module, and let I, J be T-submodules of A ®s T such that I < J.

Suppose that B is a nonzero noetherian right S-module such that B ®s T is isomorphic

to a T-module subfactor of J /I. Then B contains a nonzero S-submodule that is

isomorphic to a subfactor of\{J)/\{I).

Proof. By enlarging / and reducing J, if necessary, we may assume that J /I s

B ®s T. As an S-module, B ®s T is the union of an ascending chain of submodules

with the successive subfactors isomorphic to B. Hence, there exist S-submodules

I = A0*^ Ax m A2*a •••</ with U A,, = J and each A,+ X/A, s B. Note that since

B is noetherian, each A,/1 is a finitely generated S-module.

Forn = 0,1,2,..., set/„ = {x G /1 ord(x) «s n} and

A„(/) = (0} U {a E A | a is the leading coefficient of some x E /„},

and define Jn, r\„{J) in the same manner. Then /0 < /, < •■■is a chain of

S-submodules of A ®ST and A0(/) < A,(J) < • • • is a chain of S-submodules of A,
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and similarly for the J„ and the Xn{J). Since A is noetherian, there exists a positive

integer m such that \„{I) — Am(/) and Xn{ J) = Am(/) for all n> m, so that

A„(/) = A(/) and \„{J) — \{J) for all n> m. Thus for n s* m we obtain the

following isomorphism of S-modules:

(1) (/ + /„)/(/ + /„_,) ^J„/U n (/ + ./„_,)) = /„/ (/„ + /„_,)

^\n(J)/\n(l) = \(J)/X(I).

Now Jm is a noetherian S-module (because {a E A ®s T\ ord(a) < m} is

noetherian), so (/ + Jm)/I is a noetherian S-module. Hence, there exists a positive

integer k such that

iAk+l/l) n ((/ + Jm)/I) = (ají) n ((/ + jj/i).

Thus Ak+X n{I + Jm)<Ak. Set C = Ak+x+Jm and D = Ak + Jm, so that C, D are

S-submodules of /I ®s T with Z> < C and

(2) c/ß »4+1/ (4+1 n (4 + /J) = 4+1/4» i.

Also, since C/I is a finitely generated S-submodule of /// (because Ak+X/I and Jm

are finitely generated), C < / + Jn for some n > m.

By applying the Schreier Refinement Theorem to the two chains of S-modules

/ + Jm < D< C < I + Jn,       1 + Jm « / + 4+1 <•••</ + /„,

we see that some nonzero submodule of C/D is isomorphic to a subfactor of

(/ + J!+X)/{I + J,), where m< l< n. Hence, by using the isomorphisms (1) and

(2), we conclude that some nonzero submodule of B is isomorphic to a subfactor of

A(/)/X(/).    D

In later results, we shall need to compare chains of submodules, one of which may

be infinite. To deal with this we make explicit the following refinement results.

Proposition 3.2. Let X be any module.

{a) Let 0 = X0< Xx< X2< ■ ■ • < X, - X be a finite chain of submodules of X,

and let Yx < Y2 < ... be an ascending chain of submodules of X. Then there exist

submodules

X, < V„ < V~ < • ■ ■ < X   , Y = W   ^ W,   « • • • < W  = YAt^ *¡\ ^ y a ^        ^-^i+i) lj      yyoj      "\j^        ^ "tj      lj+\

{fori = 0, l,...,t - 1 andj = 1,2,...) such that V,J+X/VU = W,+ XJ/W,Jfor all i,j.

If Yx = 0, then ViX = XJor all i. If U Yj = X, then IT VtJ = Xi+, for all i.

(b) Let X = X0 s* Xx s* X2 s* ■ • ■ > X, = 0 be a finite chain of submodules of X,

and let Yx> Y2> ... be a descending chain of submodules of X. Then there exist

submodules

X ^ V. > V~ > • • • > X Y = W   > W   > • • • > W  = Y
Al ^   yi\ "^   yil -^ ~ Ai+\> 'j yy0j -^  yy\j "* -^   "tj Ij+\

{fori = 0, l,...,t - 1 andj = l,2,...)such that Vu/ViJ+x = WiJ/W,+ Xjfor ail i,j.

If F, = X, then VlX = XJor ail i.

Proof. For (a), define

V,. = {YjnX,+ x) + X,   and    Wtj = (X, D Y]+,) + YJ
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for each i, j, and apply the Zassenhaus Lemma (Butterfly Lemma). For (b), we

instead define

Vu = (Yj n *i) + *,+i    and    WlJ = ( A, n Yj) + Yj+X

for each i, j.    O

Proposition 3.3. Let S be a differential ring, and set T = S[0; 8]. Let A be an

a-critical noetherian right S-module {for some ordinal a), and let Bx > B2^ B3>

■ ■ ■ 3= B > 0 where the B, are S-submodules of A ®s T and B is a nonzero T-submodule

of A ®s T. Then there exists a positive integer m such that for any integer p > m, all

finitely generated S-module subfactors of Bp/Bp+X have Krull dimension less than a.

Proof. For « = 0,1,2,..., set An = {x E A ®ST\ ord(x) < n}. Then each

An+X/An is isomorphic to A and so is a-critical, and K.dim.(y4„) = a, for all n. Note

that any finitely generated S-submodule of A <8>s T is contained in some An and so is

noetherian. Thus all finitely generated S-module subfactors of A ®s T have Krull

dimension.

Choose a nonzero element b E B of positive order t. For n = t, t + I,..., it

follows that A„ n {B + An_x)> An_x, since b6"~' lies in {An n B) - A„_v Thus

An/{An n {B + An_x)) is a proper factor oiAJAn_x, and so

K.dim.[An/{Ann{B + A„_x))]<a

for each n s= t. Now {B + A„)/{B + A„_x) = A„/{An n {B + An_x)), and so

K.dim.((B + A„)/(B+An_x))<a

for all n > t. Since {A <8>s T)/{B + A,) is the union of the submodules

(B + AI+X)/(B + A,)<(B + Al+2)/ (B + At)<---,

it follows that all finitely generated submodules of {A ®ST)/{B + A,) have Krull

dimension less than a. Consequently, all finitely generated S-module subfactors of

{A ®s T)/{B + A,) have Krull dimension less than a.

By comparing the chains A <8>ST^ B + At> B and Bx > B2 > • • -, using Prop-

osition 3.2(b) (applied to the corresponding chains of submodules of {A ®s T)/B),

there exist submodules

A®sT>V0X>Vm>   -^B + A,,

B + A,>VXX^VX2^-»B,

BJ=W0J>WlJ>W2J = BJ+l

(fory = 1,2,...) such that VIJ/ViJ+x s W¡j/Wi+XJ for all i,j. Now

K.dim. ((B + A,)/B) < K.dim. (A,) = a.

Thus there exists a positive integer m such that K.dim.{VXp/Vx p+x) < a for all

p > m. Consequently,

K.dim.(WXp/W2p)<a

for allp > m. Also,

"Op/"\p — Vop/yo,p+\'
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which is a subfactor of {A <8>ST)/{B + A,). Hence, all finitely generated subfactors

of rVQp/WXp have Krull dimension less than a. Therefore for p > m, any finitely

generated subfactor of Bp/Bp+X has Krull dimension less than a.    D

IV. Clean modules. In this section we develop the basic induction step needed in

calculating Krull dimensions of modules over a differential operator ring T =

S[0; 8]. The aim is to describe the Krull dimension of an induced module A ®s T in

terms of the Krull dimensions of the modules Ä ®sTasA' ranges over subfactors of

A with lower Krull dimension than A. The main effort is devoted to certain critical

modules.

Let A be a critical noetherian right S-module. In [6, Lemma 2.1] it is shown that if

A is compressible then A ®s T is a compressible T-module, hence critical. In

particular, this holds if S is commutative or if A is simple. (That A ®s T is critical

when A is simple is also shown in [10, Corollary 4.8].) However, in general, A ®ST

need not be critical, as shown by an example at the end of the section. In order to

bypass this difficulty, we make the following definition.

Definition. Let S E T be rings. A T-clean right S-module is any critical right

S-module A such that A ®s T is a critical right T-module. Whenever no ambiguity is

likely to arise we speak of clean S-modules rather than T-clean S-modules.

Note that all clean modules are nonzero because they are critical. Also, note that if

Tis flat as a left S-module (as in the case T = S[0; 8]) then any nonzero submodule

of a T-clean right S-module is T-clean. In the context T= S[0; 8], clean modules

exist in abundance: It is shown in this section that every nonzero noetherian

S-module contains a clean submodule. Because of this result we are able to restrict

our analysis to the class of T-clean S-modules rather than the class of all critical

S-modules.

Lemma 4.1. Let S be a differential ring, and set T= S[0; 8]. Let A be a right

S-module, and let B be a nonzero T-submodule of A ®s T. Then A has a nonzero

submodule C such that C ®ST embeds in B.

Proof. Choose a nonzero element x E B with least possible order n, and write

x = xQ + xx0 + ■ ■ ■ +xn0" where each x, E A and xn ¥^ 0. Set / = {s E S | xns =

0}. lis E I then ord(xs) < n and xs E B, so xs — 0. Thus xl — 0 and xIT = 0.

Consider any t E T - IT. Write t = u + {s0 + sx0 + ■ ■ ■ +sk0k) where u E IT,

each s, E S, and sk G /■ Since xu — 0, the coefficient of 0"+k in xt is xnsk. This

coefficient is nonzero because sk G /, so xt ¥= 0.

Thus IT = {t E T\xt — 0}. Now C = xn S is a nonzero submodule of A such that

C = S/I, whence C®ST= T/IT ^xT^B.    □

Note that the embedding C ®ST -> B given by the lemma above is not necessarily

the natural embedding C ®s T — A ®s T obtained from the inclusion map C -> A.

Corollary 4.2. Let S be a differential ring, and set T — S[0; 8]. If A is a nonzero

noetherian right S-module, then A contains a T-clean submodule.

Proof. As A ®s T is a noetherian T-module it has Krull dimension, so it contains

a critical T-submodule B. By Lemma 4.1, there is a nonzero submodule C of A such
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that C ®ST embeds in B. Since A is noetherian, C has Krull dimension and so

contains a critical S-submodule D. Now D ®ST embeds in B, hence D <8>sT is a

critical T-module. Therefore D is a T-clean S-submodule of A.    D

As we have commented above, when S is a commutative noetherian differential

ring, all critical noetherian S-modules are clean with respect to S[0; 8]. Thus the

clean subfactors of S are (isomorphic to) the submodules of the modules S/P, where

P is a prime ideal of S. The formula given for the Krull dimension of S[0; 8] in [6,

Theorem 2.10] involves the use of heights of prime ideals of S, and to develop an

analogous formula here it is convenient to introduce a notion of height for clean

modules. For the moment only height 1 is required, but in the following section we

shall consider height in general for simple modules.

Recall that a minor subfactor of a module A is any submodule of a proper factor

of A.

Definition. Let S E T he rings, and let A, B be T-clean noetherian right

S-modules. Define hT{A : B) = 1 if A is isomorphic to a minor subfactor of B but

there does not exist a T-clean S-module C such that C is isomorphic to a minor

subfactor of B and some nonzero submodule of A is isomorphic to a minor subfactor

of C (i.e., no nonzero submodule of A is isomorphic to a minor subfactor of a

T-clean minor subfactor of B). Of course, if no ambiguity is likely to arise we shall

drop the subscript T.

Note that if hT{A : B) = 1 then hT{A' : B) — 1 for all nonzero T-clean submod-

ules Ä of A as well. In case hT{A : B) = 1 does not hold, we write hT{A : B) ¥= I.

Lemma 4.3. Let S ET be a pair of rings such that every nonzero noetherian right

S-module contains a T-clean submodule. Let B be a T-clean noetherian right S-module,

and let Cx > C2> C3> ■ ■ ■ s* C > 0 be submodules of B. Then there exists a positive

integer m such that for all integers p > m, the module C /C +x has no T-clean

subfactors Ap for which hT{Ap: B) — 1.

Proof. Assume the result is not true, and choose C to be maximal among those

submodules of B contained in a descending chain for which the result fails. Then

infinitely many of the modules Cj/Cj+, have clean subfactors A¡ for which h{A} : B)

= 1. Refine the original chain to include these subfactors, and then refine the

remaining portions of the chain using Corollary 4.2, so that all the subfactors are

clean. Thus we may assume, without loss of generality, that each of the subfactors

Aj = Cj/CJ+x is clean, and that h{A¡.: B) — 1 for infinitely manyy. Using Corollary

4.2 again, choose a submodule D of B such that D > C and D/C is clean.

By comparing the chains B s= D > C and B > C, > C2 > ■■■ >C with the help

of Proposition 3.2(b), we obtain submodules

B > Vax s* V02 s* • • • > />,

D>Vn>Vx2>->C,

Cj=W0j>WXJ>W2j = Cj+x

(fory =1,2,...) such that VtJ/VIJ+x ^ W,./Wl+Xj for all i,j.
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Suppose that there exists a positive integer k for which h{Ak: B) = 1 and

Wxk > Ck+X, so that WXk/W2k is a nonzero submodule of Ak. Now WXk/W2k is

isomorphic to VXk/VXk+x, which is a subfactor of the clean module D/C, while

D/C is a minor subfactor of B. Since h{Ak : B) = 1, the module Vxk/Vx k + i cannot

be a minor subfactor of D/C, so F, ¿+, = C. But then VXj = C for ally > k, and

hence WXj/W2j s F,/F, 7+, = 0 for ally > k. Thus in this case WXj = W2J = Ç+,

for ally > k.

On the other hand, if there does not exist a positive integer k for which

h{Ak : B) = 1 and IFU > Ck+X, then IF,y = CJ+X for ally such that h{A¿: B) = 1.

Thus in any case, there exist infinitely many positive integersy such that h{ A/ : B) = 1

and WXj = Cj+X. Now for each suchy,

Aj = Cj/CJ+x = W0j/WXj s V0J/V0J+X,

so that VQJ/V0j+X is a clean module and h{VQj/V0J+x : B) = 1. However, since

F0, s* F02 3= F03 > • • • > TJ and Z) > C, this contradicts the maximality of C.    D

Lemma 4.4. Let S be a differential ring, and set T = S[f?; 5]. Let B be a noetherian

right S-module, and let D be a nonzero T-module subfactor of B ®s T. Then there exist

a nonzero T-submodule E < D and a T-clean S-submodule A < E such that A is

isomorphic to a subfactor of B and E — AT, so that E is a homomorphic image of

A®ST.

Proof. It is enough to find a clean S-submodule A contained in D that is

isomorphic to a subfactor of B.

Set B„ = {x E B ®s T\ ord(x) < n) for all n = 0,1,2,..., and write D = G/F,

where F < G are T-submodules of B ®s T. Compare the chains of submodules

0<B0<Bx<B2< •••;       0^F<G<B®sT

(considered as S-submodules). By Proposition 3.2(a), there exist S-submodules

F = F_, < F0 < Fx < • • • «• G such that U Fn = G and each Fn/Fn_, is isomorphic

to a subfactor of Bn/Bn_x. Let k be the least integer such that Fk > F. Then the

module D' — Fk/F = Fk/Fk_x is a nonzero S-submodule of D that is isomorphic to

a subfactor of Bn/Bn_x and hence is isomorphic to a subfactor of B. By Corollary

4.2, there exists a clean submodule A < /)', and obviously A is isomorphic to a

subfactor of /?.    D

We are now in a position to give an expression for the Krull dimension of an

induced module B <8>SS[0; 8] over a differential operator ring S[0; 8], at least when

B is clean, in terms of the Krull dimensions of the modules A ®SS[0; 8} where A

runs through the clean minor subfactors of B.

Proposition 4.5. Let S be a differential ring, and set T= S[0; 8]. Let B be a

T-clean noetherian right S-module with finite Krull dimension. If B is not simple, then

K.dim. {B®ST) = max{K.dim. (A ®ST) | A E &} + 1,

where & is the family of T-clean minor subfactors of B.
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Proof. Since B is not simple, it has some nonzero minor subfactors, so by

Corollary 4.2 it has some clean minor subfactors. Thus â is nonempty. Set ß =

K.dim.(Ä). Since ß is finite, K.dim.(fi ®s T) is finite, so the value t =

max{K.dim.(y4 ®ST)\A E (£} is really a maximum (rather than a supremum).

Choose A E & with K.dim.(/1 ®ST) — t. Now A ®ST is isomorphic to a minor

subfactor of B ®ST, so K.dim.{B ®ST) > t, because B ®ST is critical. Thus

K.dim.{B®sT)>t + 1.

If Kdim.(5 ®ST) > t + 1, then K.dim.((Ä ®ST)/C) > t for some nonzero T-

submodule C of B ®s T. Consequently, there exists a chain of T-submodules

B®ST> Cx^ C2> •■ • > C > 0 such that K.dim.( C,/C, +,) > t for infinitely many

/'. After refining this chain, we may assume that each C,/Ci+X is critical. By

Proposition 3.3, there exists a positive integer mx such that for any i^mx, all

finitely generated S-module subfactors of C,/C,+, have Krull dimension less than ß.

Consider the chain of S-submodules B 3= \{CX) 3= A(C2) 3= 3* \{C) > 0. By

Lemma 4.3, there exists a positive integer m2 such that for all i 3= m2, the module

A(C,)/A(C,+,) has no clean subfactors A, for which h{ X, : B) = 1.

Choose m > max{m,, m2] such that K..dim.{Cm/Cm+x)> t. By Lemma 4.4,

Cm/Cm+X has a nonzero T-submodule £ of the form AT, where A is a clean

S-submodule of Cm/Cm+X and ^ is isomorphic to a subfactor of B. Since w 3= m,,

we have K.dim.(^l) < ß, so A must be isomorphic to a minor subfactor of B.

If £ is a proper homomorphic image of A ®s T, then

K.dim. (CJCm+,) = K.dim. (£) < K.dim.(A ®sT)<t,

the equality coming from the fact that Cm/Cm+X is critical, the strict inequality

coming from the fact that A ®s T is critical, and the last inequality coming from the

definition of t. However, this contradicts the assumption that K.dim.(C„,/Cm+1) > t,

so £ cannot be a proper homomorphic image of A ®s T.

Thus the natural map A ®5T — £ must be an isomorphism. By Proposition 3.1,

there is a nonzero submodule A' of A that is isomorphic to a subfactor X of

A(C„,)/\(Cm+,). Since A is clean, A' and A are clean. Hence, h{X: B) =£ 1, because

w 3= w2, so h{A' : B) ¥= 1. Thus there exist a nonzero submodule /I" =s A' and a

clean S-module G such that ^" is isomorphic to a minor subfactor of G and G is

isomorphic to a minor subfactor of B. Consequently,

K.dim. (C„,/C„I+I) = K.dim. M"T) = K.dim. (/I" ®ST) < K.dim. (G ®ST) *zt,

where the first equality holds because Cm/Cm+X is critical, and the strict inequality

holds because G ®s T is critical. However, we again have a contradiction.

Therefore K.dim.(ß ®s T) = t + 1.    D

Lemma 4.6. Le/ S be a differential ring, and set T — S[0; 8}. If A is any critical

noetherian right S-module, then A ®s T is a uniform right T-module.

Proof. If A ®ST is not uniform, then it contains nonzero T-submodules B and C

such that B n C = 0. By Lemma A.l, A has a nonzero submodule £ such that

E®ST embeds in C, so E ®ST is isomorphic to a subfactor of {A ®ST)/B.

According to  Proposition  3.1,  £ must  have  a nonzero submodule £'  that  is
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isomorphic to a subfactor of A/X{B). Since £' is a nonzero submodule of the critical

module/I, we have K.dim.(£') = K.dim.(^l). But as \{B) =£ 0, we must also have

K.dim. (£') < K.dim. (A/X(B)) < K.dim. (A),

which is impossible. Therefore A ®sTis uniform.    D

The lemma above must be used in place of the more expected result, namely that

uniform S-modules tensor up to uniform T-modules, which is false in general. For

example, choose a field F of characteristic 2, and let S be the 2-dimensional

£-algebra with basis (1, x} such that x2 = 0. Note that S is uniform as an S-module.

Because of characteristic 2, we may define an £-linear derivation 8 on S so that

8{x) = 1. In the differential operator ring T = S[0; 8], the element x0 is a nontrivial

idempotent, so T is not uniform as a right (or left) T-module.

Proposition 4.7. Let S be a differential ring, and set T= S[0; 8]. Let B be a

nonsimple critical noetherian right S-module with finite Krull dimension, and set

t = max{K.dim.(^4 ®s T) | A E &}, where & is the family of T-clean minor subfactors

of B. Then B is T-clean if and only if K.dim.(£ ®s T) > /. Namely, K.dim.(£ ®s T)

= t + 1 if B is T-clean, while Kdim.(ß ®ST) = t if B is not T-clean.

Proof. If B is clean, then K.dim.{B ®ST) = t + 1 > t by Proposition 4.5.

Conversely, assume that K.dim.(ß ®ST) > t. Using Corollary 4.2, choose submod-

ules 0 = C0 < C, < C2 < ••• <C„ = B such that each C,+ x/C, is clean. For i =

\,...,n — 1, we have

K.dun.((Ci+1/Ci)8sT)</

because C,+ x/C, E &, and hence Kdim.((/?/C,) ®ST) < t. Consequently,

K.dim. (C, ®ST) >t.

On the other hand, since all clean minor subfactors of C, are in 6?, it follows from

Proposition 4.5 that K.dim.(C, ®ST) ^ t + 1. Thus C, ®ST must be a {t + 1)-

critical T-module. Since C, ®s T is an essential submodule of B ®s T (by Lemma

4.6), and K.dim.((/3/C,) ®ST) < t, it now follows that all proper T-module factors

of B ®ST have Krull dimension at most t. Therefore B ®ST is a {t + l)-critical

T-module, and B is clean.

Finally, if B is not clean, then Kdim.(# ®ST) =£ t. There exists A E tf with

Kdim.(/1 ®s T) = t, and A ®s T is a subfactor of B ®s T, so K.dim.(5 ®s T) > t.

Thus Kdim.(.ß ®ST) = tin this case.    D

Corollary 4.8. Let S be a differential ring, and set T— S[0; 8}. Let B be a

nonsimple ß-critical noetherian right S-module, for some finite ordinal ß. If

K.dim.(/1 ®s T) < ß for all T-clean minor subfactors A of B, then B is T-clean, and

B ®ST is a ß-critical right T-module.

Proof. If t is the maximum Krull dimension for the modules A ®s T, where A

runs through the clean minor subfactors of B, then t < ß by hypothesis. Since

Kdim.(5 ®s T) > ß, Proposition 4.7 shows that B is clean and that

K.dim.{B ®ST) = t + 1. Now t + 1 > ß > t, so ß = t + 1; thus K.dim.{B ®ST)

= /S.    D
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We conclude this section with an example of an unclean critical module, thus

showing that we must use clean modules rather than critical modules in our results.

Example 4.9. There exists a right and left noetherian differential ring S with a

1-critical noetherian right module A such that A ®SS[0; 8] is not a critical right

S[0; 5]-module.

Proof. Choose a field K of characteristic zero, let t, x be independent inde-

terminates, and set R = K{t)[x]. Define /X-linear derivations 5, and 82 on R so that

8x{t) = 1 and 82{t) = 0 while 8x{x) = 0 and 82{x) = 1; thus 8, = 3/3/ and 82 =

d/dx, and 5, and 82 commute. Note that K[x] equals the subring of S,-constants of

R, that is,

K[x] = {rER\8x(r) = 0}.

Set S = R[0X; 8X], which is a right and left noetherian ring. Since S, and 82

commute, we may extend 82 to a derivation on S such that 82{0X) — 0. Set T =

S[02; 82]. We construct a 1-critical noetherian right S-module A, built as a nonsplit

extension of a 1-critical module C by a simple module B, such that A ®ST is not

critical, which occurs becauseB ®STand C ®STare each 1-critical.

First, set B = S/{x + t)S. Since {x + t)R is a maximal ideal of R that is not

closed under 5,, it follows from Lemma 2.1 that B is a simple right S-module. Thus

{x + t)S is a maximal right ideal of S. Inasmuch as

(82 - 0x)(x + t) = I - 0x(x + t) = - (x + t)0x,

{x + t)S is closed under ô2 — 0X. By Lemma 2.1, T/{x + t)T is a 1-critical right

T-module, that is, B ®sTis 1-critical.

Next, set C = S/0xS. We may identify C with R, made into a right S-module with

a module multiplication * so that r * 0X = -8x{r) for all r E R. Then the S-submod-

ules of C are exactly the 5,-ideals of R. Given a monic polynomial/G R, we note

that 8x{f) has lower degree than /, so 8x{f)EfR only if 8x{f) = 0, that is,

f E K[x]. Thus the 5,-ideals of R are exactly the ideals fR for f E K[x]. In

particular, we conclude from this description that C is a 1-critical right S-module.

To show that C ®ST is 1-critical, we use Corollary 4.8, so we need to find the

simple subfactors of C. First note that if/, g are nonzero polynomials in K[x], then

g divides/in R only if g divides/in K[x]. (Namely, iif=gh for some h E R, then

we compute that 8x{h) = 0, so h E K[x].) Thus the maximal 8X-ideals of R are

exactly the 8X-ideals fR where/is an irreducible polynomial in K[x]. Note that

R/fR = S/(fS + 0xS)

as right S-modules. Now consider a simple S-module subfactor M of C, and write

M = gR/hR for some nonzero g, h E K[x]. Then h- fg for some/ G K[x], and we

note that multiplication by g induces an S-module isomorphism of R/fR onto Af.

Therefore any simple S-subfactor of C is isomorphic to S/{fS + 0XS) for some

irreducible/ E K[x]. Now the degree of 82{f) is lower than the degree of/, so 82{f)

and / are relatively prime in K[x]. Consequently, 82{f)S+fS = S, and hence
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82{f)&fS + 0xS. Also, / is central in S (because ô,(/) = 0), so for any s G S we

have

(82 + s)(f) = 82(f)+fs,

and this element cannot lie in fS + 0XS. Thus/S + 0XS is not closed under 82 + s for

any s E S. By Lemma 2.1, T/{fT + 6XT) is a simple right T-module.

Thus every simple S-subfactor of C tensors up to a simple T-module. By Corollary

4.8, C is T-clean, and C ®s Tis a 1-critical right T-module.

Finally, set A = S/{x + t)0xS, which is an extension of C by B. We claim that

this extension is not split. If it is split, there exists a homomorphism

g:S/(x + t)S^S/(x + t)0xS

such that the composition of g followed by the natural map of S/{x + t)0xS onto

S/{x + t)S is the identity map on S/{x + t)S. Now g must be induced by left

multiplication by a nonzero element u E S, and

u(x + t) = (x + t)0xp   and    u - 1 = (x + t)q

for some p,q E S. Then

(x + t)0xp = u(x + t) = (x + t)q(x + t) + (x + /),

so 0xp — q{x + /) + 1. Write q = 0xs + r for somes G S and r E R. Then

0x[p-s{x + /)] = r(x + t) + \

and so r{x + t) = -I, which is impossible. Thus the extension is nonsplit, as

claimed.

Therefore A is a nonsplit extension of the 1-critical module C by the simple

module B, so A is a 1-critical right S-module. On the other hand, A ®ST is an

extension of the 1-critical T-module C ®ST by the 1-critical T-module B ®ST, so

A ®sTis not a critical T-module. (Thus A is not T-clean.)    D

We note that the differential operator ring T in the example above is a localization

of the Weyl algebra A2{K ).

Example 4.9 may also be used to give a negative answer to a question of Wangneo

[18]; namely, there exists a right and left noetherian ring Q such that all finitely

generated critical g-modules are compressible, but such that the polynomial ring

Q[x] possesses incompressible finitely generated critical modules. Following the

notation of Example 4.9, set Q — K{t)[0x; 8X], which is a right and left principal

ideal domain. Any finitely generated critical right ß-module is either simple or

isomorphic to QQ, and thus is compressible; similarly for left modules. The poly-

nomial ring Q[x] is isomorphic to the ring S = K{t)[x][0x; 8X] of Example 4.9,

because 8x{x) = 0. The module A constructed in the example is a finitely generated

critical right S-module such that A ®s T is not critical. In view of [6, Lemma 2.1], A

is not compressible. (This may also be verified directly, by checking that the simple

module B at the top of A is not isomorphic to a subfactor of the 1-critical module C

at the bottom of A.) Therefore A is a finitely generated, incompressible, critical right

(2[x]-module.

V. Krull dimension formulas. The formula given in Proposition 4.5 provides an

expression for the Krull dimension of certain induced modules B ®SS[0; 8] over a
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differential operator ring S[0; 8] in terms of the Krull dimensions of the modules

A ®SS[0; 8], where A runs through the clean minor subfactors of B. For those A

which are not simple, we can repeat this process, going back to modules

A' ®SS[0; 8] where the A' are clean minor subfactors of A, and so on. To keep track

of the number of steps of this sort required to reach a given simple subfactor of B,

we define the following notion of height for simple modules.

Definition. Let S E The a pair of rings, let Af be a simple right S-module, and

let B be any right S-module. Define hT{M: B) to be the supremum of the

nonnegative integers n for which there exists a sequence M — A0, Ax, A2,... ,An of

T-clean right S-modules such that A, is isomorphic to a minor subfactor of Ai+X for

0 < / < n — 1 while An is isomorphic to a subfactor (not necessarily minor) of B.

In particular, hT{M : B) > 0 if and only if Af is T-clean and isomorphic to a

subfactor of B; otherwise, hT{M: B) — -oo. We observe that hT{M:B)^

K.dim.{B) if K.dim.(5) exists. Namely, if M = A0, Ax,...,An are T-clean right

S-modules such that A¡ is isomorphic to a minor subfactor of A,+, for / = 0,..., n — 1

and An is isomorphic to a subfactor of B, then for /' = 0,... ,n — 1 we have

K.dim. (A,)< K.dim. (A,+ x)

because Ai+X is critical, so Kdim.(fi) 3= K.dim.(^4„) > n.

Note that this definition does not conflict with the definition of hT{M: B) = 1

given in the previous section. We do not assign a value to hT{M : B) for nonsimple

clean modules M in general.

Theorem 5.1. Let S be a differential ring, and set T = S[0; 8]. Let B be a nonzero

noetherian right S-module with finite Krull dimension. Then

K.dim. (B®ST) = max{K.dim. (Af ®ST) + hT(M: B) | M E 911},

where 911 is the set of simple subfactors of B.

Proof. Set ß = K.dim.(5). If ß = 0, then B has submodules 0 = B0< Bx< B2

< ■ ■ ■ < Bk = B such that each B,/B, , is simple, and each simple subfactor of B is

isomorphic to some B,/B,_x. Note that hT{M : B) - 0 for all Af G 91L. Thus

K.dim. {B®ST) = max{K.dim. ((B,/B,_x) ®ST) \ i = l,...,k}

= max(K.dim. (M®ST)\ME 911}

= max{K.dim. (M ®ST) + hT(M: 5) | M G 91}

in this case.

Now let ß > 0 and assume that the result holds for noetherian S-modules of

smaller Krull dimension than ß. Set

p = max{K.dim. (M ®ST) + hT(M: B) \ M E 911}.

If M E 91L and hT{M : B) = n, then there exist clean right S-modules Af =

A0, Ax,...,An such that A, is isomorphic to a minor subfactor of Ai+X for /' =

0,..., n — 1 while An is isomorphic to a subfactor of B. For i — 0,...,«— 1 we have

A, ®sTisomorphic to a minor subfactor of Ai+, ®STand A,+, ®sTcritical, so

K.dim. (A,®ST) < K.dim. (Ai+X ®ST).
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As An ®s T is isomorphic to a subfactor of B ®s T, we obtain

K.dim.(B®sT) 3= K.dim. (A„ ®ST) > K.dim. (Af ®ST) + n.

ThusK.dim.{B ®ST)> p.

Use Corollary 4.2 to choose submodules 0 = C0 < C, < C2 < • ■ • < Ck = B such

that each C,/C,_x is clean. Any simple subfactor Af of C,/C,_x is also a simple

subfactor of B, and hT{M : C,/C,_x) < hT{M : B), so

max{K.dim.(Af ®ST) + hT(M: C,/C,_x) \ M E 9H,} <p,

where 91L¿ is the set of simple subfactors of C,/C,_x. Thus we need only show that

our Krull dimension formula holds for each C¡/C,_x. Hence, there is no loss of

generality in assuming that B is clean.

By Proposition 4.5, there exists a clean minor subfactor A of B such that

K.dim. (B®ST) = K.dim. (A ®ST)+ I.

As B is critical, K.dim.{A) < ß. By the induction hypothesis, there exists a simple

subfactor M oí A such that

K.dim. (A ®ST) = K.dim. (Af ®ST) + hT(M: A).

Consequently,

K.dim. (B®ST) = K.dim. (Af ®ST) + hT(M: A) + 1.

However, Af G 91L and hT{M : B) 3= hT{M : A) + 1, by definition of hT, so that

K.dim. (B®sT)*z K.dim. (M ®ST) + hT(M: B) < p.

Therefore K.dim.(£ ®ST) = p.    D

This theorem and the following corollaries generalize the corresponding results for

a commutative noetherian differential ring proved in [6, Theorems 2.9 and 2.10].

Corollary 5.2. Let S be a nonzero right noetherian differential ring with finite right

Krull dimension, and set T = S[0; 8]. Then

r.K.dim. (T) = max{K.dim. (Af ®ST) + hT(M : S)\ M G9H},

where 911 is the family of simple right S-modules.    □

Corollary 5.3. Let S be a nonzero right noetherian differential ring with finite right

Krull dimension, and set T = S[0; 8]. Then r.K.dim(T) = r.K.dim.(S) unless there

exists a simple right S-module M with hT{M : S) = r.K.dim.(S) and K.dim.( Af ®s T)

= 1. In this latter case, r.K.dim.(T) = r.K.dim.(S) +1.    D

Two cases of this result have previously been obtained by Hodges and McConnell,

namely, that r.K.dim.(T) = r.K.dim.(S) + 1 when all simple right S-modules tensor

up to 1-critical T-modules [10, Theorem 5.1], and that r.K.dim.(T) = r.K.dim.(S)

when all simple right S-modules tensor up to simple T-modules [10, Theorem 6.1].

Corollary 5.3 should not really be regarded as a definitive answer to the question

of the Krull dimension of a differential operator ring S[0; 8] for the reason that we

do not yet have an internal way of recognizing clean modules or of computing

heights of simple modules. In the next section we are able to do this for fully

bounded noetherian differential rings.
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Our results do enable us to provide an affirmative answer to a conjecture made in

the concluding remarks of [10].

Let N be equipped with the reverse of its natural ordering, so that 1 > 2 > 3 > • • •,

and for a given positive integer « let N" have the corresponding lexicographic

ordering. If S is a right noetherian ring with right Krull dimension n, then S has a

descending chain of right ideals G = {/, | / G N"} such that /, > /y whenever ;' > j.

(For instance, in the case n = 2 we have G = {Ijk \j, k E N} and /,, > /,2 > • • • >

I2X > /22 > • • • > I3X > I32 > • ■ ■.) Hodges and McConnell conjectured that if S is

a differential ring, then S[0; 8] has right Krull dimension n + 1 if and only if there

is some chain of the form G such that whenever / > / are successive terms of the

chain then K.dim.((///) ®ST) 3= 1. The following theorem shows that this conjec-

ture is correct, and that it holds as well for induced modules.

Theorem 5.4. Let S be a differential ring, and set T— S[0; 8]. Let B be a

noetherian right S-module with finite positive Krull dimension n. Give N the reverse of

its usual ordering, and give N" the corresponding lexicographic ordering. Then

K.dim. (B®ST) = K.dim. (B) + 1

// and only if there exists a chain {A¡ \ i E N"} of submodules of B such that A, > Aj

whenever i > j and K.dim.{{A/A') ®ST) 3* 1 whenever A > A' are successive terms

of the chain.

Proof. The sufficiency of this condition is obvious, so suppose that

K.dim.(Z? ®ST) = n + 1. By using Corollary 4.2, there is a chain of sub modules

0 = B0< Bx < ■ ■ ■ < Bk = B such that each of the factors Bk/Bk_x is T-clean. At

least one of the modules {Bk/Bk_x) ®ST must have Krull dimension n + 1 (in

which case Bk/Bk_x has Krull dimension n), and we need only find a suitable chain

inside Bk/Bk_x. Hence, we may assume that B is T-clean.

First assume that B is a T-clean S-module of Krull dimension 1, and

K.dim.{B ®ST) = 2. By Theorem 5.1, there is a simple subfactor M oí B such that

K.dim.( Af ®s T) — 1 and hT{M : B) = 1. Then Af must be a minor subfactor of B,

so there are submodules B = Ax > A2> 0 such that Af is a subfactor of Ax/A2, and

K..dim.{{Ax/A2) ®s T) = 1. Now ^2 is a T-clean 1-critical S-module, and

K.dim.{A2 ®sT) = 2 because B ®s Tis 2-critical, so by the same argument A2 has a

nonzero submodule A3 such that K.dim.{{A2/A3) ®ST) = 1. Hence, by induction B

has a chain of submodules Ax > A2> ■ ■ ■ such that K.dim.{{A,/A,+ x) ®ST) = 1

for all ».

Now suppose that B is a T-clean right S-module of Krull dimension n > 1 while

K.dim.(/? ®ST) = n + 1, and suppose the theorem holds for clean modules of

dimension less than n. By Proposition 4.5, there is a T-clean minor subfactor C of B

such that Kdim.(C®sT) = n. Since B is «-critical, C must be {n — l)-critical.

There are submodules B — C, > C2 > 0 such that C embeds in Cx/C2. By the

induction hypothesis, Cx/C2 has a chain Qx ~ {AXl \ i E N"~'} of submodules such

that if i >j then AXl > AXj and K.dim.{{Ax,/AXj) ®ST) 3= 1. Now C2 is a T-clean

«-criticalS-module, and K.dim.(C2 ®ST) = n + 1 becauseB ®sTis{n + l)-critical,

so we may apply the above argument to C2. Continuing in this manner, we generate
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a chain C, > C2 > ... of submodules of B such that each factor Ck/Ck + X has a

chain

e, = {^|/GN"-'}

of submodules such that if / > j then Ak, > AkJ and

K.dim.((Ak,/Akj)®sT)>l.

Pulling all the chains Gk back to chains of submodules of B and combining the

resulting chains gives us a chain {A, \ i E N"} of submodules of B of the required

type.    □

VI. Fully bounded noetherian rings. For a fully bounded noetherian differential

ring S, all critical modules are compressible, and hence clean. Also, there is a

bijection between the set of isomorphism classes of injective hulls of critical

S-modules and the set of prime ideals of S, given by associating with the injective

hull of a critical module the annihilator of the critical module. This close connection

between clean modules and prime ideals enables us to discuss the question of the

Krull dimension of S[0; 8] by referring only to the prime ideals of S and the familiar

notion of the height of a prime ideal. We are able to prove exactly the same theorem

for fully bounded noetherian differential rings as that obtained in [6, Theorem 2.10]

for commutative noetherian differential rings.

Recall that a fully bounded noetherian ring is a right and left noetherian ring S such

that every prime factor S/P of S is bounded, i.e., every essential right or left ideal of

S/P contains a nonzero two-sided ideal of S/P. Note that all primitive factor rings

of S are simple artinian.

Lemma 6.1. Let S be a right and left noetherian differential ring, and set T =

S[0; 8]. Let M be a simple right S-module, set P — anns( Af ), and assume that S/P is

simple artinian. Then M ®ST is a I-critical right T-module if and only if either

8{P) EPorchaT{S/P)>0.

Proof. We may assume that Af = S/K for some maximal right ideal A" of S that

contains P. If S/P has positive characteristic, then T/KT is 1-critical by Corollary

2.4, so we may assume for the remainder of the proof that S/P has characteristic

zero. Then M has characteristic zero as well.

If 8{P) E P, then S/P is a differential ring, and TTis a two-sided ideal of Tsuch

that T/PT is isomorphic to the differential operator ring {S/P)[0; 8]. This ring is

seen to be nonartinian by considering the right ideals generated by powers of 0, so

T/PT is not right artinian. As S/P is simple artinian, there exist right ideals

P = P0<PX<P2< ■■■ <Pk = S with each P,/Pt_, s S/K. Then T has right

ideals PT = P0T< PXT< P2T< ■ ■ ■ < PJ = T with each P,T/P,_XT = T/KT.

Since T/PT is not right artinian, T/KT cannot be artinian. Thus T/KT must be

1-critical.

Finally, suppose that T/KT is 1-critical. By Lemma 2.1, there exists a E S such

that {8 + a){K) E K. Given s G S and p G P, then sp G K, so

s8(p) = (8 + a)(sp) - 8(s)p - asp G K + P = K.

Hence, 8{P) E anns{S/K) = P.    D
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By the height of a prime ideal P in a ring S, we just mean the supremum of the

lengths n of chains of prime ideals P = P0> Px > P2> • • • > P„ descending from P.

We denote the height of P by ht(T).

Proposition 6.2. Let S be a fully bounded noetherian differential ring, and set

T = S[0; 8]. Let M be any simple right S-module, and let P = anns(Af). Then

hT{M:S) = ht{P).

Proof. Suppose there is a chain of T-clean S-modules Af = A0, Ax,... ,An such

that each A, is isomorphic to a minor subfactor of Aj+X. Each of the annihilators

P, — anns{A,) is a prime ideal of S, and A, is nonsingular as a right (S/T,)-module,

so that K.dim.{A,) = r.K.dim.(S/T,) [12, Theorem 2.5, Proposition 1.4], Hence, as

P, D Pi+X and r.K.dim.(S/£,) < T.K.dim.{S/P,+x), it follows that P¡ > Pj+X. Then

P = P0 > Px > P2 > ■ • ■ > Pn is a chain of prime ideals descending from P, and

hence ht(T) 3= n. Thus ht(T) 3= hT{M: S).

Now consider a chain P = P0> Px > P2> •••>/"„ of prime ideals descending

from P, and set a, equal to T.K.dim.{S/P,). Each a, < ai+x because P, contains a

non-zero-divisor modulo Pi+ x (see [8, Proposition 6.1 or Theorem 7.1]).

Set A0 = M. We construct cyclic critical right {S/P,)-modules A, for each /' such

that A, is isomorphic to a minor subfactor of Ai+X. Given A, (for /' < «), there is a

right ideal B 3= P, in S such that S/B =A,. The ring S/P,+ x contains an essential

right ideal that is a direct sum of cyclic ai+x-critical modules. Hence, there is a chain

of right ideals D0> Dx > D2 > • • • > Dk = Pi+X with each Dj/DJ+, cyclic ai+,-criti-

cal and D0/P,+ x essential in S/P,+ x. Then D0/P,+ x contains a non-zero-divisor

x + P,+ x, and hence

(xS + Pi+x)/{xB + Pi+x)^S/B^Ai.

Taking a common refinement of the chains

D0^xS+ P,+ x >xB + Pi+X > Pi+X = Dk,

D0> Dx> D2> ■■■> Dk

we find that A, has a nonzero submodule A' which is isomorphic to a subfactor of

D¡/D¡+, for some /. Set Aj+, = D¡/Dl+,. Since A, is compressible [12, Theorem 2.5],

it embeds in A', so A, is isomorphic to a subfactor of Ai+X. Also,

K.dim. (A,) <a,<al+x = K.dim. (A,+ x),

and hence A, must be isomorphic to a minor subfactor of Ai+X.

Thus, by induction we obtain the modules A0, Ax,...,An. Note that since An is

cyclic, it is isomorphic to a subfactor of S. Each A, is compressible by [12, Theorem

2.5], and hence T-clean [6, Lemma 2.1], so hT{M: S) 3= n. Therefore hT{M : S) 3=

ht(T).    □

Theorem 6.3. Let S be a fully bounded noetherian differential ring with finite right

Krull dimension, and set T = S[0; 8]. Then r.K.dim.(T) = r.K.dim.(S) unless there

exists a maximal two-sided ideal P of S such that ht{P) = r.K.dim.(S) and either

8{P) E P or char(S/T) > 0. In these latter cases, r.K.dim.(T) = r.K.dim.(S) + 1.
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Proof. Set n = r.K.dim.(S), and suppose that r.K.dim.(T) = n + 1. Then, by

Corollary 5.3, there exists a simple right S-module M such that hT{M: S) — n and

K.dim.(Af ®ST) = 1. Set P = anns(Af ), which is a maximal two-sided ideal of S.

By Lemma 6.1, either 8{P) E P or char(S/T) > 0. Also, by Proposition 6.2,

ht(T) =hT{M:S) = n.

Conversely, suppose that there is a maximal two-sided ideal P of S of height n

with either 8{P) E P or char(S/T) > 0. Let M = S/K where A is a maximal right

ideal of S containing P, so that anns(Af) = P. By Lemma 6.1 and Proposition 6.2.

K.dim.(Af ®ST) = 1 and hT{M:S) = n. Therefore r.K.dim.(T) = n + 1, by

Corollary 5.3.    D
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