
transactions of the
american mathematical society
Volume 276, Number 1, March 1983

AN ALGEBRAIC CLASSIFICATION OF CERTAIN

SIMPLE EVEN-DIMENSIONAL KNOTS

BY

C. KEARTON1

Abstract. The simple 2ç-knots, q a« 4, for which Hq(K) contains no Z-torsion, are

classified by means of Hermitian duality pairings on their homology and homotopy

modules.

0. Introduction. An n-knot kis a locally flat pair (S"+2, S") in the piecewise-linear

category, where S" denotes the 77-dimensional sphere. The exterior K of k is the

closure of the complement of a regular neighbourhood of S" in S"+2, and k is simple

if K has the homotopy [(ti — l)/2]-type of a circle. By Alexander-Poincaré duality,

K has the homology of a circle, and so the kernel of the Hurewicz map irx(K) -»

HX(K) — (t :) corresponds to a covering space K of K which has the infinite cyclic

group (t:) as its group of covering transformations. In the case of a simple knot

(77 > 1), K is the universal cover of K. The homology groups H^(K) are modules

over A = Z[r, t "'], and are finitely generated because K is a finite complex. They are

also A-torsion modules.

The simple (2q — l)-knots have just one nonzero module Hq(K), and there is a

nonsingular (-1)9 '-Hermitian pairing [ , ]: Hq(K) X Hq(K) -» A0/A, known as

the Blanchfield pairing. Here A0 denotes the field of fractions of A, and conjugation

is the linear extension of / \-* t~x. For q > 1, the simple (2q — l)-knots are classified

by the pair (H (K),[ , ]); see [K5]. There is an alternative classification of these

knots, due to Levine, in terms of their Seifert matrices modulo 5-equivalence; see

[L3].
The simple 2^-knots have proved more difficult to classify. There are two nonzero

homology modules, Hq(K) and Hq+X(K). In the case when Hq(K) is a Z-torsion-

module, we have Hq+X(K) — 0 and the knots are classified by the Levine pairing

Hq(K) X Hq(K) -» g/Z together with an isometry (see [Ko2] for details), provided

q > 4. This result requires also that Hq(K) has no 2-torsion. Some progress

analogous to Levine's results on the odd-dimensional case has also been made. In

[K6], the simple 2ijr-knots, q > 4, are classified in terms of certain pairings over Z

and Z2, modulo an equivalence relation, provided that Hq(K) has no 2-torsion. Such
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knots are called odd simple 2^-knots. Kojima [Ko] has classified fibred odd simple

2¿¡r-knots, q> 4, where Hq(K) is Z-torsion-free, in terms of Seifert matrices over Z

and Z2, modulo an equivalence relation.

M. S. Faber [Fa] has classified the 77-knots bounding r-connected Seifert surfaces,

where 6 < n + 1 < 3r, in terms of stable homotopy theory and Spanier-Whitehead

duality. As in [13], this involves an equivalence relation induced by ambient surgery

on the Seifert surface.

In this paper we obtain results in the spirit of [K5] and [Ko2], by classifying the

simple 2<j-knots, q > 4, for which Hq(K) is Z-torsion-free, in terms of the homology

and homotopy modules of K, together with certain Hermitian pairings obtained

from Blanchfield duality and an analogous version of homotopy linking. The plan of

the paper is as follows.

In §1 the invariants used to classify the knots are described and their properties

proved. We define %¿K) = H,(E)/2H¿E), Tlq+X(K) = nq+¿K)/2wq+liÉ), and
obtain a short exact sequence

5(K):%q(K)^Uq+xiK) -1 %q+xiK)

of T-modules, where T = Z2[i, t~x]. The map H is induced by the Hurewicz map

irq+x(K) -* Hq+X(K), and the map ß is induced by the composite of the inverse of

the Hurewicz isomorphism irq(K) -» Hq(K) with the map irq(K) -» mq+x(K) ob-

tained by composition with the nonzero element of trq+x(Sq). There are nonsingular

Hermitian pairings

[,]*■■ nq+xiK)xnq+xiK)^T0/T,

e(,)¿:%<¡+liK)x%qiK)^T0/T

where T0 is the field of fractions of T, related by

[k,Q(»)] =\Hiu),v)    for all« E-nq+x(K),v E%q(K).

The quotient map Hq(K) -* % (K) is denoted by pq(K). The quintuple

(&(K), Hq(K), pq(K), [, ]¿,\, )£) is called an F-form.

In §2 the main results of the paper are stated. These amount to the assertion that

there is a bijection between the set of simple Z-torsion-free 2^-knots, q > 6, and the

set of F-forms.

In order to show that isometric F-forms come from isotopic knots, the first step is

to reconstruct from an F-form ((.£), Hq(K), pq(K),[,]K,e( ,)K) the A-modules

Hq(K), Hq+X(K), TTq+x(K), the Hurewicz and other maps, and the Blanchfield and

homotopy pairings between them. This is accomplished in §3.

A presentation of an n-knot is an embedding of S" in S"+x X I together with a

collared handle decomposition of S" such that each handle is embedded in a level

S"+x and each collar is embedded productwise along the / direction. Each r-handle

of S" is associated with an (r + l)-handle of K. A simple 2<7-knot, q > 4, has a

presentation with one 0-handle, some q — I, q, and (q + l)-handles, and a 2er-

handle of S2q. Via the associated handle decomposition of K, we obtain matrices



CERTAIN SIMPLE EVEN-DIMENSIONAL KNOTS 3

over A and T which present the F-form of the knot. That is to say, we obtain a

A-matrix which presents Hq(K), an Hermitian ro-matrix representing [ ,]K, and so

on. The strategy of the proof is to show that two sets of matrices presenting

isometric F-forms are equivalent in the sense that one set can be transformed into

the other by a sequence of elementary matrix moves (such as adding one row to

another). Then we show that any such matrix move can be realised geometrically by

a handle move (such as isotoping one handle over another). Finally we show that if

two knots give rise to the same set of matrices, then they are isotopic, by invoking

theorems of the " homotopy implies isotopy" type.

The q, q + 1, and (q + 2)-handles of K give rise to a sequence of free A-modules,

Cq+2(K) -* Cq+X(K) -» Cq(K), which gives rise to the homology modules Hq(K),

Hq+X(K) in the usual way. In §4 we show, in a purely algebraic setting, that we can

split this sequence up into two presentations Am -» A" -** H¡(K) for i = q, q + 1.

The (q — l)-handles of S2q are unknotted in their level, in the sense that they are

ambient isotopic to a standard embedding. We are then faced with the problem of

isotoping the ¿/-handles about in their level; unfortunately the classical "homotopy

implies isotopy" theorems are not sufficient for the purpose because the ambient

manifold is not simply-connected, so §5 is devoted to proving the isotopy results that

will be needed later in the paper.

Because of the algebraic results proved in §4, it is possible to obtain for the knot a

presentation with one 0-handle, m (q — 1) and n ^-handles, m q and n (q + 1)-

handles, and a 2^-handle, and moreover we may assume that the m (q — 1) and n

¿/-handles are unknotted. Thus §6 is devoted to a description of K D (a level between

the w (q — 1) and ti ^-handles, and the 777 ̂-handles and n (q + l)-handles), and of

its homology and homotopy modules. The embeddings of the latter set of handles

determine elements of these modules, and hence we obtain the matrices which

present the F-form of the knot. In §7 we justify some of the assertions above about

handles being unknotted.

In §8 we look more closely at the relationship between the handles of S2q and the

handles of K, and justify the assertions made about handle moves inducing matric

moves, and the relationships with the presentation of the F-form.

In §§9 and 10 we prove the main theorems of the paper. In §11 we consider a

(q — l)-connected Seifert surface of the knot, and show how the F-form can be

presented in terms of matrices obtained from the surface in the usual way by means

of linking numbers and "homotopy linking". This technique enables us to extend

the range of dimensions for which the main theorems are valid to q > 4.

We conclude with §12 in which an example is given of two knots which have

isomorphic modules but are distinguished by their Hermitian pairings.

1. The invariants. Let A = Z[t, t'x] and 5 = {f(t) E A: f(l) = ±1}. Let As

denote A localised at S, so that As = {f/g: f E A, g E S}, and consider As/A as a

A-module. If Z2 denotes the field with two elements, set T — Z2[t, r-1]; thus T may

be regarded as A with coefficients reduced mod 2. Let ro denote the field of fractions

ofT.
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The map 6: A -> T obtained by reducing coefficients mod 2 extends to a ring

homomorphism As -> T0, and the composition As -» T0 -> T0/T of A-module homo-

morphisms contains A in its kernel. Thus there is a well-defined A-module homo-

morphism 8: As/A -» ro/r, with ker0 = 2AS/A.

Conjugation in A and T is the linear extension of 7 h» f"1, and is denoted by _.

This induces a conjugation on As/A and on ro/T, also denoted by ~.

If M and N are A-modules, then a pairing

(,>:MX;V^AS/A

is Hermitian if it is linear in the first variable and conjugate linear in the second. If

M = N, then we also require (,}* = (,), where in general

(,)*:NX M ^ As/A

is defined by (n, m)* = (m, n).

The Hermitian pairing ( , ) defines an adjoint map

a:M^Hom(N,As/A)

by a(m)(n) = (m, n). We say that the pairing ( , ) is nonsingular if the adjoint

maps of ( , > and of ( , )* are isomorphisms.

Similar definitions hold with T in place of A and ro in place of As.

Consider now a simple Z-torsion-free 2<7-knot with exterior K. Thus H^.(K) is

zero except in dimensions q, q + I, where it is Z-torsion-free. By Blanchfield duality

[B] there is a nonsingular Hermitian pairing of A-modules

Hq+x(K,dK)XHq(K)^A0/A

where A0 is the field of fractions of A. Since there is a canonical isomorphism

Hq+X(K) s Hq+X(K, dK), and the Alexander polynomials satisfy A +1(1) — ± 1 —

A?(l), this induces a nonsingular Hermitian pairing

(,):Hq+x(K)XHq(K)^As/A.

Because K is simply-connected we do not need a base-point in discussing the

higher homotopy groups it (K) and TTq+ X(K); see [Hu, Chapter IV] for details.

Let h¿. irt(k) -» Hç(K) denote the Hurewicz homomorphism, and let f denote

the nonzero element of irq+x(Sq) = Z2(q> 3). Define the map s: irq(K) -» trq+x(K)

by s(x) = xf; clearly í is a homomorphism of A-modules. By Hurewicz's theorem,

hq is an isomorphism, so we can define w = sh'q.

Lemma 1.1. Provided q > 3, the sequence

H,(£)Z*9+l(¿)h*lHq+l(E)-*0

is exact.

Proof. By a result of G. W. Whitehead, h +x is onto since q s* 2 [Hu, p. 167].



CERTAIN SIMPLE EVEN-DIMENSIONAL KNOTS 5

Let Kq denote the «/-skeleton of K in some triangulation and consider the

commutative ladder:

W*?)    '■*    Vi(¿)    '-*    ^+ÁK,kq)

i ■* hq+l * "q+ 1

Hq+xiKq)     JA     Hq+xiK)      A     Hq+xiK,Kq)

The map h'q+x is an isomorphism by the Hurewicz theorem, since (K, Kq) is

¿/-connected and Kq is simply-connected. Since Hq+x(Kq) = 0, hq+xj = 0, and since

Im j = Im s we have hq+xs = 0 and hence hq+xu = 0.

Suppose x E kerhq+x. Then h'q+xJ(x) = J*hq+X(x) = 0, whence J(x) = 0 as

h'q+, is an isomorphism. Thus x EkerJ = Im j = Im s. So ker hq+ x C Im 5 = Im w.

D

Corollary 1.2. Im« = kerhq+x = Z-torsion submodule of irq+x(K).

Proof. Since Hq+X(K) is Z-torsion-free, the Z-torsion submodule of v +i(K) C

ker hq+x = Imw C 2-torsion submodule of irq+x(K).    G

Corollary 1.3. // A ¿s the Alexander polynomial of the knot in dimension q, then

AA annihilates tr +X(K).

Proof. The Alexander polynomial in dimension q + 1 is A, by Blanchfield

duality. Thus A annihilates Hq(K), A annihilates Hq+X(K), and the result follows at

once.    D

We next define a pairing

{,}:TTq+x(K)Xvq+x(K)^T0/T

where q > 3. Let u, v E mq+x(K); by Irwin's theorem, there exist embeddings x, y:

Sq+ ' -* K representing u, v respectively. The Blanchfield intersection pairing

S:Hq+x(K)XHq+x(k)^A

is zero [B], because Hq+X(K) is a A-torsion module, and so we may isotop x so that

x and t'y are disjoint for every integer r, where (try)(z) = tr(y(z)) for z E Sq+X.

This is essentially an application of the Whitney Lemma (compare [Kl, Theorem

2.1]), and uses q > 3.

Suppose that a is an element of A such that 0(a) =£ 0 and ax — 3c, where c:

Bq+1 -» K. Such an a exists by Corollary 1.3. As in [Kl], we may arrange that for

each integer r, there are sets Xr, Yr, Zr satisfying:

(i) the Xr are disjoint subsets of int Bq+2, finitely many of which are (q + 2)-balls

and the rest are empty;

(ii) the Yr are disjoint subsets of Sq+X, finitely many of which are (q + l)-balls

and the rest are empty;

(iii) the Zr are disjoint subsets of K, finitely many of which are (2q + 2)-balls and

the rest are empty;

(iv)A-r = c-'Zr, Y, = it'y)-lZ,;
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(v) Imc n Im try C int Zr;

(vi) Sic) n xr = 0.
This too requires q > 3.

The map

c\dXr: dXr -> dZr - try(dYr) « 5"

gives an element /(c, rrv) E tt1 s= 7rí+1(5"?) = Z2, and we define

He, y) =    2    '(c, r1»/' e r.
-oo<r<oo

Lemma 1.4. T(c, y) is independent of the choice of c.

Proof. Let c': Bq+2 -» K be another map with 9c' = ax. Then T(c — c', y) =

F(c, j) — F(c', y), and c — c' represents an element of trq+2(k). By Corollary 1.3,

there exists /3 (E A such that @(ß) ¥= 0 and ßv = 0. Thus 0 = T(c - c', ßy).=

@(ß) ■ T(c - c', y), and so T(c - c', y) = 0.    D

Suppose that x' is another representative of u. Then x — x' = da, for some a:

Sq+X X I -» K. If we take c': t3*+2 ^ £ as the union of c and aa, so that ax' = 3c',

then T(c', y) = T(c + aa, y) = T(c, y) + @(a)T(a, y). Defining

{u,v}=-^-j-Tic,y)ET0/T

we see that {u, v} is independent of the choice of c and x.

Suppose now that ß E A is such that 0(/3) ¥= 0 and ßv — 0. Then ßy — dd for

some d: Bq+2 -» AT, and we can form F(x, J). As in [Kl], T(x, d) = T(d, x), and so

is independent of the choice of y and d.

Lemma 1.5. Let c, d: Bq+2 -+ int K be maps with dc = c\ dBq+2, dd = d\ dBq+2

such that Im 3c Pi Imdd = 0. Then /(3c, d) = I(c, dd), provided q > 4.

Proof. The dimension of Im(dd) is at most q + I, and so k — lm(dd) is

(q — l)-connected. Thus by Irwin's Theorem we may homotop 3c in k — lm(dd) to

be an embedding, and this extends to a homotopy of c. The same procedure then

applies with c and d interchanged, and so we may assume that 3c, dd are disjoint

embeddings. By general position we may assume that dim(Im3c n Im d) < 1,

dim(Imc n Im3ii) < 1, and that the map c U d: Bq+2 U Bq+2 -* K has no triple

points. In particular, the last requirement implies that the self-intersections of Im c

do not meet Im d, and vice-versa.

By engulfing, there exist collapsible sets CX,DX C Sq+ ' = dBq+2 such that

(3c)_1(Im3cnimí/) CC,,     dimC,<2,

(dd)~\lmcr\ Imdd) C Dx,    dimF»,<2.

Let S(f) denote the singular set of the map /. By general position we can arrange

that dim S(c U d) < 2, and so by engulfing there exist C, D C Bq+2 such that

Sic) Uc-Xilmcnimd) C C\CX = C !1 Sq+X,       dimC<3,

Sid) U ¿/-'(Imcn Imd) C D\DX = D n Sq+X,    dim D < 3.
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Furthermore, there exists a collapsible E C Int K such that c(C)U d(D) C E,

dim E < 4,

dim(F D c(Bq+2 - C)))
)     *, /J < 4 + 9 + 2 - (2q + 2) = 4 - q < 0.

dimiE n diBq+2 - D)) j

Since C is collapsible and dim Bq+2 - dimC > q - 1 > 3, Bq+2\C; and as

S(c) C C, this means that Imc\c(C). Similarly Im d\d(D). Since Imc D Im d C

c(C) n c(Z>), we see that

ImcU ImdU E\c(C) U c(D) U F = £\point.

Thus a regular neighbourhood of Imc U Im d U E is a ball, B2q+2. I(dc, d) is

given by an element of ^(S*-1) which under the suspension homomorphism goes to

the unking element of 3c and dd in B2q+2, L(dc, 3d) E trq+x(Sq). A similar

statement is true of I(c, dd), and so the two terms are equal as members of mx.    D

Corollary 1.6. F(3c, d) = T(c, dd).    D

Returning to the definition of {u, v}, we have

= êàf) ■ r(8c'',) = eijs)  r(,,Ji-d) = efe ' rU dy

This shows that (m, v} is independent of the choice of x and of the choice of y,

and of a and /3, and of c and </; and hence is well defined.

Proposition 1.7. { ,} is Hermitian. That is,

{au + ßv,w} =@ia){u,w} + 0(/3){u, w},

{u,av + ßw} =&(ä){u,v} +@(ß){u,w},

{u, v} =  {v, u} ,

for ail u, v, w E tr +x(k) and all a, ß E A.

Proof. The first two assertions follow easily from the definition (compare

[Kl, Proposition 3.1]). The last assertion is proved by

1 „, x 1 ^7-r 1
{u'v)=-^)-T{c'y) = ö(ä)'T{y,c) = W)'T{y'c) = {v'u}- D

Lemma 1.8. For all u E trq+,(K ) and all v E Hq(K), we have

{«,«(«)} = 0<Vi(«)>°>-
Proof. Let x: Sq+X =♦ K represent u, and let c: Bq+2 -* K be such that 3c = ax,

for some a G A with 0(a) ^ 0. Let v: Sq+ ' ■* K represent v, with Im x D Im y = 0.

We may assume that Imc n Im v consists of isolated points. Since w(v) is repre-

sented by yÇ, the result follows from the construction in [Kl, Proposition 3.2],    D
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Corollary 1.9. {,} vanishes on Im co X Imco.

Proof. Im a = ker hq+ x.    D

Lemma 1.10. kerw = 2Hq(K).

Proof. If x E 2irq(K), then x - 2y and s(x) = s(2y) = 2s(y) = 2yÇ = 0. Thus

kerwD 2Hq(K).

Conversely, suppose that v E ker w. Then

e(hq+xiu), v)= {u, «(o)} = 0,    for all u G vq+x{K).

Thus (hq+x(u), v)E 2AS/A for all u E nq+x(k). Since hq+x is an epimorphism,

and (, ) is nonsingular, this implies that v E 2Hq(K), and so ker w C 2Hq(K).    □

Now we define Tlq+X(k) = irq+x(k)/2irq+x(k), with quotient map tj, so that

Tlq+X(k) is a T-torsion module. Moreover, { ,} induces a pairing

[,]:nq+l(K)XTLq+xik)^T0/T,

since {,} vanishes on 2trq+xiK) X irq+x(K).

Define %¡(K) = Hi(K)/2Hi(k) for i = q, q + 1, and let />, denote the quotient

map in each case. We define a map £2: OC^tV) -* Uq+X(k) as follows. Given

üG9C?(tV), there exists vxEHq(K) with /^(u,) = v. Let ß(t>) = 7]co(t;,). By

Lemma 1.10, Q is well defined.

Next we define a map H: TLq+x(k)-* %q+x(K). Given u G n?+1(/£), there

exists ux EiTq+x(K) with ij(ux) — u. Define H(u) = pq+xhq+x(ux). This is well

defined because hq+x(2trq+x(k)) C 2Hq+x(k) — kerpq+x. Clearly H is an epimor-

phism.

Lemma 1.11. ker H = Imß.

Proof. H(u) = 0 ^pq+ihq+x(ux) = 0 where u, G trq+x(k) and tj(w,) = w.

^hq+x(ux) = 2hq+xivx),   somevxEmq+xik)    (Lemma 1.1)

=» u, — 2vx E Im to    (Lemma 1.1)

=> «i — 2u, = co(vv)

=>m = T)iux) = t|co(h>) = ß(w).

Therefore ker// C Im fl. Conversely,

« = fi(w) => « = rjo^w,),    where/?9(tv,) = w,

=»H(«)=p<f+iA,+ i«(w1) = 0    (Lemma 1.1).

Therefore Im Q C ker H.    D

For* G DC,+ 1(Jf ),^ G %qiK), define

«<x,y>=c/«M,t;»

where pq+ x(u) = x, pq(v) - y. Clearly this pairing is well defined.
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Proposition 1.12. Forallu G Uq+X(k)andallv G %q(K),

[u,Qiv)]=\Hiu),v).

Proof. Follows easily from Lemma 1.8.    D

L"MMA 1.13. *(, ) is nonsingular.

Proof. Let x E %q+x(K), andpq+x(u) = x. Then

\x, v>=0    tor ally E%q(K)

=*6i(u,v)) = 0   iorallvEHq(k)

=>(u,v)E2As/A    iorallvEHqik)

^>u E 2Hq( K )   since (, ) is nonsingular

^*=tVi(") = °-

Now letfEHÖm(%q(k), T0/T), and define/, EHÖm(Hq(K), T0/T) by fx(v) =
f(pq(v)) for all v E Hq(K). The short exact sequence

e
ker6^As/A +> T0/r

gives rise to an exact sequence

ïfom"(//?(/Î ), As/A) -^Ho^(Hq(k), yr) ->Ëxt (//,,(£),kerö).

As we remarked above, kerf? = 2A5/A, and of course multiplication by 2 yields

an   isomorphism   AS/A^2AS/A.   By   [K2, Lemma   2.3],   it   follows   that

Ext(Hq(K),ker6) = 0, since Hq(K) has a presentation by a square matrix

[Ke, Lemma 11.12]. Thus there exists/2 G Wom(Hq(k), As/A) such that 6f2 = /,.

Since (, ) is nonsingular, there exists u E Hq+ X(K) such that (u, v) — f2(v) for all

v £ Hq(K). Thus 0{u, v)= 0f2(v) = fx(v) = f(pq(v)), and so setting x =pq+x(u),

y = Pq(v), we have \x, y) = f(y) for ally E %q(K)._       _

We have thus shown that the adjoint map %q+x(k) -> Hom(% (k), T0/T) is an

isomorphism. The proof that the adjoint of *(, )* is an isomorphism is similar.    D

Lemma 1.14. Í2 is a monomorphism.

Proof. Suppose that ß(w) = 0. Then Tt]u(ux) — 0, where ux E H (K) and u =

pq(ux). Soo)(ux) E ker 7j = 2trq+x(K). But Im to C 2-torsion of irq+x(k ) = Z-torsion

of wq+x(k); see the proof of Corollary 1.2; and so Imw n 2irq+x(K) = {0}. Thus

u>(ux) = 0, and by Lemma 1.10, w, G 2Hq(K) = ker/^, so u = pq(ux) = 0.    D

Corollary 1.15. The sequence

o^%q(k)^\Tq+x(k)H-^%q+x(k)^o

is exact.

Proof. Lemmas 1.11 and 1.14.    D
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Proposition 1.16. The pairing [,] is nonsingular and Hermitian.

Proof. It is Hermitian because { , } is Hermitian.

Suppose that [u, v] = 0 for all v ETLq+x(K). Then by Proposition 1.12,

"(H(u),x)= 0 for all x E %q(K), and so by Lemma 1.13 H(u) = 0. Thus by

Lemma 1.11, u = Sl(u') for some «' G % (K), and by Proposition 1.12,

e(Hiv),u') = [v,Q(u')] = [u,v] =0   forallcen,+ 1(¿).

So by Lemma 1.13, u' — 0 since H is an epimorphism, and hence u = 0. The adjoint

of [, ] is thus a monomorphism.

Let /GHom(n?+1(.rí ), T0/r). Since *(,) is nonsingular, there exists u' E

Uq+X(K) such that [«', Q( v)] =\H(u'), y) = /(Q(jQ) for ally E %q(K).

Set g(v) = [«', v] -f(v), so that g GHom(na+1(JC), ro/r). Then g(Q(y)) = 0

for all y E %q(K), and so g induces an element gx EHom(%q+x(K), T0/T) such

that gx(H(v)) = g(v) for all v E Tlq+X(k). Since *(,) is nonsingular, there exists

x E %q(K) such that

\x,y)* = \y,x)=gx(y)

for ally G %?+!(/£). Then

[Q(x), v] = [v,Qix)] = e(H(v),x) = gx(H(v)) = g(„),

and so setting u = u' — ñ(x) we have [u, v] =/(«) for all v E Uq+X(K). The

adjoint of [, ] is therefore an isomorphism.    D

2. The main theorems. Before stating the main theorems of the paper, we review

some of the results of the previous section. Following Levine [L], we say that a

A-module is of type K if it is finitely generated and multiplication by t — 1 induces

an automorphism.

An F-form (S, Hq, pq, [, ], e( , » consists of the following.

(i) A short exact sequence of T-modules

a H
&:%q^Uq+x -** %q+x.

(ii) A nonsingular Hermitian form

[J:n,+,xn,+1.r0/r.

(iii) A nonsingular Hermitian form

<, > : %q+ xX%q^ T0/T

related to [, ] by

[u,ü(v)] ='(Hiu),v)   forallweni+1,oEDC?.

(iv) A Z-torsion-free A-module Hq of type K.

(v) A short exact sequence of A-modules

2Hq-H,-L%9,

where %q is regarded as a A-module via the ring homomorphism 0: A -» T.
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Two F-forms (S, Hq, pq,[,],"<,» and (&', H'q, p'q,[,\,e{,)') are isometric if

there exist isomorphisms a, a, ß, y such that

S:      Kq      i     nç+1       1      %q+x

(i) |ic" U^ U<Y

&:      %'q      ~     U'q+X       1      %'q+x

commutes;

(ii) [/3(h), j8(t>)]' = [u, v] for ail m, t; G 11,+,;

(in) e(u, v)=e(y(u), a(v))' for ail u G %q+x, v G 5Cg;

#«     -»     ft,

(iv) |ir \ua

pi
H'<     -    %',

commutes.

If (i) and (iv) hold, we say that the two F-forms are isomorphic.

Let &(k) denote the short exact sequence of the last section: %q(K)^>

Tlq+X(K) -►» %q+x(K). Similarly, let [,]g denote the Hermitian pairing andpq(K)

the quotient map Hq(K) -*> %q(K). Then the work of the last section proves the

following result.

Theorem 2.1. A Z-torsion-free simple 2q-knot, q > 5, with exterior K, gives rise to

an F-form (&(K), Hq(K), pq(K), [, ]¿,\, >f ).

The next two results will be established in subsequent sections.

Theorem 2.2. For q 3* 6, two Z-torsion-free simple 2q-knots with isometric F-forms

are ambient isotopic.

Theorem 2.3. Let (&, Hq, pq, [,],*(,)) be an F-form. Then for q > 5, there exists a

Z-torsion-free simple 2q-knot with F-form (&(k), Hq(K), pq(K),[ , ]/ô,*(,)#)

isometric to the given one.

3. Algebra. An augmented F-form (S, 6Ù, [,],(, » consists of the following,

(i) A short exact sequence of T-modules

ß H

&:%q^->TLq+x -» %q+x.

(ii) Two Z-torsion-free A-modules of type K, Hq and Hq+X, together with a

nonsingular Hermitian pairing

< ,  ):Hq+xXHq^As/A.
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(iii) A commutative diagram ty of A-modules

q+\

(3.1)
2H^ H<

ÏHq 2irq+x

ft9    ~   n9+1     -    3c?+1

where the modules in the bottom row are regarded as A-modules via the ring

homomorphism 0: A -» T. Each row and column is exact,

(iv) A nonsingular Hermitian pairing of T-modules

[ , ]:n,+1xn,+1^r0/r

which is related to ( , > by

[«,a(»)] =\Hiu),v)    forall«en,+ 1,i3GDC,,

where

<, > : %q+1 X %q -» T0/T

is defined by

\pq+Á*),Pqiy))=ei(x,y)).

Two augmented F-forms A, A' are isomorphic if there exist isomorphisms a, b, c, a,

ß, y, making the following diagram commute.

hq+i

If in addition

(cix),aiy)y = (x,y)    for all x E Hq+X,y G Hq,

[ß(u),ßiv)]'= [u,v]    forallKft>en,+ I,

then A and A' are isometric.
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From the definitions, it is clear that each augmented F-form has associated with it

an F-form, and that isometric (isomorphic) augmented F-forms have associated with

them isometric (isomorphic) F-forms.

Proposition 3.1. Let B, B' be F-forms associated with augmented F-forms A, A'

respectively. If B is isometric (isomorphic) to B', then A is isometric (isomorphic) to A'.

Proposition 3.2. Let B be an F-form. Then there exists an augmented F-form A

such that B is associated with A.

The rest of this section is devoted to the proof of these two propositions.

We begin by considering an F-form B — (S, Hq, pq, [,]/(, ». By [Ma, p. 90], we

can regard S as a short exact sequence of A-modules, via the ring homomorphism 0:

A -> T. Let Hq+X =Hom(Hq, As/A), and let (,>: Hq+X XHq-> As/A be the

associated Hermitian form. By [Ke, Lemma 11.12], Hq is presented by a square

nonsingular matrix, and it follows from results of Blanchfield [B, p. 351] that the

pairing (, ) is nonsingular. Since *(, > is nonsingular, there is a uniquely defined

homomorphism/?a+I: Hq+X -* %q+x such that

9</V,("),F>)>=0««,t;»   forallMG//a+,,t;G//a.

Lemma 3.1. pq+x is an epimorphism and ker pq+x = 2Hq+x.

Proof. Let w E %q+x, and define /GHom(Hq, T0/T) by f(v) = e(w, pq(v)).

The short exact sequence of A-modules 2AS/A »* As/A -»-> e T0/T induces an

exact sequence

-Hor^(//?,As/A)-Ho^(//a,r0/r)-ËxT(//a,kerc?)- .

By [K2,Lemma 2.3], Ext(Hq,kerd) = 0, since Z-torsion-free A-modules of type K

can be presented by square matrices. Thus there is an element g E Hom(//a, As/A)

such that #*(g)=/- Since (, ) is nonsingular, there exists u E Hq+X such that

(u, v) — g(v) for all v E Hq, and so

"(Pq+tiu), Pqiv))= 6((u, v)) = eigiv)) =fiv) = \w, pq(v))

for all v E Hq. Since pq is an epimorphim and e(, ) is nonsingular, we have

Pq+\iu) — w> and s°Pq+\ is zn epimorphism.

It is clear that 2Hq+x C kerpq+x, because 0(2) = 0. Suppose that pq+xiu) = 0.

Then for all v E Hq, 6((u, v)) = e(pq+x(u), pq(v))= 0, and so (u, v)E ker 6 =

2AS/A. If a, b E As and 2a = 2b (mod A), then 2(a - b) - c E A. But a =

f(t)/g(t), b = h(t)/k(t) where f,g,h,kEA and g(l) = ±1 = k(l). So 2\g(t)
and 2} k(t), which means that 2 | c, and so a — b E A. Therefore a = b (mod A).

Thus (u,v)/2 is well defined in As/A and since (,) is nonsingular, there exists

u' G Hq+X with (u', v)= (u, v)/2 for all v E Hq, and hence u = 2u' E 2Hq+x.

D

Assume that B and B' are isometric F-forms; then we can define an isomorphism

c: Hq+X -> H'q+X by the equation (c(u), a(v))' = (u, v); this follows from the fact

that a is an isomorphism and ( , >, (, )' are nonsingular.
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Lemma 3.2. The following diagram commutes:

c

Hq+t 3* Hq+\

{Pq+\ { Pq+ 1

T

cir art

Proof. For every u E Hq+X, v E Hq, we have

\p'q+Au), p'qa(v)y = 6((c{u), aiv)Y) = d{(u, v))

= e(Pq+A»),Pq(v))="(yPq+A»),«Pq(")y

= e(ypq+Au),p'qaiv)y

since apq = p'qa. As p'qa is an epimorphism and '(, )' is nonsingular, this imphes that

p'q+\c-ypq+v a
The short exact sequence S of A-modules and the epimorphism pq+x:

Hq+X -*► %q+l yield a commutative diagram

Vi
E:     %q     >->     7rq+x        -**      Hq+X

II ¿' ±/v>
n tí

S:    DCa     >-»     na+1      -**     3Ca+1

where F is a short exact sequence and, in the notation of [Ma], E — S/? +1. An easy

diagram chase shows that tj is surjective.

Lemma 3.3. ker 17 = 2ir +x.

Proof. If x E nq+x, then r)(2x) = 2r¡(x) = 0, since na+1 can be regarded as a

T-module. Thus 27ra+1 C ker tj. Conversely, suppose x E ker tj. Then pq+xhq+x(x)

= Ht)(x) = 0, and by Lemma 3.1, hq+x(x) E 2Hq+x. Since hq+x is onto, there

wexists y G 7ra+1 such that hq+x(x) = 2hq+x(y), and so x — 2y E kerhq+x = Im

Thus there exists u E % such that x — 2y = ux(u). Applying tj, we obtain 0 =

7}(x) — 2r¡(y) = Q(m), and since ß is a monomorphism, u = 0. Therefore x = 2y,

and so ker tj C 2irq+,.    □

We say that two short exact sequences E and E' are isomorphic if there is a

commutative diagram

E:     A A     B -^     C

lit7 II? g Hi*

£':    yi'        ¿U     B' ^     C

and write this as E = E'.
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Lemma  3.4.  Let  E = &pq+x,  E'= &'p'q+x,   where  (&, Hq, pq,[,]/<,»  and

(&', H'q, p'q, [, ]'/(, )') are isometric F-forms. Then E s E'.

Proof. We have a commutative diagram:

&':      %'q
Ü'

H

H'

% q+t

n:«7+1 ft0 +

In the notation of [Ma] this translates into a& = S'y, andso aE = a&p +x =

&'yPq+t — &'p'q+\c = E'c> using the fact that ypq+x — p'q+\C Thus there is a com-

mutative diagram

E:     %

£':    %'q

"q+\

lb

"q+\

',+ 1

fc',+ 1

//
9+1

ie

^9+1

as required.    D

Lemma 3.5. The isomorphism b can be chosen so that the diagram

q+\

commutes.

Proof. The diagram commutes if we can choose b so that v¡b — ßt\. First note

that H'-q'b = p'q+xh'q+xb = p'q+xchq+x = ypq+xhq+x = yHi) = H'ßt], and so

H'(t)'b - /3tj) = 0. Thus there is a map A: 77a+1 -♦ %'q such that ti'\ = -q'b - ß-q.

Now set bx= b — co'A; then t}'bx — /3r/ = i\'b — rj'w',\ — ßt\ = i\'b — ti'\ — ßi) — 0.

It remains to check that when bx is substituted for b, the other parts of the diagram

above still commute: the five-lemma will then imply that bx is an isomorphism.
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First note that

ft'q+tb\ = h'q+tb - h'q+iu'x\ = h'q+xb = chq+x.

In particular, bx(kerhq+x) C kerh'q+x, and so Im^w,) C Im(w',a) = Imw',. Since

tj'w', = ß', tj' restricted to Imuj is a monomorphism. But Z>,w, — w',a = bxoix — bux,

so lm(bxux — bux) C Imw',. Moreover, i)'boix = r¡'u'xa = ß'a = /3ß = ßt]ux —

r/'6,w,, so r\'(bxoix — bux) — 0. Since 71' | Im w', is a monomorphism, we have bxux —

bux = w',a.    D

Define w: Hq -» 7ra+, by w = w,/>a; since w, is a monomorphism, kerw = ker pq

= 2Hq. Starting from an F-form, we have now constructed a commutative diagram

<$) as in (3.1), in which the rows and columns are exact.

The A-module Hq has a presentation by a square matrix M say [Ke, Lemma 11.12],

and so by [B, §4], Hq+, = Hom(//a, As/A) has a presentation by M*, and so H +,

is a Z-torsion-free A-module of type K. We have therefore proved Proposition 3.2

and Proposition 3.1.

Finally we define a pairing

{ , }: V-i xVi -*ro/r

by

{x,y} =h(x),r,(y)].

Lemma 3.6. The isomorphism b is an isometry of { ,}.

PROOF. {b(x), b(y)}' = U'b(x), r,'b(y)]' = [ßr,(x), ß^y)]' = [v(x), r,(y)] =

{x,y}.    □

Lemma 3.7. For all x E trq+x, v E H , we have

{x,o>(v)}=0((hq+x(u),v)).

Proof,    {x, w(u)} = [-n(x), t)w(ü)] = [tj(x), tjw,^(ü)] = [th», Qpq(v)] =

e(HV(x), pq(v)) = \Pq+Xhq+ x(x), pq(v)) = 6((hq+ x(x), v)).    D

4. Matrix presentations. We begin this section by considering a sequence of

A-modules

(4.1) A"^Am+n±Am ^ Hq

which is exact at Am, with dxd2 = 0, and the short exact sequence

(4.2) A">^kerdx -— Hq+X.

We assume that Hq and Hq+X are A-torsion-modules, and shall make further

assumptions later in the section.

Lemma 4.1. kerdx is protective.

Proof. The sequence

kerd,^Am+n^Am -* H.
•1
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is exact. Now A = Z[t]s where S = {/': 0 < i < oo}, and so by [N, §9.2, Theorem 8]

we have gl.dim A < gl.dimZ[i] = 2. Therefore ker dx is projective.    D

Lemma 4.2. Every finitely-generated projective A-module is stably-free.

Proof. By [Ba,p. 636], K0(A) = KQ(Z[t, r1]) = KQ(Z), and by [M,p. 7], K0(Z) s

Z, since Z is a principal ideal domain. Thus every finitely-generated projective

A-module is stably-free.    D

Corollary 4.3. After stabilising, we may assume that ker dx is free in the sequences

(4.1) and (4.2).

1 d2

Proof. By adding A'->Ar to A"=—> A for sufficiently large r we obtain a

sequence

(4.1') A"'>^ Am+"'-^ Am -~ Hq

where n' = n + r, d'2 = d2 ® I, ker d'x = ker dx® Ar = Am+r. This sequence is exact

except at Am+"', and (4.2) is replaced by

(4.2') A"'^kerd'x^ Hq+X.    D

From now on we assume that Hq and Hq+, are Z-torsion-free A-modules of type

K.

Lemma 4.4. After stabilising, we may assume that ker dx is a free direct summand of

Proof. By the previous result, we may take ker dx to be free. By [Ke, Lemma

11.12], there is a short exact sequence

A'=_*Af -h. Hq

and so the homological dimension of Hq is at most 1. Alternatively, see [L, Proposi-

tion 3.5]. But we have an exact sequence

(4.3) Am+ykerí7, ^ Am — Hq,

and so Am+"/kerdx is projective. By Lemma 4.2, it is therefore stably-free. So there

is an exact sequence

keri7,=^Am+" -l. Am+"/ker¿,

with the first two modules free and the third stably-free.
1 d\

Adding A* -* A* to Am+" ->Am keeps the original sequence (4.1) exact at Am, and

for sufficiently large k makes Am+"/kerdx free. The sequence (4.2) is not affected,

and (4.3) becomes

T©1

ker¿,^Am+"© A* -** (Am+n/kerdx)®Ak
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which is a short exact sequence of free A-modules, and hence is split. This proves the

result.    D

Corollary 4.5. Writing Am+" = Am © A", we can arrange that the sequence (4.1)

decomposes into the short exact sequences

A"=^A" -» Hq+U   Am=-ÍAm -— Hq.    □

Let A be an n X n matrix over A. We shall be concerned with the following

operations on ,4.

(i) Multiply a row (or column) of A by ±t'.

(ii) Permute the rows (or columns) of A.

(iii) Add one row (or column) to another row (or column).

(iv) Replaced by the (tj + 1) X (n + 1) matrix (¿ ?).

(v) The inverse of (iv).

An 77 X 77 matrix N over A is called elementary if either (a) all the diagonal entries

are 1, except for one which is ±t', and all off-diagonal entries are 0; or (b) all the

diagonal entries are 1 and there is just one nonzero off-diagonal entry, which is 1.

Note that an elementary matrix N is invertible over A, for det N = ±t' which is a

unit in A.

Lemma 4.6. Let N be an invertible matrix over A. Then (% ?) can be written as a

product of elementary matrices, for some identity matrix I.

Proof. A is the group ring of the infinite cyclic group (i : ), of which the

Whitehead group Wh((i: )) is trivial. The result follows at once.    D

Elementary matrices are of interest here because they correspond to the operations

(i) and (iii) listed above. For example, if tV is an elementary matrix of type (b), then

A\-*AN corresponds to a column operation of type (iii). The matrix operation (ii) is

redundant, being a consequence of operations (i) and (iii), but it is convenient in

practice.

Two A-matrices A and B are equivalent (A ~ B) if one can pass from A to B by a

finite sequence of operations (i)-(v). Clearly ~ is an equivalence relation.

The matrix A presents the A-module M if there is an exact sequence

<t>
(4.4) Am^A" -+* M

where the map a is represented by A with respect to some bases xx,... ,x„ of A" and

z,.zm of A"1; that is,

n

<x-iz,) - 2 AuXj,        Ki<m.
J=i

Lemma 4.7. Let the matrix A present the A-module M, and the matrix B present the

A-module N. Assume that both matrices are square, with nonzero determinants. Then

M^N ~A~B.
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Proof. The operations (i)-(iii) on A correspond to changes of basis in the free

modules of (4.4), whilst (iv) corresponds to replacing (4.4) by

a® l (O)
Am © A - Am © A -* M.

Thus A ~B^M sJV.

Conversely, suppose that /: M -> N is an isomorphism. We have short exact

sequences

a        * ß       *

F^G -m. M,       H^>L -** N

with F = G = Am, H s L = A". The map a is a monomorphism because det A i= 0,

and similarly for ß. Let xx,...,xm be the basis of G and xm+x,.. .,xm+n the basis of

L. By moves of type (iv), these exact sequences may be replaced by

„as i (*.0)
F®L       -»       G©L       -+»      M,

iœ/3 (°. "f1)

G©//      ->      C©L      ^*       V

where G © L has basis x,,... ,xm+n. To save notation, we write these as

ß "A
//     >_     £       -^       a

where F = G = H = L = Am+m; xx,... ,xm+n is the basis of G; yx,... ,ym+n is the

basis of L, and

</>x, = 0,       m < i *í m + n,

\¡/y¡ = 0,       7 < i < m.

As tfV is surjective, and i^y, = 0, there exist /cm+,,... ,km+n G A such that

/<f>*i = ^i + fcm+1</'ym+1 + • • ■ + £„,+„>/%,+„.

Replacing y, by y, + fcm+,ym+, + ■ ■ • +km+nym+n in the basis of L, we may

arrange that/<í>x, = t//y,. Continuing in this way, we change basis in L so that

/<#>x, — ̂ y¡,       1 < i < m.

Similarly, by changing basis in G we may arrange that

/c/>x. = \l>y¡,       m < i < m + n,

and hence f4>x¡ = \by¡, 1 < i < m + n.

Note that this is achieved by means of column operations of type (iii) on A and B.

Let g: G -» L be the A-module isomorphism defined by gx, = y(. for 1 < ¿; < m + 77.

Then /</> = \pg, and in particular g restricts to an isomorphism from ker <t> = Im a

onto ker ^ = Im ß. Thus g determines a unique isomorphism h such that the

following diagram commutes.
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F       A        G -~        Ai

U<* |i(8 Uc1

ß ^
// - L -»        A

Changing basis in H so that (basis of H) = h (basis of F) gives an invertible

matrix E such that A — EB. By Lemma 4.6 we can, after operations of type (iv) if

necessary, assume that £ is a product of elementary matrices, and so A and B are

connected by a sequence of operations of types (i), (iii), (iv) and (v). Thus A ~ B.

D

5. Isotopy. In this section, Q is a compact manifold of dimension 2q + I, with

dQ ~ M X Sx. Let r be an integer satisfying 3q < 3r < 4q — 3.

Let /: Br X B2q~r -» Q be an embedding which takes 35' X 52<7_r into M-M

X 0 C 90, for some fixed point 0 G S\ and the rest of Br X B2q~r into int Q. Such

an embedding is called permissible. An ambient isotopy of / is permissible if it is an

isotopy through permissible embeddings. Let M X Bx C dQ; then a permissible

embedding/extends to an embedding/': Br X B2q~T X Bx -* g such that Im/' is

a regular neighbourhood of Im frei f(Br X 352?_r) meeting 3g regularly, with

f'\dBrXB2q-rXBx: dBrX B2q~r X Bx -» MX 51 being (/| 35' X 52<7_r) X

identity. A permissible ambient isotopy of /extends to a permissible ambient isotopy

of/'; that is, an isotopy of/' through embeddings of the same form as/'.

Let /" = /' | Br X 0 X {0,1); for convenience we write this as /": Br X 3/ -> Q.

Let g, g', g" be similarly defined, with g — fon the subset

(5rX 0) U (35r X B2q~r).

Then g' = /' on the subset (Br X 0 X 0) U (35r X 52« r X 51), and we can take

Im g' = Im /' by the uniqueness of regular neighbourhoods. A permissible ambient

isotopy F" of/" to g" is one which

(i) restricts to a permissible ambient isotopy of/" | Br X 0 to g" | 5r X 0;

(ii) for every t E I, haspF't'(x, 1) = F"(x,0) where/?: M X Bx -» M X 0 is projec-

tion along fi1;

(iii) F"(Br X 1 X /) is contained in a regular neighbourhood of F"(Br X 0 X /)

which meets Q X 3/ in Im /' U Im g', and meets d(Q X I) regularly.

In practice we shall take the regular neighbourhood in (iii) to be the trace of an

isotopy of Im /' to Im g'; this is possible by the uniqueness of regular neighbour-

hoods up to ambient isotopy.

A permissible homotopy F": Br X 9/ X / -» Q X I is one in which the conditions

(i), (ii) and (iii) hold; so that F" is an isotopy on Br X 0 and on 95r X 9/.

Let 77s denote the stable i-stem of the sphere, so that irs = 7rn+s(S") for large n.

Lemma 5.1. The permissible homotopy F" of f" to g" is homotopic (rel3) to a

permissible isotopy of f" to g" if and only if an obstruction d(f", g"; F") E 7r2('~<?)

vanishes.
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Proof. Let N be the regular neighbourhood of F"(Br X 0 X I)inQX I referred

to in (iii). Then N is a (2q + 2)-ball since F" | Br X 0 X I is an embedding, and

F" | Br X 1 X /: Br X 1 X / -» N is an embedding on the boundary by (ii). This is

homo topic (rel 9) to a proper embedding, and so we have a proper map G:

Br X 3/ X / -» N which is an embedding on each component. The results of [Kl, §2]

yield an obstruction in 7r2(r ?) to homo toping G (rel 3) to an embedding, and this

obstruction we denote by d(f", g"; F"). (Strictly speaking, the obstruction is a

matrix

((-ir+i o)'

and we are taking d(f", g"; F") — ±x. The sign will not be important here, and we

shall not trouble to keep track of it.)

If d(f",g",F") = 0, then as in [Kl,§2] we may homotop G (rel 3) to an

embedding. Since the codimension is 2q + 2 — (r + 1) = 2q — r + 1 > 2(r — q) +

6 > 3, Hudson's theorems on "concordance implies isotopy" enable us to homotop

G (rel 3) to a permissible isotopy. The converse is implied by [Kl, §2].    D

Lemma 5.2. If d(f", g"; F") = 0, then f is permissibly ambient isotopic to g.

Proof. By the previous lemma, we may take F" to be a permissible ambient

isotopy. Since

X=cl(3Vn (Int(gX/)))

is a deformation retract of N - F"(Br X 0 X I), we can homotop F"\BrX 1 X /

(rel3) to a map into X. Now X = S2q~r X Br+X, and so by Irwin's Theorem this

map is homotopic (rel 3) to an embedding of Br X 1 X / in X; the inequalities to

check are

2(r + I) - (2q + 1) + I < 2q - r - I,

that is 3r < 4q - 3, and 2q + I - (r + l)> 3, that is 2q - r => 3, both of which

are satisfied. Using Hudson's results on "concordance implies isotopy" again, this

embedding can be moved to a permissible isotopy, so we can assume that F" keeps

Br X 1 in the boundary of a regular neighbourhood of Br X 0. By the Alexander

trick, F" extends to an isotopy F taking /' | Br X 0 X [0,1] to g' | Br X 0 X [0,1].

Since f'(Br X B2q r X [0,1]) is a regular neighbourhood of f'(Br X 0 X [0,1])

rel 3/'(5r X 0 X [0,1]), and so is g'(Br X B2q r X [0,1]), there is an ambient iso-

topy F extending F' and taking the one set onto the other. The Alexander trick then

shows that /' | Br X B2q~r X [0,1] is ambient isotopic to g'\Br X B2q~r X [0,1],

and hence that / is permissibly ambient isotopic to g.    D

Lemma 5.3. Let f, g: Br X B2q~r -> Q be permissible embeddings which agree on

(Br X 0) U (35' X B2q~r). Assume that there is a ball B2q~r+X properly embedded in

Q, with dB2q~r+x EMXOEdQ, such that 352?"r+1 meets f(dBr X 0) transversely

in M in a single point, and that this is the only point of intersection of B2q~r+X and

f(Br). Then there is a permissible ambient isotopy taking f to g.
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Proof. With the notation above, let F": Br X 3/ X / -» Q X I be a permissible

homotopy of/" to g", and let v — d(f", g"; F"). We shall alter F" to a permissible

homotopy G" such that <i(/", g"; G") = 0.

Let F - F" I 5r X 0 X /. Let k: B2q~r+ ' -» g X \ be the inclusion map, and let

x G /c(352?"r+l) n F(35r X 0 X \). We can assume that F" is the constant homo-

topy on [0, |] X /, and hence that x = Im k n Im F. Let F = 52<?+2 be a regular

neighbourhoood of x in QX I, meeting dQ X I, \mk and Im F regularly, and

missing Q X 3/. Let P - T D (M X 0 X /) C T D (3g X /), which we may assume

to be a 2<7-ball. Then F|F-'(3F) is an embedding of Sr~' in 35 = S2q_1 and

k\k~x(dP) is an embedding of s2q~r~x in 35. The linking number of these two

embeddings is ± 1, because of the single transverse intersection point x in 5.

Let u E tTr_x(S2q~r~x) correspond to v E Tr2(r~q), and let

B2q-r+l  =Cl[52<7-'->-/c-l(r)].

Note that k~x(dP) is a (2q - r - l)-sphere in 352?_r+1. Let h: Sr~x -> 35 n Im k

ss s2q~r~x represent u. By suspending, extend h to h: Sr -* k(dB2q~r+x), and then

extend to h: Br+X -* k(B2q~r+x) by coning. Note that h~\dT) is an /--ball in 95r+1.

Consider h \ Sr~ ' as a map into a regular neighbourhood of 95 n Im k in 95; this

is homeomorphic to S2q~r~ ' X Br. By Irwin's Theorem, this map is homotopic to an

embedding; the inequalities to check are 2(r — 1) — (2q — 1) + 1 < 2q — r — 2,

that is 3r < 4q — 2, and 2q — 1 — (r — 1) > 3, that is 2q — r > 3. By suspension

and coning we can extend this to a homotopy which takes h: Br+ ' -» Q X I — int T

to an embedding. We now have disjoint embeddings F|F~'(95): Sr~x -> dP =

S2q~x, and h\Sr~x: Sr~x^dP, and the linking element of these is ±u E

■nr_x(S2q~r~x). This embedding of Sr~x U Sr~x in 95 extends to an embedding a of

Sr~ ' X / in 95, for we can certainly find an embedding a of Sr~ ' X / in 95 such

that a(Sr~x X O) and a(Sr_1 X 1) have linking element ±u, and in these dimen-

sions homotopy implies isotopy (the inequalities needed are (2q — r — 1) — (r — 1)

> 3, that is 2(<7 - r) » 3, 2(r - 1) - (2q - r - 1) + 1 < r - 2, that is 2q - r 3= 2,

and 2(r — 1) — (2q — r — 1) + 2 *£ 2c/ — r — 2, that is 3r < 4<7 — 3). Thus we have

an embedding of

Sr = Br U (5r~' X /) U Br

into 35 given by a, the restriction of h to /î"'(3r) s 5r and the restriction of F to

F"'(3F) s Br. By coning, this extends to an embedding of Br+X into T, and hence

we have an embedding G of (Br X I)#dBr+x into QX I, where #8 denotes the

boundary connected sum.

Now (Br X I)#dBr+x =BrXI, and G\ dBr X I: 35' X / -* M X I is a concor-

dance of/| 35r X 0 and g\ dBr X 0. Keeping the ends fixed, we can by Hudson's

results straighten this up to be an isotopy. By a collaring argument, we obtain a

concordance G: 5r X / -» Q X I which restricts to an isotopy of 35r X / -» M X I.

Again using Hudson's results, we can straighten G up so that it is an isotopy of

/|5rX0tog|5rX0 without disturbing the boundary.

The map it: B2q~r+X -> Q X { extends to an embedding k: B2q~r+X X Bx -> Q

X {- such that k\dB2q~r+x X Bx:  dB2q-r+x X 51 -» M X Bx X {  is of the form
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(k | dB2q~r+x) X identity. We can arrange that k(d(B2q~r+x X 51)) meets Im F in

just two points, one of these being x.

The boundary connected sum operation can be repeated on F" \ Br X 1 X / and

k\B2q~r+x X 1 to yield a permissible homotopy G" from /" to g". From the

remarks above, the set F"(Br X 1 X /) U k(B2q~r+x X 1) meets F"(Br X 0 X /)

U k(B2q~r+x X 0) transversely in a single point. As in the proof of [Kl, Proposition

3.2], it follows that d(f", g"; G") = d(f", g"; F") ± v, and so by choosing the

orientation of k correctly we can ensure that d(f", g"; G") = 0. Lemma 5.2

completes the proof.    D

6. Geometry. Suppose that 1 < r < n, and consider a handle decomposition of S"

with one 0-handle B", k(r- l)-handles hr~x (\<i< k), k r-handles h\ (Ki< k),

and one 7j-handle. Assume that h\ cancels hr~x for each i, and that the «-balls

hr¡~x U hri are pairwise disjoint. Let X= B" U U"=l hr~x. Then dX has a regular

neighbourhood in S" of the form 9XX Bx, and from the handle decomposition

above we obtain a handle decomposition of S" on dX X 51 with k r-handles, k

(n — r + l)-handles, and two 77-handles.

Embed S" in S"+x as the equatorial «-sphere. Then S" has a regular neighbour-

hood of the form S" X Bx, and so SA' has a regular neighbourhood in S"+x of the

form dX X Bx X Bx = dX X B2. Moreover, we obtain a handle decomposition of

5"X5'on9A'X52 with k r-handles, k (n — r + l)-handles and two «-handles;

each handle is of the form (handle oí S" on dX X Bx) X Bx. The attaching tube of

each r-handle may be taken as contained in 3A X -1 X 0 C dX X d(Bx X51), and

the attaching tube of each (« — /•+ l)-handle as contained in dX X 1 X 0.

If 5 = cl[5"+1 - 3* X 52], then by adding two (« + l)-handles to S" X Bx we

obtain a handle decomposition of 5 on 3X X B2.

In these circumstances, we say that X and dX are unknotted in S"+x. From now

on, we shall be concerned with the cases « = 2q, and r = q or q + I, with q s* 3.

If denotes the universal ( = infinite cyclic) cover, then 35 = 35, and in each

dimension H„(P) and //*(5, 35) are finitely-generated A-modules. The following

results are immediate consequences of the handle decomposition of 5 on 95, taking

r — q and k = m.

Lemma 6.1. (5, 95) is (q - l)-connected.    D

Lemma 6.2. Hq(P, 95) s ©|" A with basis [x,],... ,[xm], where x, is the core of the

ith q-handle, and Hq+x(P,dP) = ©¡"A with basis [Xx*],.. .,[X*], where X* is the

core of the ith (q + l)-hahdle, corresponding to the cocore of hq~x.    D

Note that x denotes a fixed lift of x C 5 to 5.

Let Sg: HS(P, 95) X H2q+x_s(P) -* A denote the Blanchfield intersection pairing

[B]. We shall take x,,... ,xm as a basis for Cq(P, 95), and Xx*,... ,X* as a basis for

Cq+x(P, 95), and let S~ denote the intersection pairing at the chain level, CS(P, 35)

X C2q+x_s(P) -» A. As in [B], Sß has the following properties, where x, y E

HS(P, 35), v,wE Hlq+x_s(P), u G HS(P), a, ß E A, and /,: H,(P) - H¿P, 95)

is the usual map.
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(l)S(x+y,v) = S(x,v) + S(y,v).

(2) S(x, v + w) = S(x, v) + S(x, w).

(3) S(ax, ßv) = aßS(x, v)._     _

(4) S(;>, v) = (-1)Î(2'-Î+,»S(7>, u) = S(ij>, u).

Let S2q and S2q+X be oriented so that / in (í:) = 77,(5) corresponds to the

negative normal of X.

The ¿/-ball x, is contained in a (q + l)-ball (1 + e)x, X 51 which meets X

transversely in (1 + e)x¡ (here e is a small positive number), and the boundary of this

(q + l)-ball is a ¿/-sphere X¡ embedded in 5. Similarly the (q + l)-ball X* yields a

( q + 1 )-sphere x* embedded in 5. Their properties are summarised in the following

lemma; see [K3] for details. Square brackets denote homology class.

Lemma 6.3. Hq(P) s ©¡"A with basis [Xx],...,[Xm], and Hq+x(P) = ©,mA with

basis [x*],... ,[x* ]. For 1 < /' < 777, 1 <j < 777:

i*{x] = O - /)[*,],   *.[*?] = 0~'_1)[#];

Sp~(x,,x*) = 8u,   5-(Â,*,^.) = 6,7.    D

Recall that we started with a handle decomposition of S2q, with a single 0-handle,

«1 trivial pairs of (q — I) and ¿/-handles, and a 2¿/-handle. Now augment this handle

decomposition by adding « trivial pairs of q and (¿7 + l)-handles, and set Y = B2q

U LT , «r1 U UJ=+„"+, «J, where the new handle pairs are («J, «J+l), m + 1 *£/'

< w + «. The construction above carries through with Y in place of X, and we set

Q = cl[S2q+x - 9y X 52]. Y and 97 are unknotted in 52l?+1. Note that Q has a

handle decomposition on 97 X 52 consisting of q and (9 + l)-handles, and two 2q

and (2 ¿/ + l)-handles. The attaching tubes of the first m ¿/-handles, with cores

corresponding to the cores of «q ( 1 < 1 *£ «1 ), and those of the final « ( ¿7 + 1 )-handles,

with cores corresponding to the cores of hq+x (m + 1 < i *z m + n), are contained

in 37 X -1 X 0 C 37 X 9(5' X 51) = dQ, whilst the attaching tubes of the final «

¿/-handles, with cores corresponding to the cocores of hq (m + 1 =^i<777 + «), and

those of the first m (q + l)-handles, with cores corresponding to the cocores of «f ~ '

(1 =s ; < m), are contained in 97 X 1 X 0 C dQ.

Lemma 6.4. (Q, dQ) is (q — l)-connected.    D

Lemma 6.5. Hq(Q,dQ) s®f+"A with basis [y,],.. .,[ym+„] where for 1 < i < m,

y, = x¡, and for m < ;' < m + n,y¡ corresponds to the cocore ofhf.

Hq+ ,(Ö, 3ß) s ©«+» A with basis [7*],... ,[7*+„] where for 1 < i < 91, Y* = X*,

and for m < i < m + n, Y* corresponds to the core of hq+x.    D

Note that here we are regarding g as a subset of 5: we could equally well have

described y as corresponding to the core of /if (1 *s 1 < m), and Y* as corresponding

to the cocore of hq~x (1 < i < m).

Lemma 6.6. Hq(Q) s ©«+« A w/'i/i toi« [f,],... ,[Ym+n] where iJYt] =

(1 - OUI; Hq+X(Q) ̂  ®xm+" with basis [y*],. . . ,[y* + n] where tJLff] =

(1 - rx)[Y*]\ and S^, yf) = 8,j = S^Y*, Yj).    U
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Lemma 6.7. Let [y,] = [y¡]for m<i<m + n, [Y*] = [Y*] for 1 < i < m, and
m n

[ft] =   2 ",,[>,] +   2 *>ij[9m+j]f       Ki<m;
j=1 f=1

m n

[Ä+,] = S %[V] + 2 Ay[ft+J,      i < / <«;
/=1 7=1

so that [y,], [y*], [7,], [Y*] are related in the same way as [y], [y*], [7,], [Y*]. Then

U = In,~ß=l„,a* + V=0.

Proof. Let C = (££), y = (£»$); so that
m + n m+n

U]=   2 c,7[y]    and    [£»] =   2 Y,^*]-
;=i 7=i

Then

(m + n m + n

2  %[Al.   2  Y>/[j"T]
a=i /=i

m + n m + n m + n

=      2       2   C/*fyi*«=      2   %Yy* = (Cy*),y.
A:=l   /=1 *=1

Therefore Cy* = /, and so

,      /t/     F\//m     «M_/t/     t/a*+F/3*\

\o    i„l\o     ß*)~\0 ß*       )'

whence <7=/m,/3 = /„, a* + F = 0.    D

Now suppose that we start with another handle decomposition of S2q, involving

B2q, trivial pairs («?"', hq)for 1 ^ /'< m, trivial pairs (hf, hq¡ + x)form <i<m + n,

and a 2¿/-handle. Let y, etc., be defined in the same way as in y¡. Thus y, = y, for

m < i ^ m + n. Thus we have another handle decomposition of (g, 9g), and

another set of bases for H^(Q, 9g) and HJ^Q).

Lemma 6.8. Let [y] be related to [y] as in Lemma 6.7. Then there is an ambient

isotopy F of S2q+ ' such that F0 = id, FX(Y) = 7, ¿7«¿7 F,(y) = y /or 1 < i < m + n.

Proof. As we remarked above, y, = y, for m < i < m + n. Let Z = B2q U

U^"+1 «f, with 5 denoting the exterior of Z. Then for 1 < i < m, y and y are

¿/-balls embedded in 5 such that y D 95 = 9y n 95 is a (q — l)-ball contained

within 9Z X -1 X 0 C 9Z X 9(5' X 51) - 95. There is an ambient isotopy of

9Z X -1 X 0 taking 3 y n 35 onto 3y n 35, and this extends to an ambient

isotopy of 35, and then to an ambient isotopy of 5 taking y onto y, keeping

9y n 35 within 3Z X -1 X 0. Since y is a spine of the 2¿/-ball hq~x U hf, we can

assume that this isotopy extends to an ambient isotopy of S2q+ ' taking 7 onto itself.

For 777 < i *z m + «, y,■ C int Z, and so we can assume that the isotopy leaves y, = y

fixed.    D
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Corollary 6.9. For I =£ /' < m, let u¡ be a q-ballproperly embedded in Q, such that

[«,] = 2"'=, aiJ[yj] + 2"=\Sij[ym+j). Let F be the isotopy of Lemma 6.8: then [F(ii,)]

— 2"L| a¡j[y.] + 2"=,(í,, + eij)[ym+j] where E — AV and V is the matrix of Lemma

6.7.

Proof.

[Fiü,)]

So far we have considered y as an oriented ¿/-ball properly embedded in g; it will

now be convenient to regard it as a proper embedding y : Bq -» g, and to denote its

homotopy class rel 3 by (y). Of course, y will denote a lift y■: Bq -» Q, and [y ] its

homology class in Hq(Q, 3g). Similar remarks apply to Y¡, etc. Recall that f

represents the nonzero element of iTq+x(Sq), and let £ = /'„(f) where /'„: 77 +,(59) ->

■nq+x(Bq, dBq) is the canonical isomorphism.

Let A/= 37, so that dQ = MXSx. The next result gives a necessary and

sufficient condition for m + « singular (¿/ + l)-balls 7*: Bq+X -» g to be homotopic

to the cores of (¿7 + l)-handles in a handle decomposition of (g, 3g). For the rest of

this section, we assume that ¿7 s= 5.

Lemma 6.10. Let 7* = Y*,l <i<m, and

n

(£+,) = (ft-w) + 2«y(Ä,+y)°€.      l *=/<«,
7-1

W <*(y*) = (1 - r'XZT) Z0' 1 < i < »1 + «. ^ííwwe /«¿/í 3y¡*: 35« ̂  M X * c

M X S1 = 3g is an embedding for each i, as for dY*, for some point * G S1. Then

U"'J~X"Y* can be homotoped (rel 9) to be a set of cores of (q + l)-handles in a handle

decomposition of (Q, 9g) if and only if a = ta*.

Proof. By [Kl] there is an (m + n) X (m + n) matrix & over T which is the

obstruction to homotoping U^"^* to an embedding (rel 9), and since z'*(y*) =

(1 — t~x)(Y*), it follows at once from the definition of & that

TQi(xr),i_y;)) = H - t)au.

Thus UJlY'TJ* can be homotoped (rel 9) to an embedding if and only if

WfMJy*)) = 0forall,,j.

= 2 aJLHfj)] + 2 su[F(ym+J)]
7=1 7=1

m n

= 2 o,j[sj\ + 2 ty[A,+J
7=1 7=1

ml n \ n

2  aJ [y,]  +     2   ̂ [Jm + J      +    2  *ij[9m+j[
7=1 k=\ 7=1

2«/I>)]+  2 U,v+   2 aikvkj\[ym+j]-    □
;=i ;=i \ a=i
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Note that the following intersections hold for all /', j.

TQ{{Y*),(y*)) = 0,

(6.1)
t¿{(y*),{y;)°!;) = 8íj,

Tç5{(y,)^,(yr))-8U,

rç((A) •«.(?) •*)*<>.
The middle two identities follow from the corresponding equations for Sq( , ), and

the last identity is true from dimensional considerations. Thus only the first identity

is of independent interest.

Moreover, for 1 < /»£ n,

i*(?J,+i) = (l-rl)i?Z+i)

= (i - rx){f*+l) + (l - r') 2 «ij(ym+J) ° í

7=1

n

= >•(JS+i) - *"' 2 atjU(Ym+j) ° ?
7=1

and so (y*+1) = (y*+l) - r%"=1 a,/?M+y) o f.

For 1 ̂  / < m, (y*) = (y*).

Consider 1 </'<«, 1 < k < m.

7ri((ln+,),(j7)) = 7e((y*+,) + 2 «,/A,+y) •«.(#)  =o

using the intersection properties above. Similarly, Fg((7*), (y*)) = 0 for 1 *s / < m,

1 =£ k < 777, and 5¿((7*),(y*+J) = 0 for 1 «S » « m, 1 </c < ». Thus the condition

Tçtiïniyj*)) = ° for ah Uj, is equivalent to the condition Tç((Y^+i),(y*+J)) = 0

for 1 < i~<Z n, 1 < / < «. But

r¿((a+/), (Ä+y))

= 7cif(7*+,) +   2 ««(Ä.+*) •*, (jS+y) - í"1 2 «y/(t+/) «f)

2 «,^e((jm+*) ° €, (£+,)) -12 Syire((ft+i), (7m+/) o P)
k=\ 1=]

n n

=   2 «, Ay - z 2 «yA
A=l /=1

= au - fâyi.

Thus U™^" 7* can be homotoped (rel 3) to an embedding if and only if a = ta*.

In fact, since U,™ , 7* = U^L, 7/* is already embedded, the homotopy can be chosen

to keep this fixed (compare [Kl]).

Assume that the condition is satisfied, and that U"J\"Yf is embedded. Since

[7*] = [7*] for each », we have SQ(Y*, Yj) = 8tJ for each i,j. By the Whitney lemma
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(or by adapting the arguments of [Kl]), we can isotop U,"L41"7* to be disjoint from

LT^y. Let N be a regular neighbourhood in g of 3g U U^y U U^X"Y*.

Because (g, 9g) is (¿7 - l)-connected, and 1)™=" y¡, LT4,"*? are bases of

HqiQ>àQ), Hq+x(Q,dQ) respectively represented by balls properly and disjointly

embedded in g, it follows that g — N is a ball, whence the desired conclusion.    D

Lemma 6.11. Let 7, be related to 7, as in Lemma 6.10, and assume that U^^T, is

embedded. Then there is an ambient isotopy F of S2q+X such that F0 = id, FX{Y) = 7,

and FX(Y*) t= Yf far 1 < * < m + n.

Proof. The proof is similar to that of Lemma 6.8.    D

Lemma 6.12. Let

m n m n

(K+i) =  2 ctj(ij) +  2 *„($+/) +  2 dtJ(jfj) o è +  2 eu{ßm+J) ° *
7=1 7=1 7=1 7=1

for 1 *£/«£«, and let F be the isotopy of the previous lemma. Then

m n m

{F{V*m+)) =   2 cu{f*) +   2 b,j(Y*+j) +   2 dtJ(9j) o è
7=1 7= 1 7=1

+ 2 k7 + 2 b¡kakj\(y'm+j) ° t-
y=i I k=\ i

Proof.

m n

Mfc+*))= 2^(F(y;))+ ̂ .j/ttj
7=1 7=1

m n

+ 2 4y(*Üy))°í +   2eV(itW)'{
7=1 7 = 1

m of n "I

=   2 c,y(7/) +   2 bJ{Y*+J) +   2 «jkiym+k) •{
y=i y=i     I fe=i J

+  2 4,OyW+   2^y(A.+y)°í
7=1 7=1

m « m

= 2*V(Ç) + SMtJ+ 2 4y0yW
7-1 7=1 7=1

+ 2 \e,j+ ívJ(y«t  n
y=i l k=\ J

Consider now possibly singular ¿7-balls v¡, 1 < i < m + n, and (¿7 + l)-balls Ff,

1 «s / «s «7 + «, properly contained in g. Furthermore, if 3g = M X Sx, we assume

that U;=,3ü,U U"=xdV*+J is embedded in M X-I and that U;=,3üm+,. U

UJn=xdVJ* is embedded in MX 1. We shall analyse the conditions under which

LT+," v¡ U Up"V* can be homotoped (rel 3) to be properly embedded in Q.
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Assume that

m n

[»/] =   2 0<y[jy] +   2 Stj[ym+f]>        Ki<m;
7=1 7=1

m n

[ôm+I] =   2 /?//[>>] +   2 ?/y[>L+y]>        1 < i < »;
7=1 7=1

m n m

(6.2) (V*)=   1 »•<,(#) +   2 «„(£+,) +   2 /„Oy) » Í
7= 1 7= 1 7= 1

n

+  2fty(Ä,+y)°i, \<i<m\
7=1

m n m

fe,) =   2 cu{ff) +   2 fr/yfey) +   2 rfy(^) ° Í
7=1 7=1 7=1

+ 2 euiym+i) °L       1 / «s«.

7=1

Define iV,), (Ö?) by the equations /,(*,) = (1 - í)(t3,), i^v*) = (1 - r')(F*).
>

Lemma 6.13.

i«,*) =   2 m,y(jy*) +   2 nu{y*+j) - t'x 2 ¿y(jy) °£
7= 1 7= 1 7= 1

-'"'Íg,y(y°í.        Ki<m;
A:=l

7=1 7=1 7=1

7=1

Proof. For 1 < / < m,

/,(«?) = (l-r')(i7)

=   2"',y0-r1)(7/)+   2^(l-r')(7*+y)
7=1 7=1

m n

+ 2 ¿yO - r')(yy) °£+2 fty(l - r»)(Ä,+y) ° i
7=1 7=1

m n

= '* 2 l*ij(Sf) + '* 2 ",y(Jm+y)

V"I2/y(^)»f-^-1 2fty(î,.+y)0f.
7=1 7=1
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from which the result follows as /'„ is a monomorphism (because the map irq+x(dQ)

-> 77q+x(Q) induced by inclusion is the zero map, from the handle decomposition of

g). The proof for (u*+I) is similar.    D

Of course, the expression for [V¡] in terms of the [YA is the same as that for [v¡] in

terms of the [ yj\.

Lemma 6.14. S¿([V*l [Vk]) = 8ikfor all i, k ~ (££X££) = (£»•£).

Proof. For 1 < i < m, 1 < k < m, we have

(m n m n \

2 m^Yf] + 2 »»>[£+,]. 2 **,[*,] + 2 U4+,]y=i y=i /=i /=i /
mm n      n

= 22 muäkisji +22 »ahfiji
y=i /=i y=i /=i

= (MA* + NS*),k,

and so for /', k in this range,

The other identities are proved in a similar manner.    D

Define ¿2* = 5.7; thus if A = (¿/,y), then .4* = (a*,)- Assume now that

/M    N\
\C     B)

A*       P*\  =   tIm      °

S*     Q*]~\0       /„/"

and that

(i?) = 2 av(*50 + 2 p7j(k+j) -1 2 hsjiHj) ° ¿
7=1 7=1 7=1

n

-'SMVi)°^       l<i<m;
7=1

m n m

(Y* + 1) =   2 ${*?) +   2 iiytä+y) - t 2 /„(«,) » Í
7=1 7=1 7=1

-' 2 ruißm+j) ° É,       1 <»<»;
7=1

for some matrices //, A, L, 5 over T.

Lemma 6.15.

(6.3) Tq((V?), (v*)) = 0, Fe-((F*), (Vj) o C) = 80,

rß-((t5,.) o é,(s;)) = 8U,     T¿{(v,) o i, (f.) or) = o,

/or a// », 7, implies that (¿ £) = (£» £*)•

Ao/e. These identities are similar to (6.1) in the proof of Lemma 6.10, and again

only the first identity is of independent interest.
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Proof.

(1 - r% = (1 - rx)T¿((V*), (y*))   by (6.1) and (6.2)

= Fe-((1 -rx)(V*),(y*)) = rß-( ,,(»•),(#))

rçMtfM«?)) = T¿{ii-rx){f;),iv*))

= (i - o rö-((y/),(«?)) = (i -1) i-thß) = (i - r1)«".,
and so F = //*. The remaining identities are proved in a similar manner.    D

The proof of the following lemma is similar to that of Lemma 6.13, and is omitted.

Lemma 6.16.
m n m

U*)=   2 *&(«/) +   2 5*(£m+y)+   2 *,,(*/) °£
7=1 7=1 7=1

n

+ 2*/y(*U'W>       l<i<m;
7=1

m n m

(£+,) =  2*y(«/) +  2íjy(«+y) +  2/,-y(^)°f
7=i 7=i y=i

+ 2'tf(*U)°f.        l</<».
7=1

Lemma 6.17.
A*F + P*D - tHA - tKP = 0,

A*G + P*E - tHS - tKQ = 0,

S*F + Q*D - tLA- tRP = 0,

S*G + Q*E - tLS - tRQ = 0.

Proof. For 1 < / < w,
m n m n

{y*)= 2 fliy(^) + 2 pf,(K+J) -1 2 M»y) ° « - < 2 M<W ° í
7=1 7=1 7=1 7=1

m (   m n

{y*) + 2 fl/y  2 /;■*(&) ° ¿ + 2 sÂym+k) ° I
y=i      U=i k=\

n C   m n ~i

+ 2 F*    2 <*,*( A) ° £ +   2 ejkiym+k) o A
y=i       U=i k=\ J

m f    n «

-í 2 M 2 «,■*(•?*) ° I + 2 '>*(£.+*) ° I
7=1 U=l fc=l

■' 2 M   2 MA) ° É +    2 îy*(A,+*) ° É
;=1 U=l A:=l

= (î?) +   2 U**" + P*D - tHA - tKP)ikiyk) o ¿
¿=i

n

+ 2 U*G + 5*F - tHS - tKQ)ikiym+k) c {,
k=\
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and this gives the first two equations. The last two are proved similarly by

considering (7*+I) for 1 < /' < «.    D

Lemma 6.18. The converse of Lemma 6.15 is true.

Proof. The first and third equations of Lemma 6.17 yield

C4*F+ CP*D - tCHA - tCKP = 0,

BS*F + BQ*D - tBLA - tBRP = 0

and hence

iCA* + BS*)F + iCP* + BQ*)D - i(C// + BL)A - tiCK + BR)P = 0.

But CA* + BS* = 0, CP* + BQ* = /, and so we have

D - tiCH + BL)A - tiCK + BR)P = 0.

Similarly

E - tiCH + BL)S - tiCK + BR)Q = 0,

F - tiMH + NL)A -tiMK + NR)P = 0,

G - tiMH + NL)S - tiMK + NR)Q = 0.

Substituting for H, K, L and 5 gives

(1) D - t(CF* + BG*)A - t(CD* + BE*)P = 0,

(2) E - t(CF* + BG*)S - t(CD* + BE*)Q = 0,

(3) F - t(MF* + NG*)A - t(MD* + NE*)P = 0,

(4) G - t(MF* + NG*)S - t(MD* + NE*)Q = 0.

Adding (1)C* to (2)5* gives

DC* + EB* - t(CF* + BG*)iAC* + SB*) - tiCD* + BE*)iPC* + QB*) = 0,

which sincere* + SB* = 0 and PC* + QB* = I gives

(5) DC* + EB* - t(CD* + BE*) = 0.

Similarly we can obtain

(6) DM* + EN* - t(CF* + BG*) = 0,

(7) FC* + GB* - t(MD* + NE*) = 0,

(8) FM* + GN* - t(MF* + NG*) = 0.

For 1 < /' < m, 1 *£ k < m, we have

(m n m

2mlj{Y*)+   2",yfe.y)+   2 ¿yOy) °*
7=1 7 = 1 7=1

n m

+ 2 gu(ym+J) °£>   2 rnkj(y*)
7= i 7= i

n m n \

+ 2 «,y(>£+y) - r" 2 fkJ(Yj) °$ - r1 2 gkj{Ym+J)°n
7=1 7=1 7=1 /

= -t(MF*),k - tiNG*),k + iFM*)lk + iGN*)ik

= 0   by (8).

Similar computations, involving (5), (6), and (7), show that Tq((V*), (v*)) = 0 for

all », k.
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As noted above, the identities involving i,, follow at once from the corresponding

identities for 5¿( , ) and the remaining identities are true from dimensional

considerations.    D

Lemma 6.19. U'¡tJ'"v¡ U U£?"Pj* is homotopic (rel d) to a set of cores of handles in

a handle decomposition of (Q, 3g) if and only if

Sq{[^],[Vj\)=Su   and   T¿({V*),iv*)) = 0   for all i, j.

Proof. The "only if" has already been noted (6.1). Conversely, if these equations

are satisfied, then as in the proof of Lemma 6.10, U™H¡"oj U Up"V* can be

homotoped (rel 3) to an embedded set of balls, and these form the cores of handles

in a handle decomposition of (g, 9g).    D

7. Presentations of knots. We can regard an «-knot as an embedding of S" in

S"+x X I. A presentation of the knot is one in which S" = handle + collar +

handle + collar + • ■ •, each handle being embedded in a level S"+x X x and each

collar being embedded productwise along the / direction. In the classical case, « = 1,

the 0-handles appear as underpasses and the 1-handles as overpasses. The case « = 2

is just Fox's method of drawing 2-knots [F]. For further details, see [K3 and K-L].

Each r-handle hr in the handle decomposition of 5" induces an (r + l)-handle

Hf+ ' in a handle decomposition of K; see Lemma 2.1 of [K3] and [K4] for details. In

fact, let 5r X B"~r be the image of hr projected into a higher level Sn+X, and let

Br X B"~r X Bx be a regular neighbourhood of Br X B"~rreld(Br X B"~r) in

S"+ '. Let Bq be a slightly larger ball containing Br in its interior; then the proofs of

[K3, Lemma 2.1 and K-L, Lemma 1] show that the core C+1 of Hr+X can be taken

as Bq X 0 X Bx together with a vertical collar of its boundary. The case n = 2, r = 1,

is illustrated in Figure 1; the cases « = 1, r — 0,1, are illustrated in [K4].

x = i     C_^-^_J

x=,        Q^fflO

--*   o   o o==o
Figure 1
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In the case of a simple 2 ¿/-knot, ¿7 > 2, we can apply Corollary 10.1 of [K3] to

obtain a presentation of the knot which contains only one 0-handle of S2q, handles

of index ¿7 — 1, ¿7, and q + 1, and one 2 ¿/-handle. Moreover, the handles are added in

order of increasing index, handles of the same index being added simultaneously.

Suppose that there are m (q — l)-handles of S2q, « (q + l)-handles, and hence

(m + n) ¿7-handles. Denote the z'th /--handle by hr¡, and the induced (r + l)-handle of

K by H[+ '. Setting X = h° U LT , «? ', it is shown in [K3] that the hf ' can all be

added at the same level as «°, and that Zis unknotted in S2q+X, in the sense of §6.

Moving up to a level between the hf~x and the hf, there is a copy of dX unknotted

in S2q+X: let 5 be its exterior, as in §6. Let Kq denote the union of an embedded

loop in 5 representing / G 77,(5) = irx(K), the ¿7-spheres Xx,...,Xm, together with

embedded arcs joining the basepoint to each X¡ determined by the lift ¡X,. Then Kq

serves as a ¿/-skeleton of K, for X¡ can be regarded as the core of H¡> with its

attaching sphere deformation retracted into the 1-skeleton of K.

Let 5 X / be embedded productwise in S2q+X X I, with 5X0 identified with 5,

and 5 X 1 contained in a level between 5 and the hf. Let N(Kq) denote a regular

neighbourhood of Kq in 5, and note that (5, N(Kq)) is ¿/-connected. The attaching

sphere 5, of Hf+X can be taken as lying in 5 X 1, and by engulfing we can arrange

that U,m=41"S, C N(Kq) X 1. Let F: N(Kq) XI-* N(Kq) X I be a deformation

retraction of N(Kq) onto Kq, so that F, = identity, FQ(N(Kq)) = Kq. Then F:

\J^"S,XI^ N(Kq)XI is an embedding except on U^^.XO. Let C,q+X

denote the union of the core of Hf+ ' with F(S¡ XI). Then Kq+ ' = K" U LTj," C,q+ '

is a CW-complex which will serve as a (¿7 + l)-skeleton of K.

If the handle hf is projected into the level containing 5, then its image meets 5 in

a ball kf = (Bq X Bq)„ with (35* X Bq)¡ C 35, and so choosing a lift (dBq~X~6)j of

(35? X 0), yields an element 2™=, a,7[x,] of Hq(P, 35). The choice of lift induces a

choice of C?+l, and we have the following result.

Lemma 7.1. The boundary map Hq+x(Kq+x, Kq) - Hq(Kq) is given by [C,q+X] v-*

2y"=i «„[%].

Proof. Recall the way in which the attaching sphere of Hf+X is related to the core

of hf; arguing as in the proof of [K3, Lemma 6.4], we have

m m

/J3C7+1] = 2 ß,y(l - t)[Zj] = U 2 a,j[Xj],
7=1 7=1

and since »'„ is a monomorphism, this establishes the result.    D

Lemma 7.2. Suppose that [C/?+l], 777 < /' < 777 + «, are annihilated by the boundary

map. Then the hf, m < i «£ m + n, are unknotted.

Proof. Let kf C 5 be a handle as above, and cf its core. Since cf, m < /' =£ «7 + «,

represents the zero element of nrq(P, 35) s Hq(P, 35) by the hypothesis, we can

homotop UJ^+, cf (rel 3) by a homotopy G until it is unknotted; that is, until each

cf forms part of the boundary of a (q + l)-ball embedded in 5, the rest of the

boundary being in dX X * c dX X Sx = 35 for some point * E Sx, and these balls



CERTAIN SIMPLE EVEN-DIMENSIONAL KNOTS 35

being disjoint. We can assume that the homotopy G has only transverse self-intersec-

tions, regarded as a map G: U™=*+i Bf X I -* 5 X / c K. In an obvious way, G

induces a homotopy of U™J'^+xkf and hence a homotopy of U™J~l£+xSj (recall that

Si is the attaching sphere of Hf+X). The handles kf, m < i < m + n, are unknotted

now, except possibly for some twists, and so the homotopy of \J^^+xSt may be

finished off by a null-homotopy of each component, the only new singularities being

self-intersections of each component corresponding to the number di of twists in the

kf.
Let /: U^+xBf^P represent the initial embedding of U,1+m"+,c?, and g

the final embedding under the homotopy G. From [Kl], there is an obstruction

d(f,g: G) to isotoping / to g (rel 3), in the form of an « X « matrix over A,

measured by the self-intersections of G. Let S?+x be the singular sphere formed by

the union of the core of Hf+ ' with the homotopy of S¡ and the final null-homotopy

of S¡. Let G, = G | Bf X I. Then choosing the lifts determined by C,q+\ we have

sK{sq+\ Sf+X) = (1 - 00 - r^SgfaÖj) + 28,jdj

= (l-0(l-r1V(/,g:G),,y + 2ô,.//y-

But S%,X\,- • • >Sm+n is a (singular) set of generators for H + xik); in fact, it is a set

of generators for the free A-module H + xikq+ '). By the Blanchfield duality theorem

[B] the intersection pairing on Hq+X(K) is zero, so S¿iS¡9+1, Sf+X) = 0 for each i

andj from m + I to m + n. Hence d(f, g: G) = 0 and d¡■ = 0 for m + 1 < ; < m +

«. Thus / is isotopic to g (rel 3), by [Kl], and so the cf are unknotted, and since

d¡ = 0, the kf are unknotted.    D

8. Intersections and linking. Suppose that we have a simple presentation of a

simple Z-torsion-free 2¿7-knot, ¿7 > 6. The associated handle decomposition of K

yields a chain complex 0 -» Cq+2(K) -» Cq+X(K) -> Cq(K) -» 0 in which Cr(^) is a

free A-module with basis given by the cores of the Hf. Corollary 4.5 shows that after

stabilising this chain complex decomposes into two short exact sequences. This

decomposition corresponds to a new choice of basis. The maps in the original chain

complex are represented by matrices with respect to the bases mentioned above, and

to get from these matrices to the matrices in the new sequence (with respect to the

new bases), we must apply a sequence of matrix operations. These are the operations

(i)-(iv) listed in §4, together with:

(vi) Add a column of zeros to A : A 1-» (A 0).

(vii) Add a row of zeros to A: A h> (q ).

It is shown in [K3] that these matrix operations can be induced by handle moves

of the knot presentation; that is, introducing trivial handle pairs and moving one

handle over another of the same index. Thus we can arrange that the presentation

has 777 (¿7 — l)-handles hf~x (!<»'< «7), (777 + «) ¿7-handles hf (1 < /' < 777 + «),

and « (¿7 + l)-handles nmV,- 0 ^ i < «); moreover, the chain complex

0   -   cq+2ik)   -    ca+,(/v)   -    cqik)   -   0

lie (S)     U m„    112
(0) (0A)0     -     A" ->     Am+n Am ->     0
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decomposes into the short exact sequences

A"^A"^ Hq+X(K),

AmlAm -* Hq(K).

In particular, by Lemma 7.2, the hqm+i (1 </'<«) are unknotted. Assume that

hf~x (1 < /' < 777) and hqm+i (1 < /' < «) are added at the same level, and that hf

(1 < /' < 77») are added at a higher level. Let S2q+ ' be a level between these two, and

g C S2q+ ' the complement of the knot in that level. Then g has the properties

described in §6, and we shall use the notation developed there.

Consider now the dual presentation of the knot, in which the presentation is

turned upside down and /--handles become (2 ¿7 — /-)-handles. Let kf~x be dual to

*£+< O < ' < »), kf dual to hqm+l (1 < i < «), k«+J dual to hf (1 < / < m), and *«+;
dual to «-7-1 (1 < 1 < w). It is shown below that the corresponding chain complex

yields short exact sequences

A-^A" -» Hq+xiK),

A"^A" +> Hq(K)

where A* denotes the conjugate transpose of A. Thus the kf+i (1 </'</») are

unknotted, and may be added at the same level as the kf~x. In other words, we can

add the«*+', at tnesamelevelas theAf (1 <i<m).

Recall that Hf* ' is the handle of K induced by V,, and Cf+ ' the core of //,r+ '. Let

/Y;+i be the handle of K induced by k\, and ZF+I the core of K[+x. Consider a

general presentation of S" C Sn+1, with all the handles of the same index being

added at the same level. Let 5 be the level midway between the h\ and the hr¡ + x. The

following description is inherent in [K-L], and is illustrated in Figure 2 for the case

« = l,r = 0.

Writing hr¡ = (Br X B"~r)¡, we can take as cocore of Hf+X the ball

/ X (0 X (1 - e)B"-r), =IX El"~r

which meets 5 in Ef~r = 1 X (0 X (1 - e)B"~r)¡. Note that the attaching sphere

of K?-r+l is D?-,+ i, which is 3((0 X (1 + e)B"~r)l X 5") projected into 5.

Similarly, write «J+1 = (Br+X X 5" r ')7 and take as cocore of Kf~r the ball

/ X ((1 - e)Br+x X 0)j = IX BJ+X which meets 5 in

5/+1 -OX ((1 -e)Br+x X0)j.

The attaching sphere of HJ+2 is 3C/+2, which is 9(((1 + e)Br+x X 0)y X 51)

projected into 5.

Let Kis) denote the i-skeleton of K in the handle decomposition of the //,'; that is,

the union of all the /// for / < s. Similarly, let K(s) denote the ¿-skeleton of K in the

handle decomposition of the Kj. Let

9J: Hs+x(Kis+X), K^) -* Hsik(s\ k<s~»),

9j: Hs+\\K(s+\)> K(s))  ~* Hs\K(s)> K(s-\)j

denote the boundary maps.
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Figure 2

Choose lifts and orientations so that

dr+x[c,r+2] = (i-/"')[5;+1],

dn_r[pp-r+x] = j\ - r^)[Êrr],

S¿{Cf+x,íli~Ef-r) = 8u,

s¿(Drr,T*~B;+x) = o-iJ

where 17 — ± 1, depending on r and «. Then

S¿{C[+ >, Ö;~r+l) = (1 - /*)«„,

s¿(/5r^/+2) = 0 -'-^V

Define a,7, 0,, (1 < /' < A:, 1 <;' < /) by

3r+'[c;+2]= 2«,7[C/+1],        Ki<ik;
7=1

/

9„-,[A""r+l] = 2 ß,j[ßr%   i</</.
7=1

Then for e, e' = ± 1, depending on «, r, but not on /', /, we have

s«~(9'+1[cr2H¿r]) = ̂ 7<

^-{an-r[¿rr+1].[4'+,]) = e'Ay
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Thus

e(l - »')«,,= S,-(3-'[cr2],(l - r')[£/-'])

= sÂ{d'+x[c;+2],dn_r[Dr+x])

(-l)(r+lx""r)sÄ-(3„_r[y3,"-r+1],3r+1[cr2])

= (-i)(r+,)<""°(i-^y/3;¡;

«,, = «"&.

where e" = ±1 is independent of /', /.

Returning to the simple presentation of our 2¿7-knot, it follows easily that the dual

presentation yields (up to sign) the short exact sequences as asserted above.

Computing the homology modules H¡(k), i = q,q + I, is a relatively simple

matter, for the handle decomposition of K in terms of the Hf yields a presentation as

above. In order to compute the Blanchfield duality pairing, the usual procedure

would be to look at the dual handle decomposition of ( K, dK ). Instead, we shall

consider the handle decomposition {Kf} obtained from the dual presentation of the

knot.

Thus we have

*    / m \

(Cf,...,Cq:) -~  iCf,...,Cq:   2 atfif,\ <i <mj « H¿£)

v,heredq[Cf>+x\ = 2"]=xaij[CJ«];

(Cql\,...,CqXxn:) 1  lcqX\,...,Cq++xn:  | ty£í>, 1 </ <mU Hq+1iK)

where dq+x[Cq++2] = 2"J=xbu[CqXx];

(Df,...,Dq:)  1  Uq,...,Dq:  | Vffif, 1 < » < n\ a HqiK)

where dq[Dq+x] = elJ=xb*[Df], and b* = bß;

V      I m \
{DqXx,...,DqXxm: > -  \Dqtx,...,DqXxm:   2 (%&£/, Ki< w U fl,+1(£)

where 3a+ ,[F7n?+,2] = e'SJL, a^[4?+/1]- Note that £> £' = * »> depending on ¿7 but not

on i, j.

The intersection relations are

S¿{cq+], Dq:/) = (1 - O«,,, 1 < » < m, 1 <7< m;

Sf(<^íí, Df+X) = (1 - r«)«iy, 1 < /' < «, 1< / < «;

and zero otherwise;

Sk(d?, CtJ) = O - r')5,7, 1 </<•», 1 <y < ».
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Lemma 8.1. <t//5>+/, *C|>= (1 - rx\A*-x)lk; {<&&), m)=e(l - rx)B;x.

Proof. (yD&K^a^Cf^ S¿(Dq+x, Cqk + X) = (1 - rx)8ik, so
m

2 (VDqtx,<i>Cq)a*k^(l-t-x)8ik,

7=1

and hence <^r>++,', <f>Q>=E (1 - rx)iA*-x)ik.

The second identity is proved similarly.    D

Recall the discussion in §7, where we used the ¿7-spheres X¡ embedded in 5 as part

of a ¿7-skeleton K: by Lemma 7.1, there is a presentation (Xx,...,Xm: 2Jn=xaijXj,

l</'</77> of Hq(K), obtained in essentially the same way as (Cf,...,Cq:

2Jn=xaijCf, 1 < /' < m), for X¿ is just the core of Hf with its attaching sphere

deformation retracted to a point. In a similar manner we can use the spheres Y¡, y*

embedded in g to obtain presentations

(Yx,...,Ym:)^{fx,...,Ym:  | atJtj, 1 « » < m\»H¿E),

(y¡n+U---Jm+n- >^ ( 9m+\>- ■ ■ ̂m + «:    2  fyyÄ+y ] < ' < " ) = Hq+AK)-

The use of </> and \p is dehberate here, as for example 7, is essentially Cf with its

boundary deformed to a point.

The core of hf, 1 < /' < «7, when projected into level g, gives a ¿7-ball t>, properly

embedded in g. Arguing as in Lemma 7.1, [v¡] = 27*=i ¿/,7[y"y] + 2Jn=xsij[ym+j\ for

some matrix 5 = (s,,). Let F^ be dCf+x projected into g, 1 < / < 777; then i'JF¿] =

(1 — f)[«,■] = »'«(S/^iöjyl^] + 2"=,5l7[7m+7]), and since /'* is a monomorphism, we

have [V,] = IJL^jlfj] + 2yn=15(y[7„+y] for 1 < » < m.
The core of «*"+', when projected into level g, yields a (q + l)-ball F*+, properly

(and permissibly) embedded in g. An argument similar to that of Lemma 7.1 shows

that for a suitable choice of lift,

m n

[*S+J = 2 cu[f*} + 2 btJ[Y*+J],   for some matrix C = (c,7),
7=1 7=1

where orientations and lifts are chosen so that [9Q?+2] = (1 — t~x)[V*+j\.

Because the dual handles kf~x, 1 *s i < «, and kq+x, 1 *£ /' =£ 777, are unknotted,

we can choose ¿/-balls vm+i, 1 < » < », and (¿7 + l)-balls V*, 1 < 1; *£ «7, properly

(and permissibly) embedded in g, and suitable lifts so that, defining i%(Vf) —

(1 - iX«5,), i+ivf) = (1 - t~x)(V*), the homology classes [£>,], [V*], [t3f], [Fj.] are

related as in §6.

Looking at the dual presentation of the knot, we have presentations

(Vm+x,...,Vm+n:)^(vm+x,...,Vm+n:  ^b*Vm+J, I ^ i ^ n) ^ Hq(K),

(v*,.. .,«•:> 1 /«?■,.:.,«•:   2 flfy«/, l^i^m\^Hq+x(k)
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where Fm+¡ corresponds to D? with its boundary shrunk to a point, and v* to Df¡+?.

Note that since v*+i is null-homologous in K, we could add these as generators, with

*'«+, = o.
Thus Lemma 8.1 becomes

Lemma 8.1'.

Lemma 8.2.

(t'v*,<pYk) = (l-rx)(A-x)lk,

<+Ä+|.*^m+t>s«(l-'"I)*ÄI-

(4>iï+l,<pYk) = il-t-x)(S*A*-x),k.

Proof. By Lemma 6.16 we have

(W:+i,4>Yk)= U'( 2 'W + 2 tfCy ),♦**)

m

7=1

^(l-r'KSM*-1),,.   □

Lemma 8.3. /le/ y /be altered to y, ¿w /'« Lemma 6.7, ¿/«¿/ /e/ 4, S be the matrices

corresponding to A, S respectively with the new basis. Then A— A and S — S — AV.

Proof, [y] = [y] + Tj=xvi}\ym+J\, 1 < i < m, by Lemma6.7.

[£/] = 2 2/y[#] + 2 £y[j«+y]>       1<* < m,
7=1 7=1

m n

[v,] = 2 flylA] +  2 */,[&.+*]'        I < /< m.
7 = 1 7=1

By the hypothesis, [ym+1] = [ym+1] for 1 =£/'<«, and since [£>,-] = [t;,] for each /',

we obtain

m m n

0=2 («/y - fl.y)[-Fy] + 2 Siy 2 «yJ^m+J
y=i y=i      t=i

+ 2 (i,y - s«y)[>i«+y] -       1 <■/ < w.
7=1

Equating coeffients gives y4 = /I, and /1F+5 — 5 = 0.    D

9. Proof of Theorem 2.2. Assume that we are given two 2¿7-knots kx,k2, each of

which is a simple Z-torsion-free knot. Assume also that ¿7 5* 6 and that the two knots

have isometric F-forms. Take a simple presentation of each knot k¡, giving rise as in

§8 to the matrices A¡, B¡, which present Hq(k¡), Hq+x(Ki). By Proposition 3.1, the

augmented F-forms of kx and k2 are isometric. By Lemma 4.7, after a sequence of

matrix moves we can assume Ax—A2 — A, Bx = B2 = B; moreover, if <f>,:

Am -** Hq(kf), ^: A" -* Hq+ x(Kf) are the quotient maps, and ¿7: Hq(Kx) -» Hq(K2),

c: Hq+X(kx) -» Hq+X(K2) are the isomorphisms of the isometry, then we may
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assume that ¿z<í>, = ¿í>2, c\p¡ = \p2. Since the matrix moves involved can be induced by

handle moves in the knot presentation (compare [K3]), we obtain presentations of

kx,k2, in which the 0-handles coincide, the (¿7— l)-handles hf~x (I < i < m)

coincide, and the hqm+i(I </'<«) coincide. Next we show that the hf (1 <i<m)

may be isotoped until they coincide.

Since the pairings ( ,): Hq+X(K)X Hq(K) -* AJA are isometric, we know from

Lemma 8.2 that

(1 - rx)S*A*-x =(l - t-x)S;A*-x    (mod A),

and so (1 — t~x)SxA*'x = (1 — t~x)S*A*'x + M where M is an « X 777 matrix over

A. Thus

(l - rx)S* = (l - rx)s2* + MA*,

(1 -t)Sx = (1 - t)S2 + AM*.

Now det A is the Alexander polynomial of kx in dimension ¿7, so (1 — t) is prime

to det A. But we have an equation AM* — (1 — /)(5, — S2), from which

«•Mi-o-âf<s,-%).
Because (1 — /) does not divide det A, det A must divide adj A ■ (5, — S2), and so

(1 - t) divides M*. Write M* = (I - t)N, and we have Sx = S2 + AN. Taking

V = -N in Lemma 8.3, we can by a change of basis arrange that Sx = S2. Note that

such a change of basis does not affect A, 5, </>, \p. Corollary 6.9 shows that there is an

ambient isotopy F such that in the presentation of F(k2), the (¿7 — l)-handles of

F(k2) coincide with those of A:,, the last « ¿7-handles of F(k2) coincide with those of

kx, and Sx = S2 = S.
Recalling the definition of A and S in terms of the handles hf (1 < /' < m), it

follows that the cores of the handles of k2 represent the same elements of irq(Q, 9g)

as the corresponding cores for kx. By the proof of Lemma 7.3 in [K3], quoting

Irwin's Theorem in place of general position, we may by an ambient isotopy arrange

that corresponding cores coincide on 9 g and are homotopic rel 9.

But the cores of the hf (1 < /' < m) form part of a basis for Hq(Q, 9g) (consider

the dual presentation of the knot), and so the results of §5 and [Kl] show that k2 can

be ambient isotoped until all its (¿7 — 1) and ¿7-handles coincide with those of kx.

Let the (q + l)-handles of k be «mVi>- ■ •>««+'*; when projected into level g, the

core of «¡J,V, yields a ball V*+i permissibly embedded in g, with

m n

[K+]= lcIJ[ij]+ 2*iy[ft+J.
7=1 7=1

If the knot k, gives rise to the matric C,, then by the results of §6, and in particular

Lemma 6.14, each C, satisfies the equation CA* + BS* = 0. Since A* is nonsingular,

CX = C2 = C.

We adopt the notation of §8 with regard to Vt, Vf, etc., without further comment.

Recall that (7) denotes the homotopy class of the ball 7 properly embedded in g.
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For 1 < z =£ «, we have

m n m n

fe,) = 2 ctj{Yj*) + 2 bu{Y*+J) + 2 dtJ(fj) o € + 2 ev(j5.+y) ° I
7=1 7=1 7=1 7=1

where D, E are matrices over A, defined mod2.

Then

(9Q:2) = (1-/-')(F*+i)

m n m n

= 2 ctJip;) + 2 bu(y*+j) - rx 2 ¿,y(iy) ° f - r' 2 er.y(ym+y) ° f.
7=1 7=1 7=1 7=1

Arguing as in §8, there is a presentation of •nq+,(K) as a A-module:

m « \

-r1 2^y+  2 V»+yO <'<«)   •
y=\ j=\ I

Let k,:  <7„...,7m, y*+1,...,y*+„:  > -» *,+,(#,) be the quotient maps, for

/= 1,2, and let b: irq+x(Kx)^> nq+\(k2) be the isometry. Since ¿j<i>, = <t>2, we

know that bKx(Yf) = k2(7,) for l < » < m. Similarly, since apx = \p2, we know

that bKx(y*+i) - K2(y*+i) E o>(Hq(K2)) = /c2((7„..., fm». Say bKx(y*+i) =

K2(ym+, + 27=la,7i;.).Then

(m \ m

(Ä+i) + 2 a»y(ty) «f   =(l- r')(7m+;) + (l - 0 2 •„(#) ° |
7=1 / 7=1

= 0 - r')|(7*+1) - rx 2 a,7(yy) o ¿J = (1 - r»)(fi+l).

Consider the ¿7-handles n*+/ (1 </'<«) projected into level 5: then the sets

{(ÍS+,)}i.=i«n and {CÖ+i)}i«s«n can each be represented by a set of (q + l)-balls

which "cancel" the hqm+i, and there is a permissible ambient isotopy of 5 which

takes hqm+i back to its starting position, and Y^+j onto 7*+i. In other words, we can

by temporarily adding the hf~x before the hf, isotop the ¿7-handles of k2 so as to

make bnx(y*+i) = K2(y*+i), that is ¿>/c, = k2.

Let kx give rise to D, k2 to D+ : then for 1 < 1 < «:

(m m \

-r1 2 dtJtj + 2 buy*+J   = 0,
7=1 7=1 /

(m m \

-r1 2 4*y+ 2 V«+y   =0
7=1 7=1 /7=1 7=1

and so

«il 2K-<i)yJ =0.
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Since 5 is nonsingular, and D is only defined mod 2, there exist u,7 G A such that
m mm

2 (dtJ - dfjJYj =22 WjA,       l<i<*;
7=1 7=1 k=\

and so D - D+ = MA.

Lemma 9.3. The (q + l)-handles of k2 can be isotoped to make D+ = D.

Proof. Move the (¿7 + l)-handles Am+'it0 a higher level than the hf, and let 5 be

a level between these two. Let B?+x be ((1 + e)Bq X 0 X 51), projected into level 5,

where (Bq X Bq)¡ is hf n g. Let f,: S?+1 -* 95?+1 represent the nontrivial element

of nq+x(Sq). Let »,: 5Î+1 ^ 5 correspond to F*+;, 1 < » < «. For 1 « » « »,

1 <y < 777, we can choose an arc joining Imco, and Imf • in 5, and by taking the

interior connected sum obtain a new embedding u.¡: Bq+X -» R which projects to a

map t. : 59+1 -» g. It is clear that <o, and w,7 are isotopic rel 9, since f, is

null-homotopic as a map Si+1 -> 5, but ry represents (F*+/) + ta(Vj) = (V*+i) +

ta(l — t)(vj) ° ¿ where a depends on the choice of the arc mentioned above. Thus,

by the construction, we can isotop A^1, rel 9 in level 5 so that its core when

projected down to level g, instead of representing (V*+j), represents

(£+,)+<"0-0(«yW
{m m I

2MAW+ 2*y*(^+*)°¿ ■
fe=l /t=l J

Thus by isotopies of this kind we may move the Am+'/ °f ^2 untü A^ is a matrix over

Z.
A similar argument, allowing the attaching tubes of the hf^.) to move within

[#¡■(5« X Sq~x)] X * C [#^(5* X Sq~x)] X Sx = 95, completes the proof.    D

Let g' be a level just above g, but below the level of the A f (1 < / < m), and let

y'* (1 < /' < 777 + «) be copies of y* embedded in g'. In order to compute the

homotopy pairing { , } we shall need to look at the intersection of Cf+2 andy":'* in

K, and since Cf+2 meets Q' in (1 — t~x)(Vf*), this can be done by looking at the

intersection of (1 — t~x)(Vf*) and (yj*) in g', or equivalently the intersection of

(l-/-1)(I^*)and(y/)ing.

Recall from §1 the way in which the pairings { , } and T are defined.
m n

-/"' 2 d-fetj, Kj>*+k) + 2 bu{Ky*+j,Ky*+k}
7=1 7=1

= {9¿Síí?. "Ä+*} = JlfíÓIÍ?, ym*+,)
= Fö-,((l-/-')(F;*+,),(ym*+j)

(m n

O - r1) 2 ctf(Ç) + (1 - r>) 2 ¿ofey)
7= 1 7= 1

+(i-r,)^,7(i)^+(i-'-,)^,a,)"^a+1)
7=1 7=1 /

= il-rx)eik,

using the equations (6.1).
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Set ujk = {icy*+j, xy*+k} and note from Lemma 8.2 that

(4> "Ä+J = Hhq+i*Yj, hq+xKy*m+k)=e(l - t)(A-xS)jk.

From the calculation above we obtain

-»-'(1 - t)DA-xS + BU = il -rx)E,

the matrices having entries in T0.

Let Es, U, be the matrices E, U arising from the presentation of k¡. Since the

pairings are isometric, we have Ux = U2 (mod T). It follows that

il - rx)B-\Ex- E2) = Ux- U2 = F,

where F has entries in T. Since 5"1 = adj 5/det 5, and (1 — t ) is prime to det 5, we

have B~X(EX — E2) = G where G is a matrix over T. Thus Ex — E2 — BG. Taking

G = -a in Lemma 6.12, which we may do becuase the V* are embedded for each

knot, we can isotop the ¿7-handles of k2 to make Ex = E2. Then kx and fc2 coincide

up to and including their ¿7-handles, and the cores of their (¿7 + l)-handles are

homotopic rel 9. Since they form part of a basis for Hq+X(Q, 9g), they are isotopic

rel 9 by Proposition 5.1 of [Kl]. By Lemma 5.3, the (q + l)-handles of k2 are

permissibly isotopic to those of A:,, and so it only remains to isotop the 2¿7-handle of

k2 onto that of kx. If the 2¿/-handle of each knot is added in level S2q+X X 1 C

S2q+X XI, then we can push the interior of the 2¿7-handle into the interior of the

B2q+1 which must be attached to S2q+X X 1. Thus we have two unknotted ball pairs

(B2q+2, B2q) which agree along the boundary, and these are ambient isotopic rel 9

by the Alexander trick.

10. Proof of Theorem 2.3. Assume the data of the theorem: by Propositions 3.1

and 3.2, there is an augmented F-form associated to the given F-form, and this is

unique up to isometry. We shall construct a knot which realises the augmented

F-form.

By Lemma 11.12 of [Ke], the modules Hq, Hq+X are presented by nonsingular

matrices A, B respectively, where A is an m X m matrix over A and 5 is an « X «

matrix over A. In this context, nonsingular means that the matrix has nonzero

determinant.

Let   <7,,...,7m:   WJn=xaijYj,   1 < /' < 777>   be   the   presentation   of  Hq,   and

< Ä +1. • • • >9m+n: 2"= i bij ̂ m+y» l < ' < « > the presentation of Hq+ „ with

♦:<?„...,?„: >-»#,   and   *: <y*+1.y*+n: > — Hq+i

the quotient maps.

Recall that (1 — /): Hq -> Hq is an isomorphism, and set <¡>Yk = (1 — t)<pZk. For

each /', k, choose lifts of ($9%+,, §Zk)E As/A to As. Define the m X « matrix S

by the equation
m

s* =   2  Sy*<*Ä+i. ̂>e AS-
k=\

Note that (mod A)

i\-rx)stj = UyZ+i, 2*(*y*ñ)) = 0,
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and so 5 has entries in A. Comparison with Lemma 8.2 shows that

(tym+„<t>Yk) = il-rx)iS*A*-x)lk.

Next we define the matrix C by the equation

CA* + BS* = 0;

since det A ^ 0, this determines C as a matrix over A0. In fact, C is a matrix over A,

for

(l-r% = - il - rl)iBS*A*-%

= -(l-rl)2MSM*-%
k=\

= -2bik(^y*+k,4>Yj)
k=\

s-Í+2 **«+*.♦*,)

which is zero as an element of As/A because the left-hand element in the pairing is

zero in Hq+,. Since (1 — t) does not divide det A (or because (1 — t): Hq -» Hq is an

isomorphism), C is a matrix over A.

Now we begin the construction of the requisite 2¿7-knot k. Take a presentation

with a single 0-handle, m (q — l)-handles hf~x (1 < /' < m), and « unknotted

¿7-handles A^+( (1 *£ /' < n). Choose bases for Hq(Q, 9g), etc., as in §6, and embed

further m ¿7-handles hf (1 < /' < m) so that the core of hf represents [v¡] =

Z7=\auW + ^UsiA9m+jl

Lemma 10.1. There is a presentation

\Yx,...,Ym,y*+x,...,y*+x:2Yx,...2Ym, | «,,7, 0 < * < m),

m n \

-/"' 2diJYj+ 2 buy*+J(l</<«)
7=1 7=1 /

ofirq+x,for some dtJ E A.

Proof. Consider the exact sequence

o-2fr,-»-J5ri"»,+1ijsr#+1-o

which occurs as part of the augmented F-form, and define a homomorphism of

A-modules

k: <7,,...,7m,y*+,,y*+„: >-*77a+,

as follows. For 1 < /' < n, let Ky*+i be some element of 7ra+, such that hicy*+i =

4'9m+i: some such choice is possible because A is an epimorphism. For 1 < /' < m, set

kT, = uQYj. Since k is defined on a free A-module, this extends to a homomorphism.

If x G n- +,, there is an element y such that Aicy = Ax, since ip is an epimorphism.
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Thus x — «y G ker A = Im <o = Im ¿o</>. Hence there is an element z such that

x — «y = u<pz = Kz, and so x = /c(y + z), and k is an epimorphism.

It remains to identify the kernel of k. Note that

k(2Y,) = u4>(2Y¡) = u2<j,Ys = 0,

and

J I'M ="*( 2 Ävt/J =0-i/=i
Also

**( 2 V«+y) =r    iyj =0,

and so there exist d¡¡ such that k(2"=, ¿>,7y*+j,) = -»_1K(2y"=, ¿/,7^). This uses the

fact that k| (7,,...,7m: > maps onto Im¿o = kerA. Thus ker« contains all the

elements listed as relations in the statement of the lemma: we must now show that

these elements span the kernel.

Suppose that y G ker«. Then A/cy = 0; but Ak is defined by AkT, = 0 (1 < /' < m)

and Aicy"*+/ = ^9m+¡ 0 ^ ' ^ «), so there exist \k such that

n n m

y= 2 *m+k 2 bkjy*+J+ 2 V*-
k=\ y=i k=\

Thus
n I m n \

y- 2 K+k\-r} 2dkjYj+ 2bkJym+j\
k=\ \       y=i y=i /

m     i n \ m

= 2    a, + /-' 2 \m+JdJk \fk = 2 Ä,   say.
k=\\ j=\ I k=\

Applying k to both sides of this equation, we obtain K(fZk=xßkYk) — 0, and so

¿o<K2¡T=,tó) = 0. But ker cocí) is spanned by 2Yl,...,2Ym,2j=xaijYJ (1< » « m),

and so the result is established.    D

Define the matrix U over ro by uJk = [Kym+J, Ky*+k}; of course some choice is

involved here because the pairing { , } takes values in ro/T. Define E by the

equation (1 - t~x)E = BU - r'(l - t)DA-xS; I claim that E has entries in T. For

n m

(1 - rx)e,k = 2 bijUjk - r'(l - t) 2 dsjiA-'S)Jk
7=1 7=1

= «   2 6,yÄ+y7.*Ä+*| - '"' 2 duO(4,Yj,4,%+k)

= |K     2 ftiyÄ+yl.*Ä!+t| -'"' 2 ¿lyf«*/. «Ä+*}

- |KI   2 */yÄ!+y - r'  2 ¿,y5y    . «9m + k\
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which is zero in T0/r because the left-hand element in the pairing is zero, and hence

(1 — t~x)E has entries in T. But (1 — /): irq+x -» 7ra+1 is an isomorphism (by the five

lemma), and so E has entries in T.

Lemma 10.2. There exist matrices M, N, P, Q over A such that

[M    N\
\ C     Bl

A*     P*\      (Im    0

S*    Q*j        0      /„

Proof. Note that

IM    N\lA*     P*\lMA*+NS*    MP* + NQ*\
\C     B!\S*     Q*j      \ CA* + BS*    CP* + BQ* j

and as CA* + BS* = 0, we already have one of the required identities.

From the work of Blanchfield [B,p. 351], there is a presentation (£>*,... ,v*:

slj"=xa*jVj*, 1 < /' < m> of //*, with quotient map i//*: (v*,... ,vm:) -** H* such that

{W,*Yj) = i\ - rx){A*-x)u   (mod A),

using the fact that (1 — t): Hq -> Hq is an isomorphism.

Since the pairing ( , ) is nonsingular, we may identify Hq+X and //*; thus there

exists a matrix N over A such that

n

t//*t>* =  2 »iyJS+y. l<t<m,
7=1

Substituting for \p*v* gives

(l-r1)^*-1),* = (+*«?. *^>

= (  2 ^Ä+y.+Ä)

^Ín,J(l-rx)(S*A*-x)jk.

7=1

Thus there exists a matrix M over A such that

(l - r1)/!*-1 = (l - t~x)NS*A*-] + (1 - rx)M

(this uses the fact that (1 — r) does not divide det A) and hence

/ = NS* + MA*,

which is another of the identities we require.

Appealing again to [B, p. 351], there is a presentation

(fm+1,...,Fm+n:  2   bfjVm+J,\<i<n\

of H such that

<M+„**Vm+k) = V-rl)iB-*)ik   (mod A).
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From the identification of Hq+X  and //*, there exists 5 over A such that

$*Vm+k =-IJ^p^Yj.Then

(1 -r')iB-')ik = ^yZ+i,^Vm+k)=Uy*+i,- 2 *pkjY\

m m

= - 2 Pkj<W+i.*Yj)3 - 2 PkJii - rx)is*A*-x)ij
7= 1 7= 1

and so there exists a matrix g over A such that

5"1 = -S*A*~XP* + Q*,

I = -BS*A*'XP* + BQ*,

/= CP* + BQ*,

which is another of the identities needed.

Note that 5 is not unique; since (¡>i2j"=xaijYj) = 0, we could replace pkj by

pkj + 2j"=, vua,j. Thus 5 can be replaced by 5 + TÍA. It follows from the equation

Bx = -S*A*~xiP* + A*U*) + Q* + S*U*

that g* must then be replaced by Q* + 5*11*.

We then have

C(P* + ^*n*) + 5(g* + S*TT*) = CP* + BQ* + (CA* + 55*)n* = /,

and

M(5* + A*TL*) + N(Q* + S*Tl*) = MP* + NQ* + (MA* + NS*)Ti*

= MP* + NQ* + n*.

Choosing n so that MP* + NQ* + U* = 0 completes the proof.    D

Lemma 10.3. DC* + tCD* = BTB* for some matrix T over T, such that T* = tT.

Proof. Recall that

(1 - rx)cik = - ( * 2 M:+/. *** )    (mod A).

This impües that

(1 - rx)clk = - L 2 bsjfc+j, ky\    (mod r),

(l-/-1)(5-1C)„=E-{Kym+.,Ky,},

(1 - rx)iB-xCD*)ik = - Ly*+¡, K 2 dkA.
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Since Ki-r^d^Yj + 2"J=xbkjy*+J) = 0, this gives

(1 - rx)(B-xCD*)ik = Ly*+i, Kt 2 bkjy*A,

(t - l)(B-xCD*B*-x)lk EE {Ky*+i, Ky*+k}

andso(/-' - l)(B-xDC*B*~x)ik = {Ky*+k, Ky*+i}.

But {kx, Ky) = {/cy, kx), and so

(r1 - l)(B-xDC*B*-x -it- l)B'xCD*B*-x = 0   (mod T),

(1 - rx)B'xiDC* + tCD*)B*x = 0   (mod T).

Since (1 — t) does not divide det 5, this implies that

BX(DC* + tCD*)B*-x = T

for some matrix F over T, as desired. Finally, BT*B* = (BTB*)* = CD* + rxDC*

= tBTB*, and since 5 is nonsingular, this gives T* — tT.    D

Lemma 10.4. E can be chosen so that DC* + EB* - t(CD* + BE*) = 0.

Proof. Substituting (I - rx)E = BU + (I - rx)DA-xS gives

(1 - t~x)[DC* + EB* - t(CD* + BE*)]

= (1 - t~x)iDC* - tCD*) + BUB* + (1 - rx)DA~xSB*

+ BU*B* + (1 - t)BS*A*~xD*

= (1 -rx){DC* - tCD*)

+ BÍU+ U*)B* + (1 - rx)DC* + (1 - t)CD*

= 5(<7+ U*)B*

since we are working mod 2. Recall that from the proof of Lemma 10.3, U =

(t - l)BxCD*B'x (mod T). Thus we can set

U = (t - l)B~xCD*B*x + (/"' - l)K,

where K is a matrix over T to be chosen later. Thus

5(t/ + U*)B* = (t - l)CD* + (/"' - 1)F»C* + (r1 - 1)5(tY + tK*)B*

= (/"' - 1)[/CD* + DC* + BiK + tK*)B*]

= (/"' - 1)5(5 + K + tK*)B*

by Lemma 10.3. The argument of [K5, pp. 157-158] shows that K may be chosen so

that T + K + tK* - 0, and this completes the proof.    D

Now we construct the required 2¿7-knot k. Take a presentation with a single

0-handle, m (q — l)-handles hf~x (1 < » *£ m), and n unknotted ¿/-handles hqm+i

(1 < / < «). This gives an exterior g as in §6, and we choose bases for Hq(Q, 9g),

etc., as in that section. Define [Í5J G Hq(Q, 9g) by
m n

[»,] =  2 û/yU] + 2 *y[Ä,+y].        Kí < w.
7=1 7=1
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By Lemma 10.2, the matrix (pq) is invertible over A, and hence the [©,],

1 < /' =£ «7, form part of a basis for the free A-module Hq(Q, 9g). By the Hurewicz

theorem, tr(Q, 9g) = Hq(Q,dQ), and each [v¡] may be represented by a map /:

(Bq,dBq)-^(Q,dQ). Recalling that 9g = M X Sx, we see that 7ra_,(9g) =

■nq-X(M) © irq-X(Sx) = irq_x(M), and so / may be homotoped until f(dBq) C Mx

for some Mx = M X * C M X Sx. By general position, homotop/ until/: 95? -» M,

are disjoint embeddings, and then by general position homotop {Jf=xf¡ rel 9 until it

is an embedding. We can then take f(Bq) as the core of a ¿7-handle hf with its

attaching tube in Mx, and hence obtain a ¿7-handle hf of k.

Next define (V*+l) E vq+x(Q, 9g) by
m n m n

(K+l) = 2 c(7(iy*) + 2 Mft+y) + 2 rf,y(j>,) ° Í + 2 e,y(ym+y) o £,
7=1 7=1 7=1 7=1

and represent (V*+i) by a map gm+/: (59+1, 959"1"1) -» (g, 9g). As above, we can

homotop gm+, until gm+i(àBq+x) C M,. The algebraic intersection of gm+,(959+1)

with fjidB") is easily seen to be SM|([9F*+1], [9*3,]) = S^[V*+i], [Vj])t=l =

(C(1M*(1) + 5(1)S*(1)),7 = 0 by Lemma 6.14. Here C(l) denotes C with t = 1. By

the Whitney trick, we can homotop the gm+i until U"=, gm+i(dBq+x) n

U™ xf,idBq)= 0. In a similar spirit,

TM[{W*+I), {dV*+j)) =[D(1)C*(1) + F(l)5*(l) + Cil)D*il) + 5(1)£*(1)],7.

(Compare the proof of Lemma 6.18.) Since the matrix on the right is zero, the results

of [Kl] show that U"=lgm+, may be homotoped to be an embedding on the

boundary. As in Lemma 6.19, U"=, gm+, can be homotoped rel 9 to an embedding,

and then gm+,(5,+ ') yields a (¿7 + l)-handle hqm++\ of k corresponding to (F*+;).

By the homology properties of [6t] and [V*+J] (compare §6), after adding in all the

handles of k constructed so far, we obtain an unknotted S2q~l, which may be

capped off to complete the construction of k.

11. The Seifert surface. Let k be a simple Z-torsion-free 2¿7-knot, ¿7 > 4. By

Lemma II. 11 of [Ke], there exists a Seifert surface V of k which is (q — l)-connected

and has H (V) torsion-free.

Choose a basis af,.. .,af of Hq(V): this gives rise to a dual basis aq+x,...,aq+x of

Hq+x(V) by the intersection pairing /: Hq+x(V) X Hq(V) -* Z, by Poincaré duality.

There is also a basis ßf+x,...,ßq+x of Hq+x(S2q+2 - V), dual to af,...,af under

the linking pairing L: Hq(V) X Hq+ x(S2q+2 - V) -» Z by Alexander duality. Thus

l{af+x,a])=8u = L(aq,ßq+x).

Similarly there is a basis ßf, ...,ßr9öf Hq(S2q+2 - V) such that L(af+ ', ßf) = 8tJ.

Let i± : Hjy) -» H*(S2q+2 - V) be induced by translating cycles off V in the

positive/negative direction, and define the integer matrices A, B by

'+«?= 2*,jß?, '-<= EM/-
7=1 7=1

Then H (K) is presented as a A-module by the matrix tA — B. As in [L2], the

corresponding matrix for Hq+X(K) is (-l)q(q+X)t(rxA - B)' = A' - tB'. Let <¡>s:

(ßsx,...,ßf:)^> HS(K) be the quotient map. Then arguing as in [K5], the Blanchfield
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pairing is given by

(<t>q+ xßq+ ', Wj>> EE ( 1 - r)( A' - tB')f]    (mod A ).

Just as Hq(K) is presented by tA — B, so irq+x(k) has a presentation as a

A-module:

(ßq,...,ßq,ßq+x,...,ßq+i:2ßf,...,2ßq, 2 itA - B),jßf {I <i<r),
\ 7=1

2 itC - D),jßf + 2 U' - ^'),7/3,?+l   (1 <£ i < r) )
7=1 7=1 /

where the matrices C, 5> are defined as follows.

»+(«r1)= 2 -M^+,)+ £««(#)•*.
7=1 7=1

».(«r1)= 2  -«y,(^+1)+ 2 4y(/»/W
7=1 7=1

where as before ( ) denotes a homotopy class and f represents the nonzero element

of*,+ 1(S').

Recalling that Tlq+X(K) = •nq+x(k)/2irq+x(k), we obtain the following presenta-

tion for Tlq+X(k) as a T-module:

lßq,...,ßq,ßq+x,...,ßq+]:   2 {tA-B),jßf(l<i<,r),
\ 7 = 1

2 itc- D),jßf + 2 U'- ^')^+1 O <«■ <0).
7=1 7=1 /

Let ti: (ßf,...,ßq, ßf+x,...,ßq+x: )^Uq+x(K) denote the quotient map, and £:

w9+i(J/) X ^+i(52,?+2 - V) -> Z2 the homotopy linking. We can alter (/V+l) by

elements (ßqk) ° f until t((af+x), (ßf+.x)) = 0 for all /, j. Then

c,k = e((«r •). <+ («r')) = £(/_(«r ■), «r1) = «*«
and so 5> = C. Then we can compute the pairing [, ]:

lïA'+'.Tif 2 itc - c)kjßf +2W- tB')kjßf+l\ = o,
W-1 7=1 /.

2 (r'c-co^u/sr1.^/] + 2 (^'-r^O^T,^1,^'] eeO,
7=1 y=i

2 (¿' - r,5')*y[iJ/3r1>T,/8/+1] ee 2 (r'C- C')*y(l - t)(A' ~ tB')¡),
y=i y=i

[W+I,i|#+I]s(i-0 2   2 (r'c-C')^^'-/5')-,(^'-/-'5')/-;
y=l Jfe = 1

= (1 - t)[iA' - tB')-\rxC' - C)(A - t-xB)-']u.
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At this point we wish to use the results of [K6]. But first we must point out that

Theorems 3.1, 3.2 and 13.1 of that paper are only valid for q>4. There is an

assumption in the proof of Lemma 6.1 of [K6] that certain normal bundles are

trivial, which I am unable to justify. However, the lemma can be proved (for q > 4)

by appealing to [Ko, Lemma 3] or to the techniques of [Kl].

As indicated in [K6, §13], the matrices A, B and C can be obtained from a

(-l^-form associated with the knot k, where ¿7 > 4, by a choice of bases. Thus, via

the geometrical theorems of the present paper and [K6], for q > 6, we obtain

Theorem 11.1. Two Z-torsion-free (-T)q-forms are T-equivalent if and only if they

present isometric F-forms.

Corollary 11.2. Theorem 2.1 is true for ¿7 s* 4.

Corollary 11.3. Theorem 2.2 is true for ¿7 > 4.

Corollary 11.4. Theorem 2.3 is true for q > 4.

12. An example. Some of the invariants studied in this paper are not new; for

example Hq(K) and its associated ideals and polynomials. On the other hand

Tlq+X(K) and the associated Hermitian form [ , ]¿ are new, although it has arisen in

another form as a Z2 homotopy pairing in [K6 and Ko]. So far as I am aware, no

example has yet been given to show that this Z2-pairing is necessary, and the reason

for this is that it is difficult to find an invariant of the knot which depends on the

Z2-pairing. The explanation for this is as follows. Being a T-module, we can apply

the analysis of [Ml] (as modified in [K4]) to (Tlq+X(K), [, ]K). That is, Tlq+X(K) can

be written as the orthogonal direct sum

-M     -N
Pit)    pU)ait) A*'>

where (p(t)) = (p(t~x)) and Mp(l) is they7(/)-primary component, (q(t)) 7= (¿7(i-1))

and N (t) is the direct sum of the q(t) and q(t"^-primary components. Concentrat-

ing on the former case, each Mp(t) can be written as the orthogonal direct sum

Mx ± M2 ± ■ • • A. Mr, where each M¡ is the direct sum of modules of the form

T/(p(t)'). Then Mi/p(t)Mi is a vector space over the finite field T/(p(t)), and in

fact it is a Hermitian vector space by ((x),(y)) = [p(t)'~xx, y]. But a Hermitian

vector space over a finite field is determined by its rank (cf. [Ml]), so we obtain no

new invariants by this means. Worse still, it is not hard to show that the Hermitian

vector spaces so defined determine the original T-module and pairing, so that it

looks as though [, ] ¿ contributes nothing.

Consider the following examples. Let Hq - A/(l - / + i2) © A/(l - 3/ + t2)

with generators ¿7, b. Then %q = T/(l - t + t2) © T/(l - t + t2), and we define

n,+ 1 = T/(l - t + t2)2 © T/(l - t + t2)2, with generators a, ß. We define

Hermitian forms [, ] and ( , ) on Tlq+, by

[«,«]=-!--=[ß,ßl    [a,ß]=0,
(1 -t + t2)2

(a,a)=0=(ß,ß),    (a,ß)=-l---.

(1-/ + /2)2
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Let pq(a) = (1 - t + t2)a, pq(b) = (1 - t + t2)ß, where %q is identified with

(1 — t + t)Tlq+x. Then % °*Tíq+x -** Tlq+x/% defines a s.e.s. S, and setting

%q+x = na+1/3Ca, it is clear that [, ] and ( , ) each define a nonsingular Hermitian

form %q+ , X 3Ca -> Tq/T. Hence we have two F-forms, which correspond to two

knots k and / say. Although it is not hard to see that (Iia+I, [ , ]) is isometric to

(na+1, < , )), by changing basis, it is equally clear that the F-forms are not isometric,

for the form of Hq means that the change of basis permitted in na+1 is restricted to

one of the form a i-» ea + (1 — / + t2)ß, ß i-* e'ß + (1 — t + t2)a, where e, e' are

units of T mod(l — t + t2)2 and this is not sufficient to transform (na+1, [ , ]) into

(na+„<,».Thus^/.
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