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ON THE «/--MIXING CONDITION
FOR STATIONARY RANDOM SEQUENCES1

BY

RICHARD C. BRADLEY, JR.

Abstract. For strictly stationary sequences of random variables two mixing condi-

tions are studied which together form the i//-mixing condition. For the dependence

coefficients associated with these two mixing conditions this article gives results on

the possible limiting values and possible rates of convergence to these limits.

For strictly stationary random sequences, the "«/--mixing" (or "*-mixing") condi-

tion was introduced by Blum, Hanson, and Koopmans [2]. They showed that for

Markov chains satisfying this condition the mixing rate had to be exponential; later

Kesten and O'Brien [5] showed that in the general case the mixing rate could be

arbitrarily slow and that a large class of mixing rates could occur for stationary

ip-mixing random sequences. This article will probe further into the nature of this

mixing condition.

Let (Í2, *3, P) be a probability space, and for any collection Y of random variables

let <$>(Y) denote the Borel field generated by Y. For any two a-fields & and ® define

^*i&,^) = sapPj\n.B\,       A E&,BE9,,P(A)P(B)>0;
P{A)P{B)'

P(A PB)

PiA)PiB)>
Vi&,®>) = mîPlA.n.B\,       A E&,BE§,PiA)PiB)>0.

Obviously i//(éE, $) = 1 = \¡/*(&, %) if (t and % are independent a-fields; otherwise

}'i&,<&)< 1 <<//*($, ®).
Given a strictly stationary sequence (Xk, k = .. .,-1,0,1,...) of random variables,

define for -oo</<L^t» the a-fields %L = <$>(Xk, J < K =c L), and for n =

1,2,3,... define «//* = ^*(Si0cc, ̂ ) and «/*„' = «f-'CÍ0«,, %?)■ The «//-mixing condition

is

lim «//* = lim «// = 1.
n-*cc n-*cc

A strictly stationary sequence (Xk) is called "mixing" if

VA, B E <$xx,  lim P{A n T~"B) = F(^)F(t5)
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56 R. C. BRADLEY, JR.

where F is the usual shift operator on events in SL0^. We will prove the following two

theorems:

Theorem 1. If (Xk) is strictly stationary and mixing, then each of these two

statements holds:

(i) Either «//* -» 1 as n -» oo or «//* = oo V/i.

(ii) Either «// -» 1 as n -» oo or «// = 0 Vn.

Theorem 2. Suppose (c*), (c'„), and (d„), n — 1,2,3,..., are sequences of positive

numbers, (c*) is nonincreasing, (c'n) is nondecreasing, and limn_xc* = limnJMc¡, = 1.

Suppose M* and M' are each an element of {1,2,3,...} U {oo}. Then there exists a

strictly stationary sequence (Xk) of random variables such that the following statements

hold:

(i)Ifn <M* thentf = oo.

(ii) Ifn<M' then «// = 0.

(iii) Ifn^M* then c* - d„< «//„* < c* + d„.

(iv) Ifn>M' then c'„~dn^ «// <c'„ + dn.

(v) Ifn > max{M*, A/'} and c* = c'„ = 1, then «//* = «//„' = 1.

Some remarks are worth making before we prove these theorems. In Theorem 1 (ii)

the assumption of mixing is superfluous. In fact, if either tail o-field of (Xk) is

nontrivial, then «//* > 2 and «//„' = 0 V/7. To see why, consider (for example) the case

where for some A E n"=15."^, 0 < P(A) < 1. Replacing A by Ac if necessary, we

may assume P(A) < 1/2. Then

P(A DA)/[P(A)P(A)]>2   and   P{AC n A)/[P{AC)P{A)] = 0.

Given y > 0 we can choose an integer J and an event B E'Sf with F(^l A B) so

small that

P(AC\B)/[P(A)P(B)]>2-y    and    F(yF n y3)/[F(^c)F(y3)] < y;

hence «//* > 2 — y and «//„' < y V/j. To complete the argument, let y ^ 0.

Further, if one combines Theorem l(i) with a recent result of Berbee [1, Theorem

2.1], one can show that for any ergodic stationary sequence, lim«//* is a positive

integer or oo. The argument will not be given here, for it would require a lot of extra

notation; but it is straightforward.

For the </>-mixing and weak Bernoulli conditions, results similar to Theorem 1 can

be found in [3,4]. Theorem 2 extends Theorem 3 of [5]. Perhaps some of the limit

theorems under «//-mixing that are in the literature might still hold under one of the

weaker conditions «//* -» 1 or «//„' -» 1.

Proof of Theorem 1. The proofs of (i) and (ii) are similar, so we will only give

the argument for (i).

Let q = lim„_«,«//* and suppose 1 < q < oo.

Let 0 < e < 1 be such that (q - e)2(l - e)3 > q + e. Let N > 1 be such that

«//* < q + e. There are integers / and / and events B and C such that / < 0 < N < J,

B E %°, C E 9¿, and P(B C\C)>(q- e)P(B)P(C). Let 0 < y < e be such that

2y/[(l-y)P(BnC)]<e.
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It follows from Theorem 1 of [3] that iXk) satisfies the "cij-mixing" condition in

both directions of time. Thus there is an integer M > N such that «//^ < q + y and

such that the following inequalities hold for each F E ®s~™ and for each FeÇ

(withP(F)>0):

|P(/?|F)-P(/?)|<yP(/3),        |P(C|F)-P(C)|<yP(C),

and

\P(BC\ C|F) - P{BD C)\<yP{BD C).

Let A E <$l£+I and D E <§™+J be events such that

P{A r\D)>{q- y)P(A)P{D).

If P(B n C\A) = 1, then P(D\A n B D C)/P(D) >q-y>q-e. If instead

P(B D C\A)< 1, then

p(/)|^ nsn c)/p(d)

= [P(D\A)/P(D)

-[p(d\a n (b n c)c)[i - p(5 n c|4)]]/p(/?)}/p(5 n c|>4)

>{(9-y)-(? + v)[i-P(5nc|/i)]}/F(75nc|^)

>q-2y/[PiBnC){l-y)]>q-e.

Now

p(.4 n y? n c n />) _ p{a)p{b n c|¿)p(z>|¿ n g n c)
P(^l ny3)F(Cn/)) ~ P(,4)P(5|i4)P(Z))P(C|D)

^ P(2?nC)(l-Y)(g-e)

P(5)(1 + y)P(C)(1+y)

>(a-e)2(l -ef>q + e>rN

which is a contradiction. This completes the proof.

Proof of Theorem 2. We will first prove a technical lemma and then explain how

it will be used.

Lemma 1. Suppose ânand<$>n,n = 1,2,3,..., are a-fields and the a-fields ( &n V <$>n ),

n = 1,2,3,..., are independent. Then

(OO OO \ 00

"=1 «=1        /        „=,i=l

and

00 00

»=1     »=1 „=1
«H v«, va l= n^'K,®J

Proof. We will prove only the first equality; the proof of the second is analogous.

It suffices to prove «//*(«, V &2, % V %) = ,//*(#,, <$>.)■+*(&2, %2), for then in-

duction and an approximation argument can be used.
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With an elementary argument one can show that

p(a nincnD)
«//*(<£, V&2,% V<&2) = sup-

P(A n C)P(BDD)

where this sup is taken over all events A E &x, B E*$>x, C E &2, and D E%2 which

have positive probability. This supremum is also easily seen to be equal to

«/<*((£,, $,) •«//*(6E2, ®2). This completes our proof of Lemma 1.

For a given strictly stationary sequence (Wk, k = . ..,-1,0,1,...) we will often

denote the mixing coefficients «//* and «//„' by «//*((IF^)) and «//„'((IF^)), respectively, in

order to avoid confusion when other stationary sequences are also being discussed.

That is,

*;((»;)) = r{%Wk,k < 0), ®(IF„ k > n))

and

«((W*)) = VC&iWk, k^0),%(Wk,k>n)).

Of course in these notations the letter k is superfluous. If (Wk) has the form

Wk = f(Wk(X), Wj/X, Wk°\...)Vk where/is a one-to-one bimeasurable Borel function

and the sequences (rVkU), k = ...,-1,0,1,...), j= 1,2,..., are stationary and

independent of each other, then for each fixed k one would have %(Wk) =

%(Wk(j), j' = 1,2,3,...), and hence by Lemma 1 one would have ^*HWk)) =

Hj^iiW^)) and MiWk)) = TLjMWP)) for each n.
Our procedure for proving Theorem 2 will be as follows: In Definition 1 a family

of relatively simple stationary sequences is constructed, and in Lemma 2 some

simple bounds are given for their mixing coefficients «//* and >//„'. Then a "chain" of

stationary sequences will be constructed, starting with Definition 1 and ending with

a sequence that satisfies the conditions of Theorem 2. Following the pattern of the

hypothetical example iWk) above, as we proceed along the "chain" each new

sequence will be constructed from the preceding ones and bounds on its mixing

coefficients will be obtained by means of Lemma 1.

In what follows, for events E and F the phrase "F C F a.s." means P(E — F) = 0,

and the phrase "E — F a.s." means P(E — F) = P(F — E) — 0; similarly for

a-fields â and "35 the phrase "6B = ÍB a.s." means "6B = ® up to sets of probability 0".

Definition 1. Suppose N is a positive integer, 0 < q < 1, and 0 < r < 1. A

random sequence (Yk) is said to have the "S(/V, q, redistribution" if it has the same

probability distribution as the random sequence ( Xk ) defined as follows:

Let (Uk, k = ...,-1,0,1,...) and (Vk, £ = ...,-1,0,1,...) be i.i.d. sequences,

independent of each other, with P(Uk = 1) = 1 - P(Uk = 0) = q and P(Vk = 1) =

1 — P(Vk = 0) = r. For each fixed k, Xk = 1 if either of the following two condi-

tions holds, and Xk = 0 if instead neither condition holds:

(i)Uk= l,(Uk_N,...,Uk_x)^(l,0,...,0),andVk= 1; or

(ii) Uk = 1, (Uk_N,. ..,Uk-i) = (1,0,.. .,0), and Vk = 0.

Lemma 2. Suppose N is a positive integer and 0 < r < I. Then for any 0 < q < 1 a

random sequence with the o>(N, q, r)-distribution is strictly stationary and N-dependent.

Given any e > 0, there exists q, 0 < q < 1 (depending on N and r as well as e), such
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that ifiXk) has the S(/V, q, r)-distribution then the following three statements hold:

(i)P(Xk=l)<eVk.

(ii) If r< 1/2, then

(1 - r)/r - e <«//*<«//*< (1 - r)/r + e

and\p[ > 1 — e.

(in) Ifr > 1/2, then «/<* < 1 + e and

(l-r)/r-e<^<^<(l-r)/r + e.

Proof. The stationarity and N-dependence are trivial.

Now let N and r be fixed, with 0 < r < 1. (No assumptions are made on whether r

< , = , or > 1/2.) Let e > 0 be fixed. Without losing generality we assume e < 1.

The following two technical functions of the variable q will be used below:

Wf] a[l - 9(1 - q)N~l]v + (1 - i)"-yO - r),

g»Ai) =b - (i - <?)"" V+o - i)""1*» - o.
Let o and y now be fixed such that

0<a<y<e,       qr + q2{l - r) < qr(l + y),

l-e<il-y)N+,<{l-q)Nil+y)-\

{l-q)-2N<{l-q)-Nil-y)-N<l+e,

{I - r)/r - e< {I - q)N~l{l + yy\l - r)/r,

il -qT2N il -r + y)/r< {I -r)/r + e,

9/[(l-*)"+1(l-r)]<y,       a/[il-q)N+ir]<y,

fNM) < «r(i + y) < e,     gN.r(<i) < q(i -v + y).  and

(1 - r)/r - y < gNM/fNM < (1 - r)/r + Y-

Let (A¿) be a random sequence with the S(/V, a, /-)-distribution. We wish to prove

that (Xk) satisfies (i), (ii), and (iii) (whichever are applicable) in the conclusion of

Lemma 2.

Without losing generality we assume that on the same probability space (fi, 9, P)

on which (Xk) is defined, ( A¿) is accompanied by random sequences (Uk) and (Vk)

such that (for our fixed values of N, q, and r) all conditions in Definition 1 are

satisfied.

From Definition 1 and the last three inequalities in (1) we have

P(X0=l)=fNr(q)<qr(l+y)<e,

(2) P{XN=l\X0=l)= gN<riq) <q{l-r + y),

(1 - r)/r - y < P(XU = 11 *<, = l)/^** = 1) < 0 ~ OA + Y-

For any integers 7 =£ L define the events £)(/, F) = {í/¿ = 0, J < k < L} and

F( J, L) == {A1* = 0,/ < fc « L), and for J > L define />(/, L) = F(J, L) = Ü. For

(1)
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L = 1,2,3,... define the events

B{0, L) = D(l,L- 1) n {XL = 0,UL= 1},

Bil,L)=D{l,L- 1) n {XL= UL= I},

B(L)=Fil,L-l)n{XL=l}.

Claim 1. For any A E ®(t/¿, Vk, Xk, k < 0) and B E <$>(Uk, Vk, Xk, k > 1),

(i) PiAriB\U0=l) = P(A | i/0 = 1) • P(B | I/0 = 1), and

(Ü) P(/f n /5 j D(-N +1,0)) = P(A | F>(-/V + 1,0)) • P(B \ D(-N + 1,0)).

Proof. Let % denote the set of all events B E %(Uk, Vk, Xk, k > 1) for which

there exists B* E <$>(Uk, Vk, k > I) such that B n {U0 = 1} = t3* D {U0 = 1} a.s.

To prove Claim l(i) we will first need to prove that % = 9>(Uk, Vk, Xk, k > 1).

Now % contains fi and 0 trivially, and it is easy to see that % is closed under

countable unions and complements. Hence % is a a-field. Obviously % D

%(Uk, Vk, k 3* 1). To prove that % = ^>(Uk, Vk, Xk, k > 1) we only need to show

that for each k^ l,<S>(Xk) E%. This is clearly so for k > N + I, since in that case

®(Xk) C *$([/„ V,, I 3= 1) c %; so we restrict our attention to integers k satisfying

1 < k « N.

Since each Xk takes on only the two values 0 and 1, we only need to show that for

each j, 1 <7 < N, we have {Xj■— 1} E %. In the case j = N, for the event

B = {XN = 1} define the event B* by

B* =
{{{ux,...,uN_x)¥^io,...,o)}n{vN=i})

u({(ux,...,uN_x) = (o,...,o)}n{vN = o})
n{uN=i}.

In the case 1 < / < A/ — 1, for the event B = {Xj— 1} define the event B* by

5* = {J/ = 1} n {Uj = I}. In either case, B* E ®>(Uk, Vk, k > 1) and B C\ {U0 =

1} = B* n {i/0 = 1} a.s., and hence {Xk = 1} E % for 1 =£ k < N. We have finished

the proof that DC = ®(I/t, Vk, Xk, k > 1).

Now the rest of the proof of (i) is straightforward. The proof of (ii) is similar to

the proof of (i).

Claim 2AÍBE %(Uk, Xk, k > 1) and P(B) > 0, then P(U0 = 0 \ B) > 1 - y.

Proof. Let B be fixed. The collection <3> = {D(l, N), B(0,1),.. .,B(0, N),

B(l, 1),.. .,B(l, N)} is a partition of Ü; and hence there exists an event D E 9 with

P(t3 n D) > 0 such that P(U0 = 0 \ B n D) < P(t/0 = 0 | S). Letting this event F>

(as well as B) be fixed, we only need to prove P(U0 = 0 \ B n D) > 1 — y.

We will first prove

(3) PiU0 = 0\BDD) = PiUo = 0\D)

and then prove P(U0 = 0 \ D) > 1 - y. The proof of (3) will be separated into two

cases according to whether D i= D(l, N) or D = D(l, N).

Case 1. D ^ D(l, N). That is, D = B(h, L) where h E {0,1} and LE

{1,2,...,A}. Since {Uk = 0} C {Xk = 0} for each k, one has that B(h, L) is an

atom of <$>(Uk, Xk, 1 =£ k < L), and hence there exists 5* E %(Uk, Xk, k > L + 1)

(depending on // and L as well as on B) such that B C\ B(h, L) = B* C\ B(h, L) a.s.
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We have

p({u0 = 0} n B n B(h, L)) = p({u0 = 0} n b* n ß(/i, l))

= P({«70 = 0} n B(h, L))P(B* \UL=l)

by stationarity and Claim l(i); also

P(B fl B(h, L)) = P(B* n B(h, L)) = P{Bih, L))P(B* \UL= I)

holds by stationarity and Claim l(i); and therefore (3) holds (for Case 1) because

Piu0 = o |B n Bih, L)) = P({u0 = 0} n B n Bih, l))/p{b n B{h, l))

= P({U0 = 0} n /?(//, L))/P(B{h, L)) = P(U0 = 0 I /?(//, L)).

Case 2. Z> = 0(1, A). Since PiXk = 0 | Uk = 0) = 1, Z)(l, A) is an atom of

%(Uk, Xk,l<k< N); hence for some B* E <$>(Uk, Xk, k > N + 1), B n £>(1, A)

= tS* n F>(1, A) a.s. Now

p({u0 = 0} n 5 n Z)(i, a)) = p({î/0 = 0} n b* n z»(i, a))

= p({í/0 = 0} n/)(i,A))-P(y3*|/)(i,A))

by stationarity and Claim l(ii);

P(y5nD(l, A)) =P(t3* n/)(l,A)) = P(D(1, A))-P(fi* | D(l, A));

and hence P(t/0 = 0 | tS n D(l, A)) = P(U0 = 0 \ D(l, A)) which is (3) for Case 2.

Thus (3) is verified and now we only need to prove P(iV0 = 0 | D) > 1 — y. We

will simply verify that P(U0 = 0 \ F) > 1 - y for every Fei

Trivially we have P(U0 = 0 | D(l, A)) = P(U0 = 0) = 1 - q > 1 - y by the first

inequality in (1).

For L — 1,2,..., A we have

B(0, L) D D(l, L - 1) n [UL = 1} n {VL = UL_N = 0}

and

B(l, L) D D(l, L - 1) n [UL = 1} n {t/L_„ = 0, F¿ = 1}.

By Bayes' Rule we have

P(i/0=1|/?(0,L))

=_P(J(0,L)H/o=l)-P(t/o=l)_

P(P.(0, L) | f/0 = l)-P(í/0 = O + ^(5(0, F) | i/0 = 0)-P(t/0 = 0)

0+(l-qyqil-r).(l-q)

by the 7th inequality in (1). Similarly

P(t/0=l|/3(l,L)H-;-S2—--<Y

by the 8th inequality in (1). It follows that

P(t/0 = 0|5(0, L))> 1 -y    and    P(i/0 = 0 | t5(1, L)) > 1 - y.

Thus we have shown P(U0 — 0 \ F) > 1 — y for every event F in $, and Claim 2 is

proved.



62 R. C. BRADLEY, JR.

Now let öD denote the set of atoms of <$>(Uk, -N + 1 < k « 0).

Claim 3.

«//*<supP(y?(L)|a)/P(5(L)),       dE<$,L>l;

sP'x > inf P{B(L)\d)/PiBiL)),       dE6d,L>l.

Proof. Suppose A E <S>(Xk, k < 0) and B E %(Xk, k > 1), and that P(A) > 0

and P(fi)>0. Now fy and {B(L), L= 1,2,3,...} are each a partition of fl

(modulo null-sets). It follows that

.  , P(A DdDBn B(L))       P{A Fl B) PÍA DdHBH 5(F))
mf—-—— < —-— < sud—-——

P{A n d)P(B D B{L))     P{A)P(B)        vP{A n d)P(B n B(L))

where the inf and sup are each taken over all d E tf) and all L > 1 such that

P(A n d) > 0 and P(j3 D B(L)) > 0. To prove Claim 3 it suffices to verify the

identity

p(a n d n B n b(l))  _ p(B(L)\d)

{) P(And)P(BnB(L))~    PiB(L))

under these restrictions on L and d.

This is trivial if P(B(L) n d) = 0, so we assume P(B(L) nd)>0. Since Ä(L)

is an atom of <S( A^, 1 < k «£ L) there exists an event 5* E $(Xk, k > L + 1) such

that B n B(L) = B* n t3(L) a.s. Keeping in mind that the events A and 5 n B(L)

are conditionally independent given d and that 5(F) C {XL = 1} C {UL = 1), we

have

p(,4 n d n B n b(l))  _ p(bhb(l)\a n d) _ p(BnB(L)\d)

P{A n d)P{B n t3(L)) ~ P(5nfi(L)) P(y3ny5(L))

P(g(¿)|^)P(73|t/n t3(¿))

PiB(L))P{B\BiL))

_ P{BiL)\d)-P{B*\dC\ B{L) n{í/L= 1})

P(/KF))P(/?*|5(¿)n{í/L=l})

= P(B(L) I rf)-P(2>* j f/L=l)

P(S(£))P(B*|t/£=l)

with the last equality following from stationarity and Claim 1. Thus (4) holds, and

Claim 3 is proved.

Claim 4. For each L > 1 and each d E GÍ¡, either

(i) 1 - e < P(B(L) | d)/P(B(L)) < I + e or

(ii) (1 - r)/r - e < P(B(L) | d)/P(B(L)) < (1 - r)/r + e.

Proof. First consider the case where d = D(-N +1,0) and L is any positive

integer. Now P(d) = (1 - q)N and P(d\ B(L)) > (1 - y)N by stationarity and

Claim 2, and therefore by (1) one has Claim 4(i) since

1 - e <(1 - y)*< P{BiL) n d)/[PiBiL))Pid)]

<(1 - q)~N < 1 +e.
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Now consider the case where d ¥= D(-N +1,0) and L is any positive integer. For

some J, -N + 1 < / =£ 0, one has that dCD where D = {t/} = 1} Fl D(J + 1,0).

By stationarity and Claim 1,

(5)    P{B(L)\d) =P(BiL)\D) = (1 - q)JP{BiL) n/>(/ + 1,0) | U, = l).

Using (5) we will verify that either (i) or (ii) of Claim 4 holds, and our proof will be

broken into the following three cases: 1 < L < / + A — I, L = J + N, or L > J +

A+ 1.

Case l.KL<J + N-l. Now D(L - N, L - 1) n {UL = VL = 1} C B(L) C

{XL = 1} and we have by (2), (1 - qfqr < P(B(L)) < P(XL = 1) < qr(l + y).

Also,

(1 - qfqr < P(D(J + 1, L - l) fl [UL = VL = 1»

< P(P(F) n /)(/ + 1,0) | 1/} = 1)

< P(A-L = 1 | Uj = 1) = PiUL =VL=l) = qr.

Hence by (1) and (5), Claim 4(i) holds because

1 - e <(1 - qf il + y)"' ^ P(BiL) \d)/P{B(L))

<(l-9)/(l-?r<l+e.

Co«? IL L = / + A. As in Case I we have (1 - qfqr < P(B(L)) =£ ̂ r(l + y). By

stationarity, (2), and Claim l(i),

(1 - qf~Xq{l - r) = P(r3(L) n D(/ + 1, / + N - 1) | Us = l)

< P(t3(L) n DiJ + 1,0) | Uj = 1) < P(A>+iV = 1 | I/} = 1)

= P(A>+7,= l|A-/=l)<«?(l-r + y)

and hence by (1) and (5), Claim 4(h) holds because

(l-r)A-£<(l-9)'V-,(l+yr,(l-r)A

< P(BiL) \d)/P{BiL)) < (1 - r + y)(l - ^/(l - ,)^/r

< (1 - q)'2Nil - r + y)A < (1 - r)/r + £.

Case III. L>- J + N + 1. This will take a longer argument than Cases I and II

did. Let Bx = F(l, J + A) and t32 = F(J + A + 1, L - 1) n {XL = I}. Then fi,

fl B2 = B(L).

For each /, 1 < / < / + A, there exists an event G, E %(Uk, Vk,k>J+ 1) such

that G¡ D {Uj = 1} = {A", = 0} Fl {!/, = 1} a.s. (For 1 < / < / + A - 1, G, = {£/,

= 0} U {V, = 0}.) Defining P.* = C\J¿XG, we have t5* E %(Uk, Vk, k > J + I) and

P, n [Uj = 1} = B* n {£/y = 1} a.s.

Note that Bx D D(l, J + N)D D(J + 1, / + A). Since D(J + 1, J + A) n {Uj

= 1} C Bx n {i/j. = 1} = B* Fl {Uj = l}, it follows that B* D /)(/ + 1, / + A)

a.s.; here we are using the fact that the event {Uj = 1} is independent of the a-field

9>(Uk, Vk,ks*J+ 1), which contains both of the events B* and D(J + 1, / + A).
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Now by (5),

(1 - q)-JP(B(L) | d)/P(B(L)) = P{B{L) n />(/ + 1,0) | U, = l)/P(B(L))

= p(b? n b2 n D(y + 1,0) n{i/y = i})/[p(£/, = \)p(b2)p(bx\b2)]

= P(B* n D{J + 1,0) \B2)/P{BX \B2).

Now P(5, I B2) > P(D(J + 1, J + A) I P2) > (1 - y)* by stationarity and re-

peated applications of Claim 2, since B2 E <$>(Xk,Uk, k > J + N + 1). Similarly

P(5* n/»(/+ 1,0) |fl2)>P(£(./" + l,J + N)\B2)>(l -yf.

Thus(l -y^^PÍP* nö(/+ 1,0)|P2)/P(P, \B2)<il -y)~N.

Now Claim 4(i) holds because

1 - e < (1 - yf < (1 - yf (1 - <? )' < P(fi(L) | d)/P(B(L))

<(l-fl)J(l-y)-'V<l+e

by (1). This completes the proof of Claim 4.

Now the rest of the proof of Lemma 2 is easy. Lemma 2(i) holds by (2). For the

case r < 1/2 Lemma 2(ii) holds because (a) by Claims 3 and 4 and the fact

(1 — r)/r > 1 we have 1 — e < \p'x and «/<f ̂ (1 — r)/r + £, and (b) by (2) we have

«//£ > P(XN = l\X0 = T)/P(XN = 1) > (1 - r)/r - e. For the caser > 1/2 Lemma

2(iii) holds by a similar argument. Lemma 2 is proved.

Now we are ready to proceed along a "chain" of sequences to get to the sequence

(Xk) for Theorem 2. The intermediate "links" in the chain will be given in Lemmas

3,4, and 5.

Lemma 3. Suppose N is a positive integer and e > 0. Then the following two

statements hold:

(i) There exists a strictly stationary N-dependent sequence of integer-valued random

variables (Xk) such that \p%((Xk)) - oo and\p'x((Xk)) > 1 - e.

(ii) There exists a strictly stationary N-dependent sequence of integer-valued random

variables (Xk) such that M((Xk)) < 1 + e and VsiiXk)) = 0.

Proof. We will prove (i) first. For each n= 1,2,3,... let (X^"\ k = ...,

-1,0,1,...) have the §>(N,qn, l/4)-distribution where 0 < qn < 1 is chosen so that

P(X(kn) = 1) < 2-"e, WiXiH))) > 3 - 2""e, and «¿¡((*£">)) > 1 - 2""e. (Here we

are using Lemma 2(i)-(ii).) Assume that these sequences are independent of each

other. Define (A^.) by Xk = 2^=,2nA"¿") VA:. For each fixed k, this sum converges

a.s. by the Borel-Cantelli Lemma and %(Xk) = <&(XJ¿n), n = 1,2,3,...) a.s. An

application of Lemma 1 completes the proof of (i).

To prove (ii) let e0 > 0 be such that II"=1(1 + 2"%) < 1 + e. Let (A^"») have the

S(A, qn, 3/4)-distribution where 0 < qn < 1 is chosen so that P( X(kn) = 1) < 2""e0,

^((AT<"))) < (1/3) + 2-%, and <K((AÍ">)) « 1 + 2J% (Lemma 2(i) and (in)).
Now proceed as in the proof of (i) above.

To state and prove Lemmas 4 and 5 it will be convenient to work with log «//* and

log«//' instead of working directly with «//* and «//'. Here "log" always denotes the
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natural logarithm. Let (/„), n = 1,2,3,..., be a nonincreasing sequence of positive

numbers such that V«,

log{c*-d„)<log{c*)-tn,

log(c„*) + i„ < log(c„* + ¿J,

iog(c;-í/j<iog(c;)-í„,

log(c'n) + tn<log(c'n + dn),

and for each n let un = 2~"~2tn. (Here c*, c'n, and dn are taken from the statement of

Theorem 2.)

Lemma 4. There exists a strictly stationary sequence (Ykm) with the following

properties:

(i) VA, 7A(1) is rational a.s.

0i)Vn>l,log^((7f>))>-rB/2.
(hi) Ifn < M* then >//*((F/c(1))) = oo.

(iv)///i s> M* ande* > 1 then

log«) - tJ2 < log^*((yt(1))) < log«) + tJ2.

(v) If n > M* and c* — 1 then (Ykw) is at most (n — Independent.

Proof. Let the random sequences (X^"\ k = ..., -1,0,1,...) for n = 0,1,2,... be

independent of each other, each being strictly stationary, such that the following

statements hold (use Lemmas 2 and 3):

(a) If 2 «s M* < oo, then (A^0)) is an (M* — Independent sequence of integer-

valued random variables such that «//^,_,(( A¿0))) = oo and log «//[(( A^0))) > -uM»_x;

if instead M* = 1 or oo then Xf) = 0 Vk.

(b) If M* = oo, then for each n > I, (Jg">) is «-dependent, P(X(kn) = 1) = 1 -

P( A-<"> = 0) < 2~", >//*((4"))) > n, and log «//,((*<">)) > -un.

(c) If M* < oo and n is such that c* > I, then ( A|n)) is «-dependent, P( A^n) = 1)

= 1 - P(*<"> = 0) < 2"", log «¿i«*<">)) > -t/„, and

log(c„*/c„*+l) - un < log .//„*(( A^)) < log ,//*(( A"i">)) < log(c„Vc„*+1) + «„.

(d) If M* < oo and « is such that c* = 1, then ä£° = 0 VA.

Now define the sequence (F/1», fc = ..., -1,0,1,.. .)by Y<X) = Xj® + 2^x2-"Xl"\

For each fixed k, Ykm is rational a.s. by the Borel-Cantelli Lemma and ^>(Ykm) =

%iX¡.n), n — 0,1,2,...) a.s. (Ykm) is strictly stationary. Keeping in mind the inequal-

ity ^m=num < tn/^ V« 3* 1, we can use Lemma 1 and properties (a)-(d) above to

verify statements (ii)-(v) in Lemma 4.

Lemma 5. There exists a strictly stationary sequence (F/2)) with the following

properties:

(i) V/t, Yk(2) is rational a.s.

(n)Vn>l,logtf((YV))<t„/2.

(iii) Ifn<M' then «/-„'(( Ff ')) = 0.
(iv) Ifn>M' and c'n < 1 then

log«) - tn/2 < log ,//„'((F/2»)) < log«) + tn/2.
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(v) //« s* AF and c'n = 1 then (Yk{2)) is at most (« — l)-dependent.

Proof. To prove Lemma 5 we will proceed as in the proof of Lemma 4, but with

these specifications for the sequences ( A^"'):

(a) If 2 < M' < oo, then ( A¿0)) is an (AF — Independent sequence of integer-val-

ued random variables such that «/v-^A^)) = 0 and log »//,*(( Af»)) < uM,_x; if

instead AF = 1 or oo then Xf> = 0 VA.

(b) If M' = oo, then for each n > 1, (X[n)) is «-dependent, P(A^"> = 1) = 1 -

P( AÍ") = 0) < 2"", fflXJ!»)) < l/n, and log ̂ ((X^)) < u„.
(c) If M' < oo and « is such that c'„ < 1, then ( A^n)) is «-dependent, P(X(kn) = 1)

= 1 - P(XJn) = 0) < 2-", log «//*(( Aj"))) < u„, and

iog«/c;+1) - Mn< log,//;((at)) < log «//„'((*<«>)) <iog«/<+1) + «„.

(d) UM' < oo and « is such that c'n = 1, then A¿n) = 0 VA:.

Now define the sequence (y/2)) by y¿2) = A]°> + 2%x2-"Xln) VA:, and proceed as

in the proof of Lemma 4.

Now we can complete the proof of Theorem 2. Let the sequences (Ykm) and (Yk(2))

be as in Lemmas 4 and 5 and independent of each other. Define (Xk) by

Xk = y/" + eYJ? VA:. Since e is transcendental, %(Xk) = ^(Y^, Yf?) a.s. for each

fixed k. By using Lemma 1 again we can deduce the statements in Theorem 2 from

the properties listed in Lemmas 4 and 5. For Theorem 2(v) note that if « >

max{Af*, M'} and c* — c'n- 1, then both of the sequences (Yk(1)) and (Yk(2)) are at

most (« — Independent by Lemmas 4(v) and 5(v). This completes the proof of

Theorem 2.
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