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ON HOMOGENEOUS POLYNOMIALS ON A COMPLEX BALL

BY

J. RYLL AND P. WOJTASZCZYK

Abstract. We prove that there exist «-homogeneous polynomials p„ on a complex

d-dimensional ball such that II /»„ II „o = 1 and Ily7„ll2 * fñ2~d. This enables us to

answer some questions about Hp and Bloch spaces on a complex ball. We also

investigate interpolation by «-homogeneous polynomials on a 2-dimensional com-

plex ball.

Introduction. The starting point of our investigation was a question asked by S.

Waigner: Is the identity map from Hx(Bd) into Hx(Bd) (Bd is a unit ball in Cd),

d > 1, a compact linear map. This question has a connection with the well-known

open problem (cf. [5]): does there exist a nonconstant inner function on Bd, d > l?1

The existence of such an inner function would imply our Corollary 1.5, namely that

this operator is not compact. We obtain this result by exhibiting «-homogeneous

polynomials pn which in some respects resemble the monomials z" in the one-dimen-

sional case (Theorem 1.2). We give two proofs of this theorem, one in §1 and the

other at the end of §2. Those polynomials enable us to also answer a question of R.

Timoney (Corollary 1.9). We hope that they will find some other applications. In §2

we investigate interpolating «-homogeneous polynomials on the unit sphere in

two-dimensional complex space. The motivation for this study is the following

well-known open problem (cf. [6]): does there exist a function <p(t), t > 1, such that

for every finite-dimensional Banach space X we have d(X, l^nX) < y(X(X)) (for

the definitions, see below). To the best of our knowledge, the spaces W™(S2), of all

«-homogeneous polynomials on the unit ball in C2, are the first spaces known for

which X(W™(S2)) is bounded independently of n, while d(W™(S2), /£+1) is not

known to be bounded. Thus the following problem naturally arises.

Problem. Compute or estimate d(W™(Sd), /* ), k = dim W™(Sd).

In our opinion, the results of §2 indicate that this problem may not be trivial.2

Apart from this Banach space motivation our results may be interesting as

interpolation results. They are very different from corresponding results for trigono-

metric polynomials on the unit circle, of degree at most n (cf. [8, Chapter X]).

Now let us fix some notations. We will work with Cd, the complex ^-dimensional

space equipped with the usual scalar product denoted by ( • , • ). Bd will stand for the

Received by the editors May 4, 1981.

1980 Mathematics Subject Classification. Primary 32A05, 41A05; Secondary 32A35, 46B20.
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unit ball in Cd, i.e. Bd = {? G Cd: <f, f > < 1} and Sd will stand for the unit sphere in

Cd, i.e. Sd = {£ E Cd: <£, f >= 1}. The point (1,0,... ,0) G Sd will be denoted by 1.

On Sd we have the natural rotation-invariant probability measure a. Wn(Sd) will

denote the space of all «-homogeneous polynomials on Cd restricted to Sd. On

Wn(Sd) we will consider various norms. For f E Wn(Sd) we put 11/11^ =

ilsd\fWd°iS)r/p if 1 <P < « and \\f\\x = supf6SJ/(f) | . The Banach space

iW„iSd\ II • \\p) will be denoted by WfiSd). The symbols Lp(Sd) and Lx(Sd) have

natural meaning. The closure of all polynomials in Lp(Sd) will be denoted by H (Bd)

and Hx(Bd) will denote the space of all bounded analytic functions on Bd.

Obviously for « = 0,1,2,..., W?(Sd) is naturally a subspace of Hp(Bd). For infor-

mation about Hp(Bd) the reader may consult [5].

1. In this section we prove the main result of the paper and give some applications

to the structure of Hp spaces. We introduce the notation

a{d, p) = f \(l;,l)r dait).

It can be computed that aid, p) = T((l + p)/2)T(d)/T(d + p/2).

Proposition 1.1. The operator

{PJ){n = «id,2n)-]ffiV)(S,vydaiV)
Jsd

is an orthogonal projection from L2(Sd) onto W2(Sd). The norm of this projection

considered as an operator from Lx(Sd) onto W™(Sd) is smaller than 2d~x.

Proof. We will consider the natural representation of U(d) (the group of all

unitary operators on Cd) on L2(Sd) defined by g h-» Tg, Tgf(Ç) = f(g~xÇ). The

spaces W2(Sd) are invariant, irreducible spaces for this representation. Since P„

commutes with this representation and Im Pn C W2(Sd), we infer that Pn | W2(Sd)

= Xld. If we put/(r)) = <tj,1>" we obtain A/(l) = (P„f)(l)=f(i), so X = 1. This

means that Pn is an orthogonal projection onto W2(Sd). Its norm as an operator on

LJSd) equals aid, n)a(d,2n)-x < 2d~x.

Theorem 1.2. For every n there exists pn E Wn(Sd) with \\pn\\x = 1 and \\p„\\2

>xfñ2~d.

Before we start the proof of Theorem 1.2 let us recall some well-known notions

concerning finite-dimensional Banach spaces. Let X, Y be finite-dimensional Banach

spaces. We put

X(*) = infill Til ■ \\S\\:X^Lxtx, TS = Id*, Lx is an arbitrary Ljuy-spacej

and

d(X, Y) = inf{||71 • lir-'ll: T: X -> Yis 1-1 and onto}.
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The number A(A') is called a projection constant of X and d(X, Y) is called the

Banach-Mazur distance between X and Y. It is well known and easy to see that

(1) X(X)<d(X,Y)X(Y).

Moreover we have

(2) A(/2") = a(«,l)a(«,2y-'>^/«~.

More information on this can be found in [6] and [4,22.1 and 28.1].

We will also use the following two lemmas.

Lemma 1.3. inf{\\p\\2: p E W„(Sd) and H/HI«, = 1) = ya(d,2n).

Proof. Since the spaces under consideration are finite dimensional, there exists a

polynomial p0 realising the minimum. We can assume p0ii) — 1 = ll/Poll«,- It is

easily seen that

Pin = -^r---f%o(h,ei9iz2,...,ea^zd)der-'ded_l = (S,ir.
(2ir)       •'o Jo

Moreover, ||p\\2 « ||p0\\2 and \\p\\x = IIpQIIx = 1. Sincep0 was minimal we infer

Il PII2 = II Po II2- This proves the lemma.

Lemma 1.4. dimW„(Sd) = a(d,2n)~x.

Proof. It follows from Proposition 1.1 that dim Wn(Sd) = trace Pn. Since Pn is a

projection its trace equals the square of its Hubert-Schmidt norm, which, as is well

known, equals

a(d,2n)-2f j \(S,V)\2"da(!;)da(Ti) = a(d,2n)-1.

Now we are ready to prove the theorem.

Proof of Theorem 1.2. We apply (1) for X = W2(Sd) and Y = Wn°°(Sd). Using

(2), Proposition 1.1 and Lemma 1.4 we obtain

(3) d{W2(Sd), W?iSd)) ^ X{W2(Sd))XiW-(Sd))-X

> 2x~d(fr/2)]¡a(d,2ny] .

Let / denote the identity map from W™(Sd) into W2(Sd). By the definition of the

Banach-Mazur distance we have 11/II ■ III~x\\ > d(W2(Sd),W™(Sd)). Lemma 1.3

gives || 7"11| = ]Ja(d, 2«)~   so by (3) we have

\\I\\^2x'd^/2.

This inequality proves the theorem.

Remark. Actually d(W2(Sd), W„°°(Sd)) = \\I\\ ■ \\rx\\. This follows from

[1, Lemma 4.6].

Corollary 1.5. id: Hx(Bd) -» Hx(Bd) is not a compact operator.

Proof. Polynomials pn exhibited in Theorem 1.2 are orthogonal. Moreover by the

Schwartz inequality, fW2~d < \\ pn || 2 < j\\p„\\x • llyjl«,, so || pn\\x> tr4-d. This im-

plies that id: Hx(Bd) -» Hx(Bd) is not a compact operator.
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Proposition 1.6. Let (nk) be a lacunary sequence of natural numbers and let

p„k E W„k(Sd) be such that \\p„k\\x = 1 and II/>„J|, > c, k = 0,1,2.... Then there

exist constants A and B such that

(4) A-X(î\ak\2)l/1 <\\lakP„kj   <A^\ak\2)

andforfEHx(Bd),

(5)

1/2

y    (f>P»k)

k        \\pJ\lP"k
B\\f\

Proof. Let <$d be a complex projective space, i.e. ??d = Sd/T (T denotes the unit

circle). The space 9d has a natural invariant probability measure u. Moreover for

f E Lx(a) we have

(6) f M)doiï)=( (fit-t) dt dp.it).

Using (6) and the Khintchine inequality we obtain

(7) / \lakP„kin daiS) ~j Jï\ak\2\P„kiè)\2dp{è).

Since || pn II œ — 1, (7) does not exceed /2 \ak\2 . On the other hand,

c2\ak\2<Í2\ak\2\pHkií)\2dpiS)
*d k

■■ sup i^k\ak\2\pnkit)\2 ■ / ^k\ak\2\pnk{i)\2dp(i)

^¡\\ak\2 / pk\ak\2\Pnß)\2dpU).

This implies

^k\^\2^ipk\ak\2\pnkU)\2dpiO-

So by (7) we get (4).

To prove (5) we state the obvious

Lemma 1.7. Let A = (Xn) be a continuous multiplier from HX(D) into itself. Then

forf E Hx(Bd)J = 22UÁ.Á G Wk(Sd), the operator A defined as A(f) = 2?=0XJk
is a continuous operator from Hx(Bd) into itself.

The proof follows immediately from (6). Using Lemma 1.7 and the classical

one-dimensional Paley theorem (cf. [3]) we obtain that the operator QÇ2kfk) = ^kf,

is a continuous projection in Hx(Bd). Moreover as in (7) we obtain

1/2

Z/.J ~/Í2l4l2)   ■
¿v  k
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Hence

y   (/. Pnk)

•"      Il   n      II 2   P"k
k     WP„k\\2 k       WPnJh , \   k

„,\X/

(fnk,Pnk)\2

II/UIÍ

(2li/BJlf)1/2<f/(Sl4l2),/2^ii/

Since Theorem 1.2 asserts that we can satisfy the assumptions of Proposition 1.6

we have

Corollary 1.8. 77ie space Hx(Bd) contains a complemented copy of a Hubert space.

Remark. We do not know the isomorphic type of a Banach space Im Q.

Theorem 1.2 also gives some information about the space 9>(Bd) of all Bloch

functions on Bd. Definitions and basic properties of the space %(Bd) are contained

in [7]. From Theorems 1.5 and 4.10 of [7] it follows that 1kakp2k E %(Bd) for every

(ak) E lx. On the other hand Proposition 1.5 shows that 2kakp2u E Hp(Bd),

0 < p < oo, if and only if (ak) E l2. These two facts yield

Corollary 1.9. The space ®>(Bd) is not contained in Hp(Bd), 0 < p < oo.

This corollary answers the question from [7, p. 250].

We conclude this section with the following

Remark 1.10. In §7.2 of [5] W. Rudin uses certain «-homogeneous polynomials

Fn(z) (cf. Proposition 7.2.8 of [5]) in order to construct examples that illustrate

possible boundary behavior of analytic functions in B2 and B3. He remarks that

"similar examples undoubtedly exist when d > 3 but different constructions would

be required for them." These "different constructions" are provided by Theorem 1.2.

When one applies arguments from [5,7.2.9,7.2.10 and 7.2.11] to polynomials pn

instead of polynomials Fn, one obtains the same (or even stronger) results for the

ball of arbitrary dimension.

2. In this section we consider several natural operators between W™(S2) and lx+ ',

and show that those operators do not give good estimates for d(W™(S2), lx+x). Our

results, although nonconclusive from the Banach space point of view, give some new

information about interpolating polynomials in Wn(S2).

We will call a set A = (tj0, ij,,. .. ,ijM} E S2 admissible if Xtj, = tj7 if and only if

i = y and X = 1.11 is clear that for every sequence of complex numbers (a0, ax,...,an)

there exists a uniquely determined polynomial p E Wn(S2) such that p(t\j) = a¡,

j = 0,1,...,«. In particular for every admissible set A we have a set of polynomials

Vj E Wn(S2),j = 0,1,... ,n, such that ^(ti,) = 8ji (8j¡ being the Kronecker symbol).

If t)j = (pj, qj) then polynomials vr are given as

vr{z,w) =
nj + rqjZ - PjW

j^rRjPr - PjQr
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We start with the following easy

Theorem 2.1. For an arbitrary admissible set A there exists a point f0 G S2 such that

2 Ktto)l^2-^TT.
r = 0

Proof. By suitable renumeration and rotation we can assume that

n

II I OjPq - Pj% | = max ]\ \ qjPr - Pjqr \
7=1 '     J*r

and that tj0 = 1. Then

n n

2   K(Z,W) | = | U0(2,W) | +   2
r=0

q0z - pQw

qrz - prw

Wj=x\qjZ-Pj w\

n^r I qjPr - Pjqr |

v0{z,w)\[l+  2
r=\

q0z - p0w

qrz - prw

v0(z, w) I (1 + « I w I) > (« + 1) I w 11 v0(z, w) I .

Since i^Jo^oi2' ei9w)dO = z" we infer that there exists a point f0 = (^1 — 1/n ,

e'f/ fh~) such that | u0(f0) | » (1 - ¿)"/2- For this point we have

S  \vr{U)\>^in + l)[l-)\n/1>\{n~TÎ.

Let us introduce some geometric notions on S2. We will use the rotation-invariant

pseudometric p(f, ti) = yT — | (f, r/)|2 . In fact it is a natural metric on two-dimen-

sional complex projective space. We will use the parametrisation of S2 as z = v/pV',

w = yi - p <?", 0 =£ p « 1, 0 *£ \p *s 277, 0 =c 0 *£ 2ir. In this parametrisation da =

(l/4ir2)dpd4'd8. Using this parametrisation one sees that for small r, a(B(r\, r)) ~

r2. By P(-q, rx, r2) we will denote the set {f G S2: rx < p(f, tj) < r2}. Now we are

ready to consider the interpolating polynomials vr(z, w) in WX(S2). We have the

following

Proposition 2.2. 77ieve exists a constant c > 0 such that for every admissible set

A C S2 there exists a k, k = 0,1,...,«, such that

c c
\ \Vk(z>w)\do{z,w)> —
Js2 in

The proof of the following elementary lemma can be found in [2, Formula 2620].

Lemma 2.3.

a*.   ...       .„.  ..      f0 if0<a<: I,
fini
•'o

1 + aew | dd
27rlna     if 1 *£ a.

Using this lemma we obtain

Lemma 2.4. For given tj = (ax, a2) and f = (bx, b2) in S2 let

<p(z,w) = (zb2 - wbx)/iaxb2 - a2bx).
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Then

J p.
JP{i,,j2/n,j4/n)

IfpilA)<.\/fñthen

In | <p{z, w) | daiz, w)

f In | <p(z,w) | da(z, w) > —
JP(yi,JÏ/i,,JÏ/n~) n

for some constant d > 0 independent of the set A.

Proof. For simplicity let us assume « > 8 and tj = 1. Let us denote a = | bx/b2 \

I In | <p(z, w) | daiz, w)
J P(\,JÏ/n~ ,JÄ/n)

(8) = T-f   2/" /"2"hi | p1/2 + ayT - p e''+1 dp d^
¿It J¡-a/„  Jr,

= jj lnPdp + j-J j    In
z ^ 1-4/n Z7r ^ 1-4/n J0

1 + «M1/2
-M d\p dp.

Using Lemma 2.3 we see that (8) is greater than \\\-lj"ln pdp> — 6/n2

If p(l, f ) < 1/ vtT then a > in — 1 so (8) is greater than

1   ri-2/« 1      /■l-2/n /-27r

/ ln P dP + JZ / /
•'l-a/n Z.TT J\—a/„ Jn

In
'1-4/n 1-4/n •'O

1 + l/n -  1
1-p 1/2

,i* d\¡> dp

\ TV" in o do +  ri/nln{n-^î(^Y2 dP
Zyl-4/n ;l-4/n \       P       /1-4/n •'1-4/n \       P

Proof of Proposition 2.2. We define k by the condition

n

II    |/?ytf* - ?y/?* |=  min   II   \PjQr - <ljPr I •
y#* r   y#r

We may assume A: = 0. We may also find a set M C (0,1,...,«} such that for

j E M, B(i)j, 2/fñ) are disjoint and Uj^MB(r}j,2/fñ) contains at least

(« + 1 )/100 points from A.

Let Pj = P(tj;, t/27/7, yf4/h~),j E M. For (z, w) E Pj we have

l»o(*>w)

Using Lemma 2.4 we see that

PjW - qjz

p0w - q0z
\Vj(z,w)\^-—\vj(z,w)\

in

f  ln | V:(z, w) | da(z, w) = 2   /In
?*z - P*w

<IkPj~Pj1k

-6(« + 1 - Cj)/n2 + Cjd/n

where c, denotes the number of points in A D t3(t/7,1/ y/«~ ). Since

In   -r—r f \vJ(z,w)\da(z,w)\ >—¡~: ( In | u(z, w) | íza(z,w)
\a(PJ)Jpj I      o(Pj)JPj
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we infer that

Cjd     6(« + 1 - Cj)

/^iM'>p(^r(^
«2

2       / 3(« + 1 - Cs) \     b bc¡
>~exp[2-xcid---J-\ ^-exp2-V^ —•

n       \      J « ]      n J n

Finally we obtain

f \v0{z,w)\doiz,w)>  2   f \v<){z,w)\do{z,w)
JS2 j<EMJPj

>  2   -^(\vJ{z,w)\daiz,w)>  2   -f ^>c-L
j<=M in JPj yew V«      " V«

This completes the proof of the proposition.

Theorem 2.5. There exists a constant c > 0 such that for every admissible set

A — (tj0, i},,... ,7j„} ¿«ere exi'sis a sequence of numbers e0,ex,... ,en, e, = ± 1, such

that

sup
fes2

2 *••<?, *»,>'
= 0

c
< ■

/«-•

Proof. Using the projection exhibited in Proposition 1.1 we can identify W¡j°(S2)*

with WX(S2) with the natural duality. Let T: lx+x -* W™(S2) be defined by

T(ej) = (• ,7)y>". We have to prove that HT"1 II > y/w/c. But HT-1 II = IK7*)"1!!.

Since

js»jim^kYdois) = \\
(« + l)"1     if y = k,

s2J {0 ifj^k,

we see that (J*)-1: lxn+x -+ WX(S2) is defined by (T*yx(ej) = (« + l)Vj. Proposition

2.2 implies that ||(r*)"' || ^ c • Jñ. This gives the proof of the theorem.

Remark. Theorem 2.5 means that for every admissible set A the operator T:

lx+x -* W™(S2) defined by Tie/) = <• , t/,)" satisfies 1171 • \\T~X\\ > cfK. On the

other hand Theorem 2.1 gives that an operator S: W™(S2) -* /¿+1 given by

Sif) = ifirlj))j=o satisfies HSU • ||S"'H > cfñ. So those two natural operators give

very bad estimates for d(W™(S2), lx+x).

In our next proposition we examine one more operator.

Proposition 2.6. Let V: lx+ ' -> W™(S2) be given by

V(ej)(z,w) = zJw"^/\\zJw"-J\\x.

Then \\V\\ > cfñ.
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Proof. It is easily seen that \\zJw"~J\\x = ((« -j)/nf"^J)/2(j/n)J/2. So we

have

\"-J

sup
U.^s2j=o{{n-j)/ny"-J,/\j/n)

v (VIE)"

\7/2

j=o Un -j)/nt-^\j/n)^

.       v («/2)"/2 ^
0.06v/ñ.

" / -\(n-y)/2/  .w/2
l/-«/2|<^ (» -y)        (yr

To conclude our paper we will give a sketch of a direct proof of Theorem 1.2.

Lemma 2.7. Let A — {tj0, ti,, ... ,r¡n} be an admissible set such that

(9) sup | <ti,., i},.>|< yT -c/n.
>*j

Then

s»l?2\<£,Vjy\<dic).
?es2 j

Proof. Our condition implies that for every f G S2 the ball B(Ç, -Jk/n ) contains

at most b • k points from A. It implies that

2l<^i>"l<2*-*-(i-£)"<¿(<0-
i k \ n i

Easy consideration involving measures of B(\, p) shows that, in fact, for some

constant c one can find for arbitrary « an admissible set satisfying (9). For this set

we have (rk(t) are Rademacher functions)

||2

/
2'*(')«, *?*>"

k = 0

(n+l)ll<M>"ll^>c

It implies that for some choice of signs (e„) we have

2'*<?.**>"
k=0

C\,

and by Lemma 2.7 we also have

2 **<?, 1*>"
k = 0

Remark. Clearly the above proof can be adopted also for d > 2.

Remark. The space W¡¡°(S2) can be identified with certain weighted space of

polynomials in one variable. Namely we put z/w = v and we obtain

2 a.
k=0

z w
1

(i + M2)

This approach was not very illuminating for us.

n/l
2 akvl

k = 0
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