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CR-HYPERSURFACES IN A SPACE

WITH A PSEUDOCONFORMAL CONNECTION

BY

MICHAEL J. MARKOWITZ

Abstract. In this paper we study a submanifold in a space with a pseudoconformal

connection. We assume that the submanifold M is so situated that it inherits the

structure of a CR-hypersurface from the ambient space. M then supports two

natural Cartan connections, the normal pseudoconformal connection of Cartan-

Chern-Tanaka and an induced pseudoconformal connection. Analogues of the

Gauss-Codazzi equations are derived and applied to determine necessary and

sufficient conditions for the equivalence of these connections.

The purpose of this paper is to study an abstract CR-hypersurface immersed in a

space with a pseudoconformal connection. It is shown that the connection on the

ambient manifold induces a pseudoconformal connection on the submanifold in a

canonical manner. One finds that this induced connection does not in general agree

with the intrinsic normal connection of Cartan, Chern and Tanaka. After developing

requisite background material we proceed to investigate the relationship between

these connections and to derive necessary and sufficient conditions for their equality.

Of central importance in this study is a pseudoconformal analogue of the equation

of Gauss in Riemannian geometry (see (5.12)). In codimension one this equation was

derived independently by S. Webster who used it to study the rigidity of hyper-

surfaces in a sphere [9]. In a forthcoming note written with R. Schlafly, equation

(5.12) is applied to yield a negative answer to the local imbedding problem in

pseudoconformal geometry. We show that the normal pseudoconformal connection

on an abstract strictly pseudoconvex CR-hypersurface M, dim M > 5, may not be

realized locally by an imbedding into the unit sphere in C^ for any A/, unless M is

pseudoconformally flat.

Chapter 1. Pseudoconformal Geometry

A space with a pseudoconformal connection would have been described classically

as a manifold which in an immediate neighborhood of each of its points has all the

properties of a real hyperquadric in complex projective space (§1), and upon which

one is given a law permitting neighborhoods surrounding two infinitesimally close

points to be "connected" in one hyperquadric. Thus one imagines that to each point

of the space there is attached a tangent hyperquadric on which the point is marked

and that there is given a law allowing one to view in the hyperquadric at one point,
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the hyperquadric at another infinitesimally close point. This law defines the pseudo-

conformal connection and is analytically expressed by means of those infinitesimal

linear fractional transformations of complex projective space which preserve a fixed

hyperquadric (§2). Accordingly the group of all such transformations plays a

fundamental role in the theory of these spaces (§1).

Pseudoconformal connections first arose in the search for invariants of a real

hypersurface in a complex manifold under the pseudogroup of local biholomor-

phisms. Somewhat more abstractly one may ask for the invariants of a space under

maps preserving a certain G-structure (a CR-structure; §3). A complete system of

these invariants, given by the successive covariant derivatives of the curvature forms

of an intrinsic pseudoconformal connection, was first determined by E. Cartan [2]

for real hypersurfaces in C2. Cartan's result was later extended to higher dimensions

independently by S.-S. Chern [3] and N. Tanaka [7]. These developments are recalled

in §3.

Throughout this chapter we let lower case Greek indices run from 1 to «, while

Roman capitals run through 0,1,...,«,*. We also adopt standard conventions by

which barred indices indicate complex conjugation and repeated indices are to be

summed over their range.

1. The flat model space. Let ÇA denote the homogeneous coordinates of complex

projective space P"+l. In terms of these coordinates, a (nondegenerate) real hyper-

quadric Q2n+X in P"+' is given by the equation

ga/r^~+(ñ*-fr) = o,

where (gaß) is a nondegenerate hermitian matrix of order «, whose inverse will be

denoted by (gaß). For the sake of convenience we will assume that (gaß) is positive

definite. In this case Q is diffeomorphic, in fact CR-equivalent (see §3), to the unit

sphere S2n+X inC"+I.

Let S be the hermitian matrix of order « -I- 2 given by

/0       0        -i\

0        Saß 0

\ i       0        0

Then Q is clearly the image in P"+1 of the set of vectors Z = (ZA) E C"+2 isotropic

with respect to the hermitian inner product (Z,Z')= ZS'Z under the natural

projection C+2 - {0} - P"+1.

The group £= SU(« + 1,1) = {A E GL(« + 2,C) \AS'A = S, det A = 1} acts

transitively and almost effectively on Q. (We shall make no attempt to distinguish

between A E £ and the coset A% E £/%, where % denotes the finite center of £.

For a more careful treatment, the reader is referred to [7 or 10].) The isotropy group

£0 at the origin o = [(1,0,... ,0)] E Q is the semidirect product CU(«) oc N+ of the

conformai unitary group with the Heisenberg group of dimension 2« + 1. We may

now identify the homogeneous space Q with the space of cosets £/£„.
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The Lie algebra I = su(n + 1,1) of £ has the structure of a simple graded Lie

algebra [7]. To see this we set

i/0     0     r\) i/°     »ß °
g_2=      0    0    0     ,      g_,=

\0    0    0/
0

w

0

0

'Saß""

0 /

<z     0

0    Ai

\0     0

/ 0

■'gap

0

ß

0

0

gß-yAßa+APgaß-=0

z - z + A" = 0

0

0

0/

+ 8o + fli + 92 and> ifwhere r,s ER and ua, va, Aßa, z G C. Then / = g_2 +

we understand that Qk — {0} for k < — 2 or k > 2, [g,, gy] C qj+J. The Lie algebra

of £0 is the graded subalgebra l0 — 8o + 9i + fl2-

It is a standard fact in the theory of homogeneous spaces [4, 6] that the tangent

space m at o E Q may be naturally identified with I/i0. Under this identification the

adjoint representation of £0 on I/l0 coincides with the linear isotropy representation

p: £0 -» GL(m). Note that the subgroup %2 E £0 generated by g 2 is in the kernel of

p. In fact, identifying I/I0 with g_2 + g_,, one may show that the linear isotropy

group t'Q = p(I0) E GL(m) is the semidirect product CU(«) cc C [1, 7, 10].

A projective frame for Q is an ordered set {ZA} of « + 2 vectors in C"+2 such that

((ZA, ZB)) = S. A normalized projective frame or Q-frame [3] is a projective frame

{ZA} which satisfies Z0 A • • • AZ„ = 1. Note that Z0 and Z^ may be regarded as

points on Q.

Let Y denote the space of all (Mrames and define a projection w: Y -» Q by

setting m({ZA}) — Z0. It is not hard to see that £ acts simply transitively on Y. Thus

we may identify £ and Y once a reference Q-frame has been specified. In fact, F is a

principal £0-bundle over Q and choosing a frame over o E Q,-n may be identified

with the natural projection £ -* £/£0 = Q.

Remark. We shall see in §2 that the quotient Y/§2 may be viewed as an

£¿-subbundle of the bundle of linear frames on Q. Thus Q carries a natural

£ó-structure which is essentially just the CR-structure it inherits as a real hyper-

surface in P"+1 (§3). In fact, represented as £/£0, Q is the semisimple flat

homogeneous model space for pseudoconformal geometry.

2. Pseudoconformal connections. We are now in a position to formalize one of the

notions discussed in the introduction.

(2.1) Definition. A pseudoconformal connection on a manifold M of dimension

2« + 1 is a Cartan connection of type £/£0 on M. Such a connection consists of a

principal £0-bundle P over M, together with an l-valued 1-form w on P satisfying

(i)/?> = ad(a_1)«fora G £0,

Çû) aiA") = A lot A GI0,

(iii) «(1)^0 for X ih 0, X tangent to P.
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Here Ra denotes the right action of a E £0 on P, ad(a~') the adjoint representation

of a~ ' on I, and A* the fundamental vector field on P corresponding to A £[„.

The curvature ß of a pseudoconformal connection u is the l-valued 2-form on P

defined via the structure equation

(2.2) du = uAu + Q.

We say that the connection u is flat if ß = 0.

Example. The left-invariant Maurer-Cartan form on £ is easily seen to be a flat

pseudoconformal connection in the bundle Y -* Q. Conversely, as a standard

application of the Frobenius theorem shows, a manifold with a flat pseudoconformal

connection is locally equivalent to Q with this standard connection.

Let Us (resp. ß,) denote the graded components of u (resp. ß) with respect to the

decomposition (1.1). ß_2 + ß_, is often called the torsion of u. In the sequel we

shall only be concerned with torsionfree connections, i.e. connections for which

ß_2 + ß_, =0. For such a connection, the g_2- and g_,-components of du given

by the structure equation (2.2) may be written more explicitly (in the usual basis for

I) as

du*Q = igaß~ua0 A üg + u* A («; - u°0),

(2-3)
dua0 = u§ A (w| - ó>°) + Wo* A <.

From the properties (2.1)(i),(ii) one derives the standard fact that the curvature

form ß is quadratic in the basic forms u£, wg, üg (see [5, p. 129]). The trace of any

such form

6 = aapul A üg    mod («*, ug A ua0, ug A üa0)

is defined by Trf? = gaßaaß~[3, p. 263]. A torsionfree pseudoconformal connection u

on M is said to be normal if Tr ß£ = Tr ß° = Tr ßg = Tr ß° = 0. Using the Bianchi

identities for u, S. Webster has in fact shown that under these conditions ß° = ß£ = 0

([8] and the appendix of [3]). (A somewhat different, though equivalent, basis free

formulation of this normality condition may be found in [7].)

We shall now indicate how a pseudoconformal connection gives rise to a geomet-

ric structure on the base space M. More details may be gleaned from [7 or 10].

First note that u_ — u_2 + «„, is a vector valued 1-form on P satisfying

R*u_ = p(a~ x)u__ for a E £0, where p denotes the linear isotropy representation of

i£0ong_2 + g_, asin§l. The quotient P/§2 of P by the kernel of p is a principal

£ó-bundle over M. It is not hard to see that w_ "projects" onto a unique

g_2 + g_,-valued 1-form, also denoted by u^ , on P/@2 which satisfies (2.1)(i) for

a E ñ'0. Since t'0 = CU(«) oc C" Ç GL(g_2 + g_,), the basic form u_ allows us to

identify P/%2 with a subbundle of the bundle of linear frames on M. One obtains an

Eó-structure on M in this manner.

A somewhat different, but equivalent, approach goes as follows. Let fE = PX£ £

denote the principal £-bundle obtained by enlarging the group of P to £. The

quotient B = P£/t0 is a fiber bundle over M with structure group £ and fiber
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£/£0 = Q. (The structure group of B can of course be reduced to £0.) Note that

B -» M has a natural section a given as the image of P under the projection P£ -» B.

It is well known that the basic form (or solder form) «_ may be viewed as a bundle

isomorphism t: TM -» a*TFB, where rf73 denotes the bundle of vectors tangent to

the fibers of B [5]. The natural E^-structure on Q may now be transferred to M via t.

Classically one identifies x E M with a(x) G Bx and speaks of the fiber Bx = Q as

being tangent to M at x. This is the "tangent hyperquadric" referred to in the

introduction. Since each fiber Px of P may be identified with the collection of

(Mrames at o(x), we refer to P as the bundle of (Mrames on M.

3. CR-hypersurfaces. In this section we shall review some results concerning the

geometric structure inherited by a "generic" real hypersurface in a complex mani-

fold. We recommend that the reader consult the survey article [1] for additional

information.

The structure of an abstract real hypersurface [3] (an almost CR-hypersurface or

pseudocomplex structure [7]) on a manifold M of dimension 2« + 1 is given locally

by 2« + 1 linearly independent complex valued 1-forms 8 = 8, 8", 8ß — 8ß, de-

termined up to the transformation

8' = t8, í G R, va E C,

(3.1) 8a' = uaß8ß + va8,

8ß' = J-8î + vß8,    uaß G GL(«,C), uf = ~ûj.

Thus we have a S-structure on M, where § is the group of nonsingular matrices of

the form

1 t      0       0  ]
va     uaß      0

vs      0     uf j

A pseudocomplex structure is said to be integrable if the ideal of complex valued

forms generated by 8, 8a is closed. In this case, since 8 is real, we may write

(3.2) d6 = igaß8"A8ß~
modS

(3.3) d8a = 8ß A u$

where gaß = gßa = gßa. An integrable pseudocomplex structure is nondegenerate if

the hermitian matrix (gaß) is nonsingular. One sees that this notion is well defined

by checking that, under the change (3.1), the Levi form ^undergoes the transfor-

mation

(3.4) gaß- = KgySusß.

A nondegenerate, integrable pseudocomplex structure will be called a CR-structure

on M, although this terminology is usually applied to a more general situation. We

shall call a manifold with such a CR-structure a CR-hypersurface.

Note that at each point x E M the real codimension-one subspace HXM of TXM,

consisting of tangent vectors annihilated by 8, is well defined by (3.1) and has a
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natural complex structure. We call HXM the complex tangent space at x. The union

of the HXM as x ranges over M is the complex tangent bundle HM. The complex

structures on the fibers of HM fit together to give a bundle endomorphism J:

H M -> HM, such that J2 = —I. The integrability condition may be expressed in

terms of / as

(3.5) [X, Y] - [JX, JY] - J([JX, Y] + [X, JY]) = 0

for all sections X, Y of H.

If the Levi form of M is positive (or negative) definite, M is said to be strongly

pseudoconvex. In this case it is apparent from (3.4) that the structure group of M

may be reduced to t'0 = CU(«) ce C" C § by requiring that gaß = 8ß. Conversely, if

M is a manifold with an ^-structure, then M has an underlying pseudocomplex

structure obtained by enlarging the structure group to §.

Recalling the discussion of the previous section and comparing (2.3) with (3.2) and

(3.3) yields the following

(3.6) Proposition. A torsionfree pseudoconformal connection on a manifold M

naturally induces a (nondegenerate, integrable) CR-structure on M.

The CR-structure on Q induced in this way by the Maurer-Cartan form it on

£ = T coincides with the structure it inherits as a real hypersurface in P"+1. It is well

known that the group of automorphisms of this structure is £ (actually £/%). In

fact, £ is also the full group of bundle automorphisms of Y -» Q preserving the

connection 77. It is in this sense that (Y, it) solves the "equivalence problem" for this

S-structure on Q.

The fundamental theorem in pseudoconformal geometry, being the converse of

(3.6), is the following generalization of this situation to general CR-hypersurfaces.

(3.7) Theorem (Cartan [2], Chern [3], Tanaka [7]). Let M be a (nondegenerate,

integrable) CR-hypersurface. There exists a unique, intrinsically defined, normal

pseudoconformal connection (P,u) on M. Furthermore, a diffeomorphism f: M -» M is

a CR-automorphism if and only if there is a bundle automorphism f of P, f covering f,

which preserves the connection in the sense that f*u = u.

One consequence of this result is the fact that the group of CR-automorphisms of

a nondegenerate, integrable CR-hypersurface is a Lie transformation group of

dimension at most «2 + 4« + 3 = dim £, if dim M = 2« + 1.

Chapter 2. CR-submanifolds

Having defined the notion of a space with a pseudoconformal connection in the

previous chapter, we now turn to the study of submanifolds in such a space. In order

to obtain a meaningful theory, attention must be restricted to those submanifolds

whose tangent spaces lie in a fixed relationship with the CR-structure of the ambient

space. The submanifolds which appear to us to lead most naturally to interesting

results are the subobjects in our category. Thus we require our submanifolds to be

"maximally complex" and consequently to carry an induced CR-structure. We

should, however, point out that the opposite extreme, comprised of totally real or
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"anti-invariant" submanifolds, has received much more attention in the literature

(one notable exception is [9]).

We begin with the following

Definition. Let V be a 2N + 1-dimensional manifold with a (torsionfree) pseu-

doconformal connection. A CR-hypersurface M, of dimension 2n + I (n < N), is

said to be pseudoconformally immersed in V if there is given an immersion i:

M -> V such that

(i)     iJM + HV = TV,

(ü)     imHM Ç HV,

(in)     i^JM = Jvim.

We set N = n + p and call p the (complex) codimension of M in V.

Throughout the remainder of this paper M will denote a CR-hypersurface of

dimension 2« -(- 1 pseudoconformally immersed in a 2 N + 1-dimensional space V

with a torsionfree pseudoconformal connection as above. Recall that we are tacitly

assuming that M, as well as V, is strongly pseudoconvex. The general case may be

treated similarly if one stipulates that the Levi form of V restricts to a nondegenerate

form on HM.

We shall see in §6 that the connection on V induces a pseudoconformal connec-

tion on M which in general does not agree with the intrinsic normal connection

given by (3.7). In this chapter we derive pseudoconformal analogues of the classical

equations of Gauss and Codazzi in order to study the relationship between these

connections and, in particular, to find necessary and sufficient conditions for their

equality. Our treatment follows the discussion of submanifolds in a space with a

(normal) conformai connection found in [11]. (See [9] for a similar development for

the case p = 1.)

We adopt the following conventions regarding the ranges of various indices which

will appear:

= 0,l,...,n+p,*,

= 0,1,...,«,*,

= 1,...,«,

= « + 1,...,« + p,

= 1,...,« + p,

= l,...,n +p,*,

A,B,C,

J, K, L,

i, j, k,

P,Q,R,

(*,ß,y,

p, v,i,

P,o, T, «, .  .  .  ,IS ,

The Levi form will also be used to raise and lower indices as follows:

gUTfm = giJTPm = Tipm> gijWt, =  #t_t

gA*X/A¿=Xtf,   etc.

4.  Adapted  frames  and  the  second  fundamental  form.  A   (Mrame  iZA) =

(Z0, Z., ZP, ZJ for V, at a point of M, is said to be adapted to M if (Z0, Zt, ZJ is



124 M. J. MARKOWITZ

a Q-îrame for M. In other words, Z0 lies on M and the Zt span the complex tangent

space Hz M. Moreover, since the hyperquadric Q0 tangent to M at Z0 is the

intersection of the hyperquadric tangent to V with a linear subspace of the ambient

projective space (see 4.4), it makes sense to require that Zt lie on Q0. Finally, the ZP

are chosen normal to M.

We normalize our adapted frames by requiring that the hermitian matrix gAg =

(ZA, ZB) be of the form

(4.1)

0      0

o    g,/
0      0

0
0 0

p    o
\ i 0      0

Here gfr is a (positive definite) hermitian matrix of order « and IP denotes the

identity matrix of order p. It is easy to check that the (normalized) adapted frames

are determined up to a transformation of the form

(4.2) U

t     0      0

t,   ti   o

0     0

0

0

0

o    r

where U acts on (ZA) on the left and the following identities are satisfied:

(4.3)
it-'t, = -r%kïl       trx det(t/)det(rö) = 1,       tfcjfi = ga,

gjî?JTk + ¡it'1* - Tt~l) = 0, tQiQ = c,RlplR Op.

If dZA = "nAZB defines the normal pseudoconformal connection on V with respect

to the adapted frame field ZA, then

(4.4) < = 0

along M, since Z0 is restricted to he on M. Furthermore, the connection tr = (irA)

satisfies

(4.5)
■"Agcï + SaC^B   = 0. *î = °>

dm* = mcA A 77/ + UBA,     UBA = CfaS A m>.

The condition of normahty on tr to be satisfied by the curvature components CAfi - is

that

(4.6) g^'cl- = 0.

Also note that CA\-V = 0 if either A = 0, or B = *.
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Taking into account the special form of (4.1), we may write out the first equation

of (4.5) somewhat more explicitly as

wo* _ 'ño* - °>        ** = tgijñ¿,        "Tp = iñ¿,

"i? + "Î = °>     vt%k= -gij*¿>     mp = -*q,

„o _ =o _ n _o _     ,•„ _-*     _o _     ,-/>

»' = -««AP.

The above equations will often be used impücitly in the calculations which follow.

Now let u', u* = w* be the complex 1-forms of an admissible coframe for the

CR-structure on M, so that du* = ig¡jU' A cö7 + co* A <f> for some real 1-form <¡>. Let

co = (uf) denote the normal pseudoconformal connection on M, pulled down from

P via this coframe field, so that u* = u* and u'0 = co'. u satisfies conditions similar

to those in (4.5) and (4.6).

Under a change of adapted frames as in (4.2), it undergoes the transformation

77(7 = Utt + dU. In particular, we have

(4.7) r ■#* = t*S,       ñ¿t'j + t%* = tv¿,

(4.8) f7T0° + §¿íj + TT70* = 7770° + dt

on M. It is apparent from (4.7) that we may choose U in such a way that

(4.9) 7T0* = co*    and    tr¿ = u>.

Comparing c77r0* = igf]9¿ A m¿ + 770* A (77* — irg) with the corresponding equation

for du^ and using (4.9), one sees that

m-0   —   «•*    —   „0      I       -0   _    ,,0      I      —0      I       „,,*wo      w* - wo + wo - W0 + w0 + sw  ■

Taking t = 1, t{ = 8/, tfl = 8$, t = s/2 in (4.2) and using (4.8), we may further

assume that

(4.10) 77° + i00 = co° + u°0.

Note that (4.9) and (4.10) provide expressions for the g_2, g_,, and one of the

g 0-components of the connection 77 in terms of the intrinsic connection co. Our

immediate aim is to find similar expressions for the remaining components of this

connection.

The exterior derivative of (4.4) may be written as 0 = dir^ = co' A -nlF + co* A 77^.

Cartan's lemma asserts that

(4.11) «■/" = HfjUJ + Hfu*,       <nl = HfuJ + Hpu*

with Hfj = HJFi. The forms (4.11) comprise the second fundamental form of the

immersion c M -» V, We say that M is auto-parallel in V if mf = ttp = 0. (We prefer

this terminology to the " totalement ombilique" applied to the analogous condition

in [11].)
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The exterior derivative of the first equation of (4.9) has already been used. The

exterior derivative of the second equation, however, yields

0 = co' A {(co/ - 8/u°0) - (77/ - ô>0°) + co* A (co7 - tt{).

Cartan's lemma gives us

(4.12) 77/ - 5>0° = u{ - 8jul + B/kuk + B/u*,

(4.13) iri = u{ + B{uk + B'u*

with B¡k = BJki. Multiplying (4.12) by gJk, adding g,j times the conjugate of (4.12)

with i replaced by k, and using (4.5) and (4.10), we find that B/k = 0 and

Bjk = — Bki. Thus the g,- and the remaining g0-components of m are given by

(4.14) m/ - 8/mg = u{ - 8/u°0 + B/u*,

(4.15) 77,° = co,° + iBlkuk - iBtu*.

The exterior derivative of (4.10) may be written as

0 = co' A (co° - 77,°) + 2co* A (co° - 77° ) + «' A (co° - 5j°).

Now using Cartan's lemma and (4.15), we find that the g2-component of it is given

by

(4.16) ml = co° - ±iB,ur + {iBkuk + t3co*,

where B is real.

5. The equations of Gauss and Codazzi. We will now find relations between the

curvature forms II and ß. Taking the exterior derivative of (4.14) yields

(5.1)

ß/+ {dB/ + B/(u°0-ut)} Au*

= n/ + tt,/' A ml + uJ A (co° - m,0) + co* A (tt7 - co7) + irk A ml

-uk Au{- iBjgkluk A cô' - */{«* A (,o - co« ) + co* A ( ,7° - w° )}.

Substituting (4.13) and (4.15) into (5.1) and simplifying the resulting expression, we

find that

(5.2)

ü{ + DBf A co* = Wk + m,p A mf, - i{8ß,k + 8/Blk + glkB¡ + glkB/)u< A ük

+ í(S/t5, + {8/Bt)u! Au* + i(gilBj + ^8/B,)ü' A co*,

where the covariant differential of B/ is defined by

(5.3) DBf = dB{ - B{uk + Bku{ + Bf( «§ - co*).
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Setting DBij= g/jDB¡, we lower the indexy in (5.2) and use (4.11) to obtain

(5.4)

Ö../+ DB,;* co* = n(/- [H5H>k + iig,fBik-+ gifBlk + g,kB{;+ glkBlf)}ul A 5*

- [HJ¡Hf - i{gtßt + fa¡B,)}ut A co*

+ {HfHfk + i{g-,B-+ \g¡fB¡)}c¡f A co*.

We now take the exterior derivative of (4.13) and substitute (4.11) and (4.14)

through (4.16) when this is possible. The result is

ß7 + DB{ A co* + Dt37 A co*

(5.5) = TL{ + \i8{B{uk Au1- [gimHpkHpml + i{gklB^ + {8{B-,)}uk A cö'

+gJ™HpHp,üx Au* + {BkBJ - 8{B - gJ™HpH^)uk A co*,

where we have set

(5.6) DB' = dB' + B'u) - 2B'kuk + B'(u° - 2co*).

Similar considerations involving the exterior derivative of (4.16) yield

(5.7)

ß° - {iDBi A co' + {iDB-A ü> + DB

= IIo, - t(HpHp + iB{B-, - gklB)uk A cô' - i(HpHp + B^u' A co*

+ i(H,pHp - BJBß)ü' A co*,

where

(5.8) DB = dB + fi^X - \iBkuQk + 2b(u°0 - u$).

We define the co variant derivatives of the functions B,j, B¡, B, with respect to the

connection co, by means of the following formulae:

DB,;= BiLkuk + BiL¡ü> + B^u*,

(5.9) DB, = B,,kuk + Büü> + B^u*,

DB = B kuk + B jül + B *co*.

(5.10) Proposition. Let SAglli be the components of the curvature tensor defined by

setting ÜAB= SA¡jl¡íu'L A co". Then between the functions SAB)L- and CAB]ii, the coeffi-

cients of the second fundamental form, and the coefficients B¡j, B¡, B and their

covariant derivatives we have the following relations:

Syi* = CiJlk- HPH% - i(gl-Blk + g,;Blk-+ gikB,-+ glkBt¡),

S,jk* = Ctfc - HpHf - BlLk + i(gk-B, + \glfBk),

Smli = Cmrji - HfHp + B^ - BL] + BkBkf,
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S*í*/= C*r*/- HpHPj + Bsj,

S**j* = C+ïfi - HPHP - Bj Bk - \Bj1t + iB „.

Furthermore Bjk = Bkj andBtjk - Bkjyi = {iigkjBt - g¡-Bk).

Proof. The first two equations can be obtained directly from (5.4); the second

two from (5.5). Since ß^ = — iß0,, the fifth equation is a consequence of (5.7). The

final two equations may be obtained from the second and fourth using the

symmetries of the curvature tensors and those of the coefficients of the second

fundamental form.

Applying the trace normalizations on ß and II to the first four equations of (5.10),

one obtains

(5.11) Proposition. The coefficients B¡j, Bk, B are completely determined by the

coefficients of the second fundamental form. We have:

B'J= T+2 [ H*H?J- 2{n+l)gi>H'kHp ) '

Bi=-2i/{n + 2){Bl, + HpiHk},

B = l/n( */, - B{j + B(B) - HPH'P ).

The classical equation of Gauss in Riemannian geometry gives the relationship

between the Riemannian curvature tensor of an isometrically immersed submani-

fold, the curvature tensor of the ambient space, and the second fundamental form of

the immersion. The preceding propositions obviously allow us to write down the

pseudoconformal analogues of this equation. One relation of the desired type, which

is the simplest in that it involves no covariant derivatives of the B 's, is obtained by

substituting the first equation of (5.11) into the first equation of (5.10), viz.

Si/tic = Cijik ~ HnHj~pk

(5.12) + (« + 2)-\gIJ-HrmH^+gijHfmH^+gikHfmHPJ+ glkHpmH?j)

- {n + 1)~'(« + 2)-\gl-gik + giJglk)HpmiH^.

As this is the only one of these equations we will need, we leave to the reader the

straightforward computation by which the B 's may be eliminated from the remain-

ing equations of (5.10).

Although the result is true for « = 1, we only obtain the following from (5.12).

(5.13) Theorem. Let V be a space with a normal pseudoconformal connection and M

a pseudoconformally immersed submanifold of dimension 2« + 1, « > 1. // V is

pseudoconformally flat and M is auto-parallel in V, then M is also flat.

The classical Codazzi equations of Riemannian geometry relate the covariant

derivatives of the second fundamental form of a submanifold with the normal

components of the ambient curvature tensor. The pseudoconformal analogues are



CR-HYPERSURFACES 129

easily derived. To this end define the covariant differentials of the coefficients of the

second fundamental form, with respect to the connection m, as follows:

DHfj = dHp - Hjtf + Hgmp - Hpmk + Hpmg,

(5.14) DHP = dHp - Hfm/ + H?mp - ///>7 + Hp(mg - w*),

DHP = dHp - 2Hfmi + HQmp + Hp( mg - 2<).

(5.15) Proposition. Between the covariant differentials (5.14) and the normal

components of the curvature ofm, we have the relations

DHp A co7 + DHP Au* = -i(Hpgjk +gikHp)uJ A 3* + zg,//7V A co* + Ilf,

DHf A co7 + DHP A co* = iHpgjkuj A uk + UP.

Proof. Substituting the first equation of (4.11) into the relation obtained by

taking its exterior derivative, one sees, using (4.13) and (4.14), that the first two

equations of (5.14) are precisely what one needs to make the first equation above

hold. The second relation is obtained by similarly considering the exterior derivative

of the second equation of (4.11).

The covariant derivatives of the H's are defined as follows:

DHp = Hp¡kuk + HP:¡u{ + Hp^u*,

(5.16) DHf = Hpkuk + Hfp + Hp*u*,

DHP = Hpkuk + Hp-,u' + Hp^u*.

From (5.15) we immediately get the equations

H*j= i{Hpgjk + g,kHPj) + Cpk,    Hpk = igjkHp - Cp*k,

(5-17)
HU,k - H!k,j> Hij,* - Hi,j + cu*-

Now contracting the indices y, k in the first two equations of (5.17) and using the

trace normalization on n gives us

(5.18) Proposition. The coefficients Hp and Hp of the second fundamental form are

completely determined by the coefficients Hp and their covariant derivatives; namely

Hp=- (// (« + l))Hp/,       H"=- ii/n)Hp\

(5.19) Corollary. M is auto-parallel in V if and only if the coefficients Hp vanish

identically.

6. The induced connection. In the previous section we derived the basic equations

relating the intrinsic connections co and m. The purpose of this section is to introduce

an extrinsic pseudoconformal connection on M which is induced by m and to study

its relationship with co. We define <|> locally to be the matrix of 1-forms on M whose

entries are given by

(6.1) ^ = mJK+{n + 2)~]8fmp.
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(6.2) Proposition. <f> defines a pseudoconformal connection on M, called the induced

connection.

Proof. First note that $ = 0 and <$gKz + gj^f = 0, by the corresponding

relations for 77, so that <j> is su(n + 1,1)-valued. Now let U be a change of the

adapted (Mrame field which leaves the normal frames fixed, i.e. U is given by (4.2)

with if = 8$. Under U, m undergoes the transformation mfUjf = UAm^ + dUA. In

particular, mß = mß. Consequently,

tfítf = (#/ + (» + 2)_18/#/)í/Í = */!//■ + (« + 2)-1#/^/

= Ufmè + dUJL+in + 2)-lmpDUJL

= U/(m¿ + (« + 2)-'«;^) + ¿t// = Ufà + dUj-,

so that <¡> does indeed define a pseudoconformal connection.

Remark. We should perhaps, at this point, discuss the dependence of the

connection </> on the choice of the normal frame field ZP. For this purpose it is

convenient to broaden our definition of a pseudoconformal connection.

Note that the indefinite unitary group § = U(n + 1,1) acts transitively on the real

hyperquadric Q in P"4 '. Let % denote an isotropy subgroup of §. We now consider

Cartan connections of type §/%, i.e. we allow uin + I, l)-valued connection 1-forms

on principal 3GbundIes. This being said, we could agree to call a connection as in

(2.1) a special pseudoconformal connection.

Because the action of § on Q is not even almost effective we must introduce a

notion of equivalence for these general pseudoconformal connections. Since what

really concerns us are the projective transformations between infinitesimally close

tangent hyperquadrics, it is natural to call two pseudoconformal connections equiva-

lent if they determine the same linear fractional transformations of Q. It is apparent

that this will be the case if and only if their difference takes values in the Lie algebra

of the center of %.

It is not hard to see that each pseudoconformal connection is equivalent to a

unique special pseudoconformal connection. In fact, the connections $ = (my) and

tj> defined by (6.1) are equivalent. Now under a change of the normal frames by a

transformation U, as in (4.2) with / = 1, t{ = 8/, t¡ = t = t7 = 0, we easily find that

tp is invariant. In this way we have avoided the computation which shows directly

that the transform 4>, of <j> by U, is equivalent to <i>. In any case, we have now shown

that the induced pseudoconformal connection is independent of the choice of

normal frame field. (This is to be contrasted with the situation in the geometry of

submanifolds in a space with a projective connection. It is the existence of the Levi

form which makes the behavior of our geometry closer to that of the conformai case

[11]-)
The curvature form of <> is, of course, given by the structure equation d<j>j = <f>j A

<j>1 + <t>f; we may write $/ = Rjpsuß A co". A straightforward computation using
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(6.1) and (4.11) yields

(6.3) Proposition. The induced connection $ is torsionfree, i.e. 0* = <ï>0 = 0.

Moreover:

«D0°=(« + 2)"'c77r;

= -(» + 2)-'{n; - g^{Hpuk + Hpu*) A (HjPiu> + H/Pu*)},

$/ = IT/ + fi/ng - **(#£»* + Ä/V) A (fl^ + HIPu*),

*,° = H,0 - «(¿ï/V + Ä)V) A (a¿><o* + HPu*),

$* = Kl - <(#/co7 + Hpu*) A(HkPuk + HPu*).

For the components R* s of the curvature tensor we have:

RJ - = Ci- -V f>Jc° - — vJ^H1" H   -Rikl       ^ikl^ °i^0kl       g     nikn¡ñ~Pti

^ ' ' po — r0-— Hpn-       »° -— r°_;npn-
Rijk ~ ^ijk       nij"kP'     **jk ~~ L-*y*        lnjnkP-

Computing the traces of each of the curvature forms in (6.3) we immediately arrive

at the following conclusion.

(6.5) Theorem. The induced connection on M coincides with the intrinsic (normal)

connection if and only if the following equations hold along M:

dmp = 0, iHpHP = Cf¡,

iHpH¡,= C%,    HpHjk = Ck/.

(6.6) Theorem. If M is a hypersurface in V (i.e. p = 1), then the induced connection

on M is normal if and only if M is auto-parallel in V and on M we have

f^jk — /^0/c — s->0k — a
*-/*   — *"ik   ~ ^*k ~ v-

Proof. Note that for a hypersurface

dmn-:x = m'n+x A <-+' = -gik~(H$W + H¡?+Xu*) A (flJJ+V + //,"+'"*)-

Now if the induced connection is normal the first equation of (6.5) implies, in

particular, that gikHl"J+xHknl+x = 0. Since gik is nondegenerate, H[j+X = 0. By (5.19)

M is auto-parallel in V. The conditions on CA - now follow from (5.18) and the last

three equations of (6.5). The converse is evident.

Theorem (6.6) implies the following unpublished result of S. Kobayashi.

(6.7) Corollary. The induced pseudoconformal connection on a hypersurface M in

a pseudoconformally flat space V is normal if and only if M is auto-parallel in V.

Our final result is a consequence of (6.5), the first equation of (6.3), and (5.12).

(6.8) Theorem.  The induced connection on an auto-parallel pseudoconformally

immersed submanifold of a pseudoconformally flat space is normal, hence flat.
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