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UNITAL /-PRIME LATTICE-ORDERED RINGS

WITH POLYNOMIAL CONSTRAINTS ARE DOMAINS

BY

STUART A. STEINBERG1

To Nathan Jacobson

Abstract. It is shown that a unital lattice-ordered ring in which the square of every

element is positive must be a domain provided the product of two nonzero /-ideals is

nonzero. More generally, the same conclusion follows if the condition a2 > 0 is

replaced by p(a)^Q for suitable polynomials p(x); and if it is replaced by

f(a, b) > 0 for suitable polynomials f(x, v) one gets an /-domain. It is also shown

that if a A b = 0 in a unital lattice-ordered algebra which satisfies these constraints,

then the /-ideals generated by ab and ba are identical.

1. Introduction. In [5, p. 79] Diem has asked if an /-prime /-ring in which the

square of every element is positive is an /-domain. In this paper we show that any

such /-ring R is a domain provided the/-subring T of /-elements has zero annihilator

in R or the T-T convex /-bimodule of R generated by Ta + aT contains a for each

nilpotent element a of index 2. Also, some polynomial constraints which generalize

the condition that squares are positive are considered, and it is shown that an

/-prime /-ring with such constraints is an /-domain, sometimes even a domain. Our

original arguments were based on Lemmas 13 and (an earlier version of) 14.

However, while this paper was being revised we realized that the simpler Lemma 2

was sufficient to get /-domains from /-prime /-rings.

A lattice-ordered ring (l-ring) is a ring R whose additive group is an /-group (that

is, R is a lattice and each translation x -> a + x is order preserving, and hence is an

order automorphism) and in which the set of positive elements R+ = {a E R:

a > 0} is closed under multiplication. Some good references for background material

on /-rings are [4; 2; 3, Chapters 13 and 17; 6; 9, Chapter I, pp. 164-176 and 14, §2,

pp. 192-202]. In particular, in Theorem 1 of [14] and Proposition 1.3 of [9] there is a

list of many of the basic equations, inequalities and properties that result from the

interaction of the lattice and ring structures in an /-ring.
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The right (left) module M over the /-ring R is called an l-module if M is an /-group

and M+ R+ C M+ (R+ M+ C M+). A convex l-subgroup (submodule) of M is a

subgroup (submodule) X that is a sublattice which is also convex: x < m < y and x,

y E X imply m E X; that is, X is the kernel of an /-group (/-module) homomor-

phism. The element r E R+ is an f-element on MR if for all a, b E M

(l)aAb = 0 implies ar A b = 0.

If R+ consists of /-elements on M, then M is called an f-module over R. An /-module

over R is an /-module precisely when it is embeddable in a product of totally ordered

A-modules [13, Theorem 1.1 or 1, p. 54]. Note that when MR is an/-module, the map

x -* xr is a lattice homomorphism of Af for each r E R+ (see, for example [4, Lemma

1, p. 52 or 2, Theorem 1.4.4, p. 25]). If R and S are /-rings, then M is an R-S

l-bimodule (f-bimodule) if M is a left /-module (/-module) over R, a right /-module

(/-module) over S and r(xs) = (rx)s for all r E R, x E M, and s E S. The R-S

/-bimodule is an /-bimodule if and only if it is embeddable in a product of totally

ordered R-S /-bimodules. In particular, R is an f-ring (that is, R is an R-R

/-bimodule) precisely when it is embeddable in a product of totally ordered rings

[4, Theorem 12, p. 57]. By an f-element of the l-ring R we mean an element a E R+

which is an /-element on both the /-modules RR and RR. An l-algebra over the

commutative unital totally ordered domain F is a ring R which is a torsion-free

algebra over F and which is also an /-module over F. Of course, any /-ring R is an

/-algebra over the integers Z; and if R is also an /-module and algebra over the

totally ordered field F, then it is an /-algebra over F.

An (right, left) ideal of the /-ring R is an (right, left) l-ideal of R if it is also a

convex /-subgroup of the additive /-group of R. R is called l-prime if the product of

two nonzero /-ideals is nonzero, and R is an l-domain if the product of two nonzero

positive elements is nonzero. R is called (l-reduced) reduced if it has no nonzero

(positive) nilpotent elements, and l-semiprime if it has no nonzero nilpotent /-ideals.

Recall that R is /-semiprime (/-prime) if and only if for all a E R+ (a, b E R+ ),

aRa = 0 (aRb = 0) implies a = 0 (a = 0 or b = 0) [5,2.5, p. 73 or 11]. An /-ideal P

is an l-prime l-ideal of R if R/P is an /-prime /-ring. By the lower l-radical of the

/-ring R we mean ß(R) — the intersection of all the /-prime /-ideals of R. The lower

/-radical is a nil /-ideal, and R is /-semiprime if and only if ß(R) = 0 [5,2.13 or 11].

We also note that, just as for rings, an /-reduced /-prime /-ring is an /-domain.

Birkhoff and Pierce [4, p. 63] have shown:

(2) If R is an /-ring, then Nn = {a E R: a" = 0} is a nilpotent /-ideal of index at

most «.

Let R be an /-algebra over F, and let / be an /-ideal of R. Then Ix = {x E R:

\x\< ai for some a E F+ and i E I+ } is the algebra /-ideal of R generated by /.

Since I2 C I, if I is an /-prime /-ideal, then it is an algebra ideal. So ß(R) is the

lower /-radical of the l-algebra R.

If a is an element of the /-module M, then its positive part, negative part and

absolute value are defined by a+ = a V 0, a~= (-a) V 0 and | a \ — a V (-a), respec-

tively. Then a = a+ —a~, \ a \= a+ +a~ and a+ A a~= 0. Moreover, if a A b = 0,

then a = x+ and b = x~ for x = a — b. So for an /-ring R (1) is equivalent to the
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identity x+y+ A x~= 0. Since y+ x+ A x~= 0 is the corresponding identity for RR,

the class of /-rings is a variety of /-rings. Also, each of the following conditions is

equivalent to the corresponding parenthetical identity, and hence determines a

variety of /-rings:

(3) a A b = 0 implies ab = 0 (x+ x'= 0).

(4) a2 > 0 for each a in R ((x2)~= 0).

The variety of/-rings is contained in the variety determined by (3); and the latter is

contained in that determined by (4): a2 = (a+ ~a~)2 = (a+)2 + (a~)2 > 0 [4, p.

59]. Johnson [9, p. 174] has shown that an /-prime /-ring is a totally ordered domain

(also see [10]), and Diem [5, p. 81] has shown that an /-prime /-ring which satisfies (3)

is also a totally ordered domain (see Lemma 13 below).

Let F[x, y] be a free noncommutative algebra over the totally ordered domain F.

As a generalization of squares positive, a torsion-free /-algebra R over F is called a

PPI l-algebra if there is a polynomial f(x, y) E F[x, y] such that f(a, b)>0 for

each a, b E R (we do not have any occasion to use more than two variables). Of

course, we assume that/(x, y) & F, and if R is not unital, then the constant term of

f(x, y) is zero. If for each a in the /-algebra R there is a polynomialp(x) in F[x] (of

positive degree) with p(a) G R+ , then R will be called p-positive. A PPI /-algebra

which satisfiesp(x) > 0 is/7-positive. In §3 we show that a unital /-primes-positive

/-algebra with properly conditioned polynomials is an /-domain, or even a domain.

In [12] Shyr and Viswanathan have called an /-ring R square-archimedean if for

each a, b E R+ there is a positive integer « such that ab + ba < n(a2 + b2). They

showed that in a square archimedean /-ring R, ß(R) is the sum of the nilpotent

/-ideals of R, and it is the largest nil /-ideal of R. In §3 we consider polynomials

more general than f(x, y) = -(xy + yx) + n(x2 + y2). We show that if R is an

/-prime /-algebra with the property that for some a, b E R+ (or a E R) there is a

suitable polynomial/(x, v) with/(a, b) > 0, then R is an /-domain if it is unital, or

satisfies more general conditions.

In §4 we summarize the results of §§2 and 3 in terms of the lower /-radical ß( R )

and strengthen the result of Shyr and Viswanathan. In §5 we show that in an

/-algebra with the polynomial constraints considered previously, if a A b = 0, then

the /-ideals generated by ab and ba are identical. In §6 there are some examples and

a remark connecting the general constraints with (3) and (4).

Finally, we fix some notation and give a few more useful facts. If A' is a subset of

the /-ring R, then (X) will denote the convex /-subgroup of R generated by X. Also,

M2= {aER+ :a2 = 0}.

(5) If R is a torsion free /-algebra over F and 0 < ß E F and a E R with ßa > 0

(ßa < 0), then a > 0 (a ^ 0).

(6) </?") = {rER: \ r |< s" for some5 G R+ } is an /-ideal of R.

(7) If a A b = a A c = 0, then a A (b + c) = 0.

(8) If a, b E R and ax = a - a A b, bx - b - a A b, then ax A bx= 0.

(9) If a* A b* = 0 in a homomorphic image R* of R, then there exist a and b in

R, mapping to a* and b*, respectively, and a A b — 0.
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2. Squares positive. Our first lemma is included for ease of reference, and is, for

F = Z (except (d)), Example 15 of [4, p. 55]. The next two lemmas determine when

an /-semiprime /-ring is /-reduced or reduced.

Lemma 1. Let R be a torsion-free l-algebra over the totally ordered domain F, and let

T — {c E R:\c\is anf-element ofR}.

Then:

(a) T is a convex f-subalgebra of R.

(b) IfR is unital and 1 > 0, then F ET.

(c) If0¥= ß E Fanda ER with ßa E T, then a E T.

(d) R is a T-T f-bimodule.

Proof. We will only prove (c). If x A y = 0 in R, then | ßa \ x A y = 0 implies

|/3|(|a|xA>.)=|/3||a|xA|/3|v'=|/3a|xA|/3|y = 0.

So | a | x A y = 0 since R is F-torsion-free; similarly, x | a \ Ay = 0, so a E T.

We will consistently denote the f-subring of f-elements of R by T, or T(R), if

necessary.

Lemma 2. Let R be an l-ring. If a E R+ is an f-element of R and a2 = 0, then

aRa = 0.

Proof. Let z E R+. Then (az — za)+ A(az — za)'= 0 and hence (az - za)+ a

A a(az — za)'= 0. Since (az — za)+ a = (aza — za2)+ — aza and a(az — za)' =

(a2z — aza)'= aza, we have aza = aza A aza = 0.

Recall that M2 = {a E R+ : a2 = 0} and N2 = {a E R: a2 = 0).

Lemma 3. Let R be an l-ring.

(a) R is l-reduced if and only if it is l-semiprime and M2 E T.

(b) R is reduced if and only if it is l-semiprime and N2 Ç T.

(c) R is an l-domain if and only if it is l-prime and M2 Ç T.

(d) R is a reduced l-domain if and only if it is l-prime and N2 E T.

Proof, (a) If R is /-semiprime and M2 E T, then M2 = 0 by Lemma 2; hence R is

/-reduced.

(b) Suppose that R is /-semiprime and N2 E T. If a E N2, then | a \ E T and

| a \2 = | a21 = 0 since T is an /-subring. So | a \ = 0 by Lemma 2, and hence R is

reduced.

(c) follows from (a), and (d) follows from (b).

In the following T° = (T°) is defined to be Z and w° = 1 (even if 1 £ R). The

next result is a generalization of [14, Lemma 4(b), p. 203].

Lemma 4. Let R be an l-ring with squares positive. Suppose that a E R and k, I, m,

n GZ+ with 1 </<«i + k + 2.If(Tk)a2"(Tm)E (T'),then

(Tk)a(Tn+m)+ (Tk + n)a(Tm)c (T1).

Proof. We use induction on «. If « = 0 this is trivial. Suppose it is true for some

integer «and (Tk)a2"+\Tm) Ç (T1). Then (Tk)a2(T" + m)+ (Tk + ")a2 (Tm)E

(T1). If t ET+ , then 0 < (a ± tf yields -(t2 + a2) < ta + at < t2 + a2 and



UNITAL /-PRIME LATTICE-ORDERED RINGS 149

hence | ta + at | < t2 + a2. But R is a T-T /-bimodule, and | at \ , | ta | < | at + ta \

holds in any totally ordered T-T bimodule which is a homomorphic image of R,

since t > 0; so it also holds in R. Now | at | < t2 + a2 implies

\tkatn+m+l\ = tk\at\tn+m^tk+n+m+2 + tka2tn+m E (T1);

so tkatn+m+x E(T'). Thus (Tk)a(T"+m+x)E (T1) by (6), and, similarly,
(Tk+n+x)a(Tm)C (Tl).

The subset X of the /-ring Ä is said to have local bi-f-superunits if for each x E X

there is an element e ET+ with |x|<|x|e + e|x|+e|x|e (that is, x is in the

convex /-r-T-bimodule of R generated by Tx + xT). The following theorem implies

that a unital /-prime /-ring with squares positive is a domain.

Theorem 1. Let R be an l-ring in which the square of every element is positive.

(a) R is ¡-reduced (an l-domain) if and only if it is l-semiprime (l-prime) and

M2 = {a E R+ : a2 = 0} has local bi-f-superunits.

(b) R is reduced (a domain) if and only if it is l-semiprime (l-prime) and

N2 — {a E R: a2 = 0} has local bi-f-superunits.

Proof, (a) Suppose that R is /-semiprime and M2 has local bi-/-superunits. If

a E M2, then by Lemma 4, with k = m = 0 and « = / = 1, aT + Ta E T, and

hence aT + Ta + TaT E T. If U is the convex /-subgroup of R generated by

aT + Ta + TaT, then U = {u E R: \ u |< at + ta + tat for some t E T+ } E T, and

a E U since a has a bi-/-superunit. So M2 E T and R is /-reduced by Lemma 3(a). If

R is also /-prime, then it is an /-domain by Lemma 3(c).

(b) If R is /-semiprime and N2 has local bi-/-superunits, then, as in the previous

paragraph, yV2 E T. So R is reduced by Lemma 3(b). If R is also /-prime, then it is a

reduced /-domain. But if ab = 0, then a2b2 = 0 implies a2 = 0 or b2 = 0, and hence

a = 0 or b = 0.

Another version of Theorem 1 is implied by the following two lemmas. The left

annihilator of a subset Xof RislR(X) = {a E R: ax = 0 for each x E X}; the right

annihilator of X will be denoted by rR(X).

Lemma 5. Let R be an l-ring and suppose that X ET with X E Xx — Xx where

XX=(XC\R+)\J {0}. Then rR(X) = rR((X)) is a right l-ideal of R, and lR(X) =

lR((X)) is a left l-ideal of R.

Proof. Let x E X and r E rR(X). Then x = xx — x2 where xx, x2>0 and xx,

XjEIU {0}. If |j|<|r| ,then

|xí | = | (x, — x2)s |<|x,s| +\x2s |

= x, | j| +x2|s|<x,|r| +x2| r | = |x,r | +|x2r |= 0.

So s G rR(X) and rR(X) is a right /-ideal of R. Since X E (X), rR((X)) E rR(X).

Since (X)= {u E R: | u \< xx + ■ ■ ■ +xn for some 0 < x, G Xx}, if r E rR(X) and

uE (X) with |m|<x, + ••■ +x„, then | ur |=s=| u \ | r |< xx \ r | +-hx„|7-|=0,

since \r\ErR(X). Thus ur = 0 and r E rR((X)). So rR(X) Q rR((X)). Similarly,

lR(X) = lR((X)) is a left /-ideal of R.
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Lemma 6. Let R be an l-ring with squares positive and suppose that a E R with

a2" E T. If u A v = 0 in R, then | a \ u A v E rR(T") and u | a \ A v E lR(T"). (If

n = 0,rR(T") = lR(T") = 0.)

Proof. By Lemma 4 with k = m = 0 and / = 1, aT" + T"a Ç T. If « = 0 the

result is obvious; so assume « > 1. If 0 < s E (T"), then s =£ /" for some t E T+ by

(6). So s(\a\u A ©) </"(| o | m Av)=\t"a\u A tnv = 0. Since (T")= (Tn) +

-(Tn)+ , \a\uAv ErR((T")) = rR(T")byLemma5.

Theorem 2. Let R be an l-ring in which the square of every element is positive and

suppose that lR(T) = rR(T) = 0. Then:

(a) R is reduced if and only if it is l-semiprime.

(b) R is a domain if and only if it is l-prime.

Proof. By Lemma 6, yV2 E T, and hence (a) follows from Lemma 3(b). If R is

/-prime, then it is a reduced /-domain by Lemma 3(d), and hence a domain (see the

proof of Theorem 1).

3. Polynomial constraints which generalize squares positive. In this section we show

that Theorems 1 and 2 are true for /-algebras which satisfy polynomial constraints

more general than x2 > 0. The types of constraints that we use are illustrated in the

next two results which are generalizations of [14, Theorem 7, p. 200].

Let F be a totally ordered domain. A polynomial/(x, v) G F[x, y] will be called

nice if it has at least one monomial of degree 1 in x and each of its monomials of

degree 1 in x has a negative coefficient. So if f(x, y) is nice, then/(x, y) = -g(x, y)

+ p(y) + h(x, y) where 0 7e g(x, y) is of degree 1 in x and all its coefficients are

positive, and h(x, y) = 0 or each of its monomials is of degree at least 2 in x. For

example, for each a E F,f(x, y) = -(xy + yx) + a(x2 + y2) is nice; so is (y — x)"

and modifications obtained by putting in appropriate coefficients a G F in the

monomials of ( v — x)". Note that y need not appear in the nice polynomial/(x, v).

We will consistently denote the "parts" of a nice polynomial f(x, y) by g(x, y),p(y)

andh(x, y), as in the definition.

The derivative of p(x) G F[x] will be denoted by p'(x). If f(x, y) is a nice

polynomial then/(x, 1)'(0) < 0.

Lemma 7. Let R be a unital torsion-free l-algebra over the totally ordered domain F.

The following statements are equivalent for the nilpotent element a of R.

(a)|a|< 1.

(b) There is a polynomialp(x) in F[x2] with p(a" + 1) s* 0 andp(a" — 1) > 0 for

eachn> l,and0 ¥=p'(l)- I E R+ .

(c) For each integer « 5= 1 there are polynomials px(x) and qx(x) in F[x] with

px(a" + 1) > 0, qx((a" - I)2) > 0 andp\(l)q'x(l) ■ I > 0 in R.

(d) For each integer « > 1 there are polynomials p2(x) and q2(x) in F[x] with

p2(a" + 1) s* 0, q2(a" - 1) 3* 0 andp'2(l)q2(-l) ■ 1 <0inR.

(e) 1 E R+ and for each b in {±a": n> 1} there is a polynomial f(x, y) E F[x, y]

such thatflb, 1) 3= 0 andflx, 1)'(0) < 0.
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(f) 1 G R+, \a\ is nilpotent and if u A v = 0 with u «s| am \ for some m E Z+ and

v < 1, /«en /«ere « a nice polynomial f(x, y) E F[x, y] withflu, v) > 0.

(g) For each integer « 5= 1 /«ere are polynomials p3(x) and q3(x) E F[x], with only

odd terms, such that p3(b)+p3(b)'= 0 if b = ±(a" + 1), and q3(b)+ q3(b)'= 0 if

b = ±(o" - 1); andp3(l)p'3(l)q3(l)q'3(l)-l > 0 in R.

Proof. For (a) -» (b) let p(x) = x2 and use the fact that T is an /-ring (Lemma

1(a)). For (b) -» (c) letpx(x) = p(x) and qx(x) = h(x) where p(x) = «(x2) in (b).

For (c) -» (d) let q2(x) = qx(x2) andp2(x) = px(x).

(d) -» (e). Let b = a" and take p2(x), q2(x) E F[x] with p2(a" + 1) » 0,

42(a" - 1) » 0 and />2(1)?2(-1) • 1< 0. If 0 = /?2(1)?2(-1) > 0, then 1 < 0 in R by

(5). So ß < 0, i-ß) ■ 1 > 0 and 1 G R+ . Now

0 < q2(b - 1) = oo + <*x{b - 1) + «2(* - O' + • • • +amib ~ l)m

= (a, - 2a2 + ■ • ■ + (-l)m_1777am)c7 + a0 + h{b)

= q2{-l)b + a0 + h{b)

where h(x) G x2F[x]. Similarly, there exists «,(x) G x2F[x] with

0<p2{b+l)=p2{l)b + y0 + hx{b).

If ^2(-l) < 0, then /+(x, j>) = <72(-l)x + a0 + «(x) is a nice polynomial with

/+ (b, 1) 5= 0. Also, p'2(l) > 0 since />2(1)ö2(-1) < 0, and f_(x, y) = -p'2(l)x + y0 +

h2(x) is a nice polynomial with /_(-/>, 1) > 0; here, if hx(x) = 2y,x', then «2(x) =

2(-l)'y,x'.

If q'2(-l) > 0, then again we get two nice polynomials f± (x, y) with/+ (b, 1) > 0

and f_(-b, I) >0.

(e) -» (a). By induction on the index of nilpotency of a we may assume that

ak E T if k > 2. Let f(x, y) = g(x, y) + p(y) + h(x, y) be a polynomial with

f(x, 1)'(0) < 0 and f(a, 1) = g(a, 1) + p(l) + h(a, 1) > 0, where the monomials of

g(x, y) (respectively, h(x, y)) are of degree 1 (respectively, 2) in x. Then, since

g(a, 1) = -/3a where ß = -fix, 1)'(0) > 0 and h(a, 1) G a2F[a] E T, we have ßa ^ s

for some s £ 7. By using a similar polynomial for -a, we get -ya < / for some / G T

and 0 < y G F. So -ßt < y/3a ̂  yí and a G F by Lemma 1(a) and (c). Since (a)

holds in any totally ordered ring, it must hold in any/-ring.

(f) -» (a). By induction on the index of nilpotency of b = | a \ , we may assume that

b" = 0, n s* 2, and bk G T if k > 2. Let c = b A 1, and let u = b - c and v = 1 - c.

Then c, u G T and « A t> = 0 by (8). Let/(x, y) = -g(x, y) + p(y) + h(x, y) be a

nice polynomial with/(w, v) > 0. Then 0 =£ g(u, v) <p(v) + h(u, v). Each term of

h(u,v) is of the form aw = aunivm'u"2vmi ■ ■ ■ u"'vm' with N = %n¡>2. Since

v < 1, 0 < w < w* < bN G T; so aw G Fand hence «(i/, u) G F. Whence g(u, v) E

T since p(v) G F. Now g(u, v) contains a term of the form au, auvm, avmu or

avmuvk, where a > 0 and m, k>0. Since g(x, j>) has positive coefficients, if d is

this term, then 0 < d ^ g(u, v) and hence u, uvm, vmu or vmuvk E T (Lemma 1(c)).

But v = I — c is an invertible element in T (since c" = 0), hence u ET and

Z> = « + c E T.
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(g) -> (d). Since p3(x) has only odd terms p3(-b) = -p3(b); and hencep3(-b)+ =

p3(by and p3(-b)~ = p3(b)+ . So if b = a" + I, then p3(b)+p3(by = 0 and

p3(b)'p3(b)+ = 0, and hence

F3(¿)2 = [/>3(¿) + -F3(*rF = [pÂb)+]2 + [p3{b)-]2 > 0.

Similarly, q3ib)2 >0 if b = a" — I. Let p2(x) = F3(*)2 and <72(*) = ^ix)2- Then

/>2(a" + 1) > 0, q2(a" - 1) > 0 and />2(l)fl2(-1) • 1< 0 in Ä.

Since F is a convex /-subring of /? (Lemma 1(a)) and hence satisfies (3) and (4),

for the implication (a) -» (f) we may let f(x, y) = -(xv + vx) + x2 + y2, and for

(a) -» (g) we may letp3(x) = q3(x) = x. The proof is complete.

The next lemma shows that polynomials also determine when the idempotents are

in T.

Lemma 8. The following statements are equivalent for the unital torsion-free l-algebra

R over the totally ordered domain F.

(a) The idempotents of R are contained in the interval[Q, 1] (and are central).

(b) There is a polynomial p(x) in F[x] with /?(/)> 0 for each idempotent f, and

[p(l)-p(0)]l>0inR.

(c) For each idempotent f there are polynomials p(x) and q(x) in F[x] with

/>(/) > 0, 9(1 - /) > 0 and[p(l) - p(0)][«7(1) - q(0)] ■ 1 > 0 in R.

(d) For each idempotent f there are polynomials p(x) and q(x) in F[x], with zero

constant terms, such that p(f)+p(f)~= q(f)'q(f)+ = 0 andp(l)q(l) > 0.

Proof. Since F is an /-ring (Lemma 1(a)) squares are positive in T and F satisfies

x+ x~ = 0; so (a) implies (b) and (d), and clearly (b) implies (c). Also, for (d) implies

(a) we can simply note that for/ idempotent p(f) = p(l)fand q(f) = q(l)f, and so

f+f' = f'f+ = 0. Hence/= /2>0 and 1 - / > 0. Now we show that (c) - (a).

By (5) 1 ER + , since [p(l) - p(0)][q(l) - q(0)]- I > 0. Also 0 </>(/) = p(0) +

[pit) - Pi0)]fand 0<q(l-f) = q(l) - [q(l) - q(0)]f yield

-Pi0)<pil)-p{0)]f   and    Ml)-?(0)]/<?(,).

So, as in the proof of (e) -» (a) of Lemma 7, / G F. But (a) is satisfied in any unital

/-algebra [7,p. 539]. For iff = /2 in a unital totally ordered algebra, then 0 </< 1

-/or 0< 1 — / < /, and hence / = 0 or 1. Thus, a unital /-algebra satisfies (a),

since it is a subdirect product of totally ordered algebras. Consequently, by Lemma

1(a), the idempotents of R are contained in [0,1] and commute, and hence are

central.

Note that the conditions on the coefficients of the polynomials are important. For

any algebraic /-algebra R will satisfy the constraint p(a) E R+, but it need not

satisfy (a) of Lemmas 7 and 8.

Results analogous to Theorem 1 follow from Lemmas 7 and 3. We state one such

result which uses (d) of Lemma 7.
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Theorem 3. Let R be a unital torsion-free l-algebra over the totally ordered domain

F.

(a) R is l-reduced (an l-domain) with 1 G R+ if and only if R is l-semiprime

(l-prime) and for each element a in M2 = {a E R+ : a2 = 0} there is a polynomial

q2(x) in F[x] with q2(a - 1) > 0 andq2(-l) KOinR.

(b) R is reduced (a reduced l-domain) with 1 G R+ if and only if R is l-semiprime

(l-prime) and for each element a in N2= {a E R: a2 = 0} there are polynomials p2(x)

andq2(x) in F[x] with p2(a + 1) > 0, q2(a - 1) > 0 and p'2(l)q'2(-l) ■ KO in R.

Next, we determine, in terms of polynomial constraints, when a unital /-domain is

a domain. Let F be the totally ordered field of quotients of the totally ordered

domain F, and let R be a torsion-free /-algebra over F. Then R = R <8>FF = {r/a:

r E R and 0 ¥= a E F} is the F-divisible hull of R. If R is given the positive cone

R+ = {r/a: r E R+ and a E F+ }, then R is an /-algebra over F which contains R.

The F-/-algebra R will be called normal (i-normal) if for each a in R which is a

zero divisor there is a polynomial 0 j=- p(x) in F[x], with zero constant term, such

that p(a)^0 (and p(l)-h0).

Lemma 9. Let R be a unital, reduced, normal l-algebra over the totally ordered

domain F, and suppose that R is an l-domain. Then the following statements are

equivalent.

(a) R is a domain and 1 G R+ .

(b) If c2 = ac with c E R and 0 < a E F, then there is a polynomial p(x) in F[x]

such thatp(c) E R+ and[p(a) - p(0)] ■ 1 > 0 in R.

(c) The idempotents of R = R 'Sip F are positive.

(d) R is i-normal over F and 1 G R+ .

Proof, (a) -» (b). If c2 = ac with a > 0, then/ = c/a is an idempotent of R, and

since R is a domain,/= 0 or 1. So c = 0 or a and we can letp(x) = x.

(b) -» (c). First note that 1 G R+ by (5). Let / = c/a be an idempotent in R with

a > 0. Then 1 — / = (a — c)/a is idempotent and c2 = ac and (a — c)2 = a(a — c).

Let p(x), q(x) E F[x] be such that p(c) > 0, q(a - c) s= 0 and p(a) - p(0) > 0,

q(a) - q(0)>0. Then p(c) = p(af) = p(0) + [p(a) - p(0)]f> 0 and q(a - c) =

q(a(l-f)) = q(0) + [q(a) - q(0)](l - f) > 0. So -p(0) <[p(a) - p(0)]f and
[q(a) — q(0)]f< q(a), and hence/ G T(R) since F E Tby Lemma 1.

(c) -* (a). Since F= T®FF is the set of/-elements of the /-domain R, F is an

/-ring (Lemma 1(a)) and hence is a domain. But the idempotents of R, being

positive, are contained in F; and hence 0 and 1 are the only idempotents of R. Let

ab = 0 in R; then, since R is a normal /-algebra, there are nonzero polynomials p(x)

and q(x) in xF[x] with p(a) > 0 and q(b) > 0. Since R is an /-domain and

p(a)q(b) = 0, either p(a) = 0 or q(b) = 0; suppose p(a) = 0 and a ¥= 0. Then,

since R is reduced, the algebraic element a is strongly regular in F[a]; that is,

a = a2h(a) for some polynomial h(x) in F[x]. For, since F[a] is reduced, F[a] -

F[x]/(g(x)) with g(x) square free; so that F[a], as a ring, is a direct sum of fields

(or see [8,p. 165]). Since/= ah(a) is an idempotent of R,f= 0 or/= 1; thus/= 1

and b = 0.
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(d) -» (c). Let f¥= O, 1 be an idempotent of R. Since R is /'-normal there exists

p(x) E xF[x] with 0 </>(/) = p(l)/ and p(l) -A 0. Then p(l)2/3* 0 and hence

/>0by(5).
Since (a) trivially implies (d) the proof is complete.

Note that the equivalence of (b) and (c) in Lemma 9 holds for any unital /-algebra.

From Theorem 3 and Lemmas 7 and 9 we get the following two corollaries.

Corollary 1. Let R be a unital torsion-free l-algebra over the totally ordered

domain F. Then R is a domain with 1 G R+ if and only if it is a normal l-prime

l-algebra which satisfies (i) and (ii).

(i) If a E R with a2 = 0, then there are polynomials p2(x) and q2(x) E F[x] with

p2(a + 1) > 0, q2(a - 1) > 0 and p'2(l)q'2(-l) -KOinR.

(ii) // c2 = ac where 0 < a E F and c E R, then there exists p(x) E F[x] with

pic) E R+ and[p(a) - p(0)] > 0.

The F-/-algebra is weakly p-positive if for each a in R there is a polynomial

p(x) E F[x] (of degree > 1) with p(a)>0 and p'(l) > 0 in F; it is strongly

p-positive if for each a in R, p(x) exists with positive coefficients with p(a) > 0.

Corollary 2. Let R be a unital, weakly p-positve, torsion-free l-algebra over the

totally ordered domain F.

(a) If I E R+, then R is a reduced l-domain if and only if it is l-prime.

(b) If F is a field and I E R+, then R is a domain if and only if it is an i-normal

l-prime l-algebra.

(c) // R is strongly p-positive, then 1 G R+ and R is a domain if and only if it is a

normal l-prime l-algebra.

Proof, (a) follows from Lemmas 7(c) and 3(d), and then (b) follows from Lemma

9(d). If R is a strongly p-positive normal /-prime /-algebra, then p(l) ■ 1 G R+ with

p(x)EF+[x] implies 1 G R+, and hence F+ E R+ . Thus R is a domain by

Corollary 1.

Example 1 in §6 shows that (b) is false if F = Z, even if R is commutative and the

idempotents of R are positive. It also shows that a weakly p-positive /-algebra need

not be strongly/»-positive. We also note that [16, Example 2] shows that a commuta-

tive unital /-domain with all idempotents positive, which is a p-positive /-algebra over

a totally ordered field F, need not be reduced. In this example each element a

satisfies an inequality (x — a)2 > 0. In fact, if R is any /-algebra with squares

positive and Rx = R + F is the /-algebra obtained from R by freely adjoining F in

the usual manner (so Rf = {(r, a): r E R+ and a E F+}), then Rx is a p-positive

/-algebra with 1 > 0. Each element of Rx satisfies (x — a)2 > 0 for some a E F. Rx

will be an /-domain if R is an /-domain. Analogous statements are true for any

p-positive /-algebra.

If A is a finite subset of a strongly p-positive /-algebra R, then there is a

polynomial p(x) E F+ [x] with p(a) 3= 0 for each a in A. For if ax and a2 are in R

and if px(x),p2(x) E F+ [x] withp2(a2) E R+ and px(p2(ax)) E R+, then p(a,) G

R+ for i — 1,2 where p(x) = px(p2(x)). Similarly, the direct sum of a family of
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strongly p-positive /-algebras is strongly p-positive. Since the direct sum need not be

unital, we note that throughout this paper, the condition "1 E R+ " may be replaced

by "R has centralf-units"; that is, for each a ER there is an idempotent e in T

which is central in R and a = ae.

We turn next to two-variable polynomials and give the following generalization of

Lemma 4.

Lemma 10. Let R be a torsion-free l-algebra over the totally ordered domain F.

Suppose that a E R and 1 < k E Z. Assume that for each t E T+ and each integer

m~s*0 there are two nice polynomials f(x, y) = -g,(x, y) + p¡(y) + h¡(x, y) E

F[x, y], i = 1,2, withfx(akm, t) > 0,f2(-ak", t)>0 and such that:

(i)g,(x, y) or g2(x, y) has a monomial ending in x and g2(ak, t) < gxiakm, t).

(ii) «,(x, y) G F[x\ y]; so «,(x, y) = a,(x\ y) for i= 1,2.

If ak  G T for some n>0, then for each s E TU {1} and for each t G F there is an

integer N 3» 0 with tNsa G F.

Moreover, if the degree in y of each monomial of g,(x, y) which ends in x (for all

t E T+ and m > 0) is bounded by Mx, and the degree of each q¡(x, y) in x is bounded

by M2, then we may take N < M,(M2" + M^~x + ■ ■ ■ + 1).

Proof. Let t G F and 5 G F U {1}. We may assume that s > 0 and t > 0. For if

11 \N | s | a E T, then

|/wia|<|/Hj||a| = ||rHj|a|e F

implies that tNsa E T by Lemma 1. Let (, = /Vj if s ¥= 1 and let /, = /

if s — 1. We argue by induction on «. If « = 0, then a ET and we can let N = 0.

Assume the result is true for the integer « and ak" ET, and let b = ak. Then

bk" E T and hence for each sx E T U {1} there is an integer Nx with txN'sxb G T

(and TV, ̂ MX(M£ + M2"_1 +-hi) if A/, and M2 exist). Now for each integer

r>l there is an integer Nr with txN'sxbrET (and Nr < rMx( M2" + M2"~'

+ • • ■ + 1)). For if s2 = rf's,// G F, then there exists an integer M with r,ws2è G F

(and M < A/,(M2" + M2"~' + • • ■ + 1)); but txMs2b = txMtxN'sxbr+ ' and hence /Vr+, =

M + 7Yr (and /Vr+, < (r + l)Mx(M£ + A/2"_ ' + •••+ 1)).

Let/,(x, v) = -gx(x, y) + px(y) + hx(x, y) be a nice polynomial which satisfies

(ii) and such that fx(a, tx) > 0. If u is a term of hx(a, tx) = qx(ak, tx) = qx(b, tx),

then

u = at[xbJn[2bh ■ ■ ■ t\'bJ'

with 0 ¥= a E F, I 3= 1, /, 3= 0,y, 3* 0 andy, 3= 1. We claim that t[u E T for some L

(and L < ŒU^WiXAi? + M2 ' + ' ' ' + "^ If l = l this follows from the Previ"

ous paragraph. Assume that / > 2 and txL'(atix'bJi ■ ■ ■ t\<-<bJ'-<) = j3 G F (and L, <

(S'^'i/JM^A/j" + M2~x + ■ ■ ■ + 1)). Then, again, there is an integer L2 with

tL,+L2u - tiL2[s3t'x')bJ' E T

and so

L = L, + L2
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(and

L<     2 À )M\(M2+ Mi~X +•■• +1) <Mx(M2n+x + M2" + ■ • ■ +M2)   .

Thus, there exists L3 with if3A,(a, /,) G F(and L3 « MX(M^1 + ■■■ +M2)).

Similarly, if /2(x, y) = -g2(x, _y) + p2(y) + A2(x, 7) is a nice polynomial which

satisfies (i) and (ii) and/2(-a, tx) > 0, then there is an integer L4 with txLih2(-a, tx)

G F (and L4 « MX(M^+X + M2" + • • • +M2)). Let Ls be the larger of L3 and L4

(L5 * MX(M2"+X + M2" + • • • +A/2)). Then rf^a, /,) G F. For g,(a, /,) <p,(/,)

+ A,(a, /,) andg2(-a, ?,) <p2(i,) + A2(-a, /,). But g2(-a, /,) = -g2(a, /,), so

-(Piih) + nti-a, tx)) < g2(a, ?,) < gx{a, tx) ^px{tx) + A,(a, tx).

Thus

-ttiPiih) + A2(-û» '.)) < 'f^M '1) < 'f5£.M '1)

s='f5(/>.('t) + *i(<Mi))

and txLig¡(a, tx) ETby Lemma 1(a).

Now suppose gx(a, tx) has a term of the form ßt^a. But /, 3= 0 and all the

coefficients of g,(x, y) are in F+, so | /3/f6a |<| g,(a, i,) | , since this inequahty

holds in any totally ordered F-T-T bimodule which is a homomorphic image of R,

and R is a subdirect product of these modules. Thus ß \ txLitxL6a\< txLi \ gx(a, tx)\ =

I t\gx(a, tx) I , and if N = L5 + L6 then txNa ETby Lemma 1(c) (and

N < M,(Mf+l + M2" + • ■ • +M2) + Mx= M,(M2"+1 + Af2" + • • • +l)).

If TV = 0, then a G F and tNsa ET. If N 3= 1, then 0 *£ tN~xs =£ r,w and hence

\tN-xsa\= tN~xs I a |< txN\a | = | /fa | ; so r"-1™ G F by Lemma 1(a).

In [7], as part of their characterization of those /-rings that can be embedded in

unital /-rings, Henriksen and Isbell defined an /-ring to be infinitesimal if it satisfies

the identity x2 =£| x \ (equivalently wx2 <| x | for each « G Z+ ). In [15, Remark, p.

367] we have called an /-ring which satisfies the "dual" identities «|x|<|x2|

supertesimal. Since the essential use of the nice polynomials/(x, v) in Lemmas 7

and 10 is that "x < higher powers of x ", we make the following definitions.

A (p-) pseudosupertesimal l-algebra over F is an /-algebra R such that for all a,

r E R, with r 3= 0 (and a > 0), there is a nice polynomial/(x, y) = -g(x, y) + p(y)

+ h(x, y) in F[x, y] with f(a, r)> 0. A nice polynomial f(x, y) is called A>

restricted if A(x, y) E F[xk, y]. R is a (right) k-restricted pseudosupertesimal l-alge-

bra if for all a, r E R with r > 0 there are two ^-restricted nice polynomials/,(x, y)

and /2(x, v) with fx(a, r) > 0, f2(-a, r) > 0, g2(a, r) < gx(a, r) and g,(x, y) +

g2(x, y) has monomials which begin and end in x (gx(x, y) + g2(x, y) has a

monomial which ends in x). R is a (right) p-k-restrictedpseudosupertesimal l-algebra

if for all a, r G R+ there is a ^-restricted polynomial f(x, y) with f(a, r) 3* 0 and

g(x, y) has monomials which begin and end with x (which end in x). Finally, a

bounded pseudosupertesimal l-algebra (etc.) is an /-algebra R for which there is an

integer K such that for all a, r E R with r 3= 0 there is a nice polynomial/(x, y) with

/(a, r)> 0 and the degree of 7 in g(x, y) is < ^T and the degree of A(x, y) in x
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is < K. For example, a square archimedean /-ring is a bounded p-2-restricted

pseudosupertesimal /-algebra over Z. And a strongly p-positive /-algebra R is

pseudosupertesimal, since if p(x) G F+ [x], then f(x, y) = p(y — x) is a nice poly-

nomial; and if R is unital, then for each element a of R there is a nice polynomial

/(x) = f(x, 1) with /(a) >0; so R is p-2-restricted. Also, a commutative p-pseudo-

supertesimal /-algebra is p-2-restricted. If R is a PPI /-algebra with a nice ^-restricted

polynomial/(x, y) = -g(x, y) + p(y) + h(x, y) and g(x, y) has monomials which

end in x, then R is right ^-restricted; if R just satisfies f(x+ , y+)~= 0 then it is right

7>/c-restricted.

We can now give other generalizations of Theorems 1 and 2. The subset X of the

/-ring R is said to have local (left) f-superunits if for each x E X there is an e G F+

with | x | < e | x | and | x | < | x | e (| x | < e | x |). The element a E R is regular if

/R(a) = rR(a) = 0.

Theorem 4. Le/ R be a pseudosupertesimal torsion-free l-algebra over the totally

ordered domain F, and suppose that 2 < k E Z.

(a) // R is right p-k-restricted, then R is l-reduced (an l-domain) if and only if it is

l-semiprime (l-prime) and M2 = {a E R+ : a2 = 0} has local left f-superunits.

(b) If R is right k-restricted, then R is reduced if and only if it is l-semiprime and

N2 = {a E R: a2 = 0} has local left f-superunits.

Proof, (a) Suppose that R is /-semiprime and a G M2 and e G F+ with a < ea.

Since ak E T and a > 0 we may use Lemma 10 with /2(x, v) = -g,(x, v). Then

a < eNa G F; hence a E F by Lemma 1(a) and R is /-reduced by Lemma 3(a).

The proof of (b) is similar.

Theorem 5. Let R be a pseudosupertesimal torsion-free l-algebra over the totally

ordered domain F, and suppose that k 3= 2. Suppose that lR(T) = 0 = rR(T) and R is

bounded; or T contains a regular element of R.

(a) // R is p-k-restricted and l-semiprime (l-prime), then it is l-reduced (an

l-domain).

(b) // R is k-restricted and l-semiprime, then it is reduced.

Proof, (a) If a E M2 and / G F+ , then by Lemma 10 and its right counterpart

tNa and atN are in F for some integer TV. So if u A v = 0 in R, then tN(au A v) = 0

and (ua A v)tN = 0. If s E T is regular in R, then so is t = s2 3= 0; so a E T. If R is

bounded, then N is independent of t (Lemma 10), so au A v G rR((TN)) = rR(TN)

by Lemma 5, and ua A v E lR(TN). If we also have lR(T) = rR(T) = 0, then again

a ET. Thus by Lemma 3(a) R is /-reduced.

The proof of (b) is similar to that of (a).

From Theorem 4 and Lemma 9(d) we get

Corollary 3. Let R be a right k-restricted (k > 2) pseudosupertesimal l-algebra

over the totally ordered field F, and suppose that R is unital with 1 G R+ . If R is an

l-prime i-normal l-algebra, then R is a domain.
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4. The lower /-radical. If ß(R) is the lower /-radical of R, then since R/ß(R) is

/-semiprime, Lemma 3 translates to

Lemma 11. Let R be an l-ring.

(a) ß(R) — {a E R: \a\ is nilpotent} = M if and only if for 0 < a E M and

u A v = 0 in R, au A v E ß(R) and ua A v E ß(R). This is true if M+ E T.

(b) ß(R) = {a E R: a is nilpotent} = N if and only if for a E N and u A v = 0 in

R, | a | u A v E ß(R) and u | a | Av E ß(R). This is true if N E T.

Lemmas 4, 7 and 10 (and the conditions in Theorems 4 and 5) offer a variety of

polynomial characterizations of when ß(R) = M or ß(R) = N. We record some of

these explicitly (as implications). As usual, R is a torsion-free /-algebra over the

totally ordered domain F.

Theorem 6. Each of the following conditions implies that ß(R) — {a E R: | a | is

nilpotent} = M ET.

(a) R is a right p-k-restricted pseudosupertesimal l-algebra for some integer k>2

and R has local left f-superunits.

(b) R is a p-k-restricted pseudosupertesimal l-algebra, with lR(T) = rR(T) = 0 and

R is bounded; or T contains a regular element of R (k 3= 2).

(c) Here, we assume 1 ER+.IfuAv = 0 with u nilpotent and v < 1, then there is

a nice polynomial f(x, y) E F[x, y] with f(u, v) 3= 0.

Proof. By Lemma 11(a) we only need that M+ E T. For (a) this follows from the

argument in Theorem 4(a), and for (b) it follows from the argument in Theorem 5(a).

For (c) use Lemma 7(f).

Theorem 7. Let R be a torsion-free l-algebra over the totally ordered domain F.

Each of the following conditions implies that ß(R) = {a E R: a is nilpotent} = N E T.

(a) The square of each element in R is positive; and R has local bi-f-superunits, or

IrÍT) = rR(T) = 0.
(b) R is a bounded k-restricted pseudosupertesimal l-algebra and lR(T) = rR(T) = 0

(k 3, 2).

(c) R is a k-restricted pseudosupertesimal l-algebra and T contains a regular element

ofR (k > 2).
(d) 1 G R+ and R is weakly p-positive.

Proof. By Lemma 11(b) it suffices to show that each nilpotent element is in F.

For (a) this follows from Lemmas 4 and 6. For (b) and (c) this follows from Lemma

10 (as in the proof of Theorem 5). For (d) it follows from Lemma 7(c).

Since ß(R)is an/-ring (in Theorems 6 and 7) it is the sum of the nilpotent /-ideals

of R [5, Theorem 3.1]. Let Z„ = {a E R: \ a \" = 0} and N„ = {a E R: a" - 0}. If

M2 = {a E R+ : a2 = 0} C T, then Z2(R) = 7Y2(F) is an /-ideal of R. For if

a E Z2(R), then | a \ E T implies that a ET since F is a convex /-subring. Since F is

an /-ring (Lemma 1(a)), | a2 \ = \ a |2, and hence a E N2(T) and Z2(R) = N2(T). By

(2), N2(T) is a convex /-subgroup of R, and then by Lemma 3 Z2(R) = N2(T) is an

/-ideal of R. If M2(R/Z2) E T(R/Z2), then Z4(R) is an /-ideal of R. In particular,
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if R satisfies the hypotheses of (a) or (c) of Theorem 6, then each Z2„ is a nilpotent

/-ideal of index at most 2", and ßiR) is the union of {Z2„}.

Similarly, if JV2 C T, then N2(R) = N2(T) is an /-ideal of R; and if R satisfies the

hypotheses of (d) or the first part of (a) of Theorem 7, then each N2„ is a nilpotent

/-ideal of index at most 2". and ß(R) is the union of {N2„}.

5. Disjoint elements almost commute. Recall that two elements a and b in an /-ring

R are called disjoint if a A b = 0.

It is well known that if a and b are two elements in an /-group with a A b = 1,

then ab = ba [3, Theorem 6, p. 295]. Trivially, if a and b are disjoint elements of an

/-ring which satisfies (3), then ab = ba. Examples in §6 show that a unital /-ring with

squares positive need not have this property. However, Theorem 8 gives the

appropriate analogue. We first present two lemmas.

An /-ring is ¡-simple if it has exactly two /-ideals. A unital totally ordered ring is

/-simple if and only if whenever a, b > 0 there exist c, d > 0 with a is cbd. Some

examples of commutative unital /-simple totally ordered rings F are subrings of the

reals, totally ordered fields and (commutative) polynomial rings with coefficients in

F, ordered appropriately. If R is an /-algebra over the totally ordered domain F, then

an algebra /-ideal / is closed if R/I is F-torsion-free. For an arbitrary algebra /-ideal

/, / = {r E R: ar E I for some 0 ¥= a E F} is the closure of /, and / is closed if and

only if I = I.

Lemma 12. Let R be an l-algebra over the totally ordered domain F.

(a) If for each a G R+ there exists e E R+ with a < ea + ae + eae, then each

l-ideal of R is an algebra l-ideal.

(b) If F is l-simple, then each algebra l-ideal of R is closed.

Proof, (a) If / is an /-ideal of R, a E I+ and a E F+, then aa < aea + aae + aeae

implies aa E I.

(b) Let / be an algebra /-ideal of R. If 0 < a E F there exists ß E F+ with

1 < ßa. So if r E R with ar E I, then | r | < ßa \ r \ = ß \ ar | G J; hence r El.

Diem stated the next lemma for the case that R has squares positive, but, in fact,

proved the more general result given here (a proof is also given in [14, p. 199]). It is

the motivation for the somewhat surprising lemma which follows it.

Lemma 13 [5, p. 78]. An l-prime l-ring R is an l-domain if and only if it satisfies the

two conditions:

(a) If a, b E R+ and a2 = b2 = 0, /Ae« ab = 0.

(b)IfaAb = 0 and ab = 0, then ba = 0.

The element a E R+ is a positive zero-divisor if there is 0 ¥= b E R+ with ab = 0

or ba = 0.

Lemma 14. Let R be a torsion-free l-algebra over the totally ordered domain F.

Suppose that:

(a) If a E R+ anda2 — 0, then a is anf-element ofR.

(b) If u A v = 0, with u a positive zero divisor and v E T, then there exists a

polynomialp(x) E F+ [x] (of degree > 1) such that p(v — u) > 0; or there is a nice
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polynomial f(x, y) E F[x, y] withflu, v) 3= 0 andf(x, y) has a monomial of degree 1

in x which ends in x.

Then if a, b E R with a A b = ab = 0, and e E T+, there exists N E Z+ with

ebeNae = 0.

Proof. We will repeatedly use the fact that F is an /-ring (Lemma 1(a)) and hence

it satisfies (4).

Let e G F+ and let ax = a A e and bx = b A e. We first show that bemaxe = 0 for

each w G Z+ . Let b2 = b — bx and e2 = e — bx; and let a2 = a — ax and/2 = e — ax.

Then by (8) we get

(10) b2 A e2 = 0

and

(11) a2A/2 = 0.

Let b0 = b and a0 = a; then since axb¡ = Owe have

(12) hbi-eb,   for0</<2.

Also, since a¡bx = 0 we get

(13) a,e2 = a,e   for0</<2.

Now ax A bxem = 0 and ax, bxem E T; so bxemax = 0. Also (10) implies b2ema[ A e2

= 0, for any /, m E Z+ . But e2 G F, and (b2ema[)2 = 0 (if /> 1) implies b2ema[ E

M2 E T; so

(14) b2ema[e = 0   for all m G Z+ and / > 1,

since b2ema\e = b2ema[e2 = 0, by (13). But then

bemaxe = (¿>2 + bx)emaxe = ¿>2ema,e + bxemaxe = 0.

By (11) bxema2 A/2 = 0, and therefore by (12) ebxema2 =f2bxema2 = 0. So

(15) ebemae = eb2ema2e   for all m E Z+ ,

since ebxema2 = bemaxe = 0 and

eb2ema2e = e(b - bx)em{a - ax)e = ebemae — ebemaxe - ebxema2e.

Since (b2(f2e)ma2)(f2e)s E M2T+ E T+ we get

b2{f2e)ma2(f2e)sa2 A/2 = 0

by (11); and hence (12) implies

(16) eb2{f2e)ma2{f2eya2 = 0   for all m, s E Z+ .

Let p(x) be a polynomial in F[x] of degree 3= 1 and with positive coefficients

such thatp(/2e - a2)> 0. Then

(17) 0<ao + a,(/2e-a2) + ■ • • +a„(/2e - a2)" = p(/2e - a2)

andso(a0 = 0 if 1 G Ä+)

(18) 0 < g{a2, f2e) < a0 +  2 «*(/2*)* + M*2, /2^)
a>i
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where -g(a2, /2e) is the sum of all those monomials in a2 and /2e in (17) which

contain just one a2, and h(a2, f2e) is the sum of all those monomials which contain

more than one a2. A typical term in h(a2, f2e) is of the form aw =

a(f2e)m<a2(f2e)m>a2 ■ ■ ■ (f2e)m- with «7, G Z+ , / 3= 3 and a G F. By (16) eb2w = 0

and hence eb2h(a2, f2e) = 0. From (18) we get

From (18) we get

(19) 0<e/>2g(a2,/2e)<2«,eA2(/2e)*.

A typical term in g(a2, f2e) is a(f2e)ma2(f2e)s. But

(20) b2{f2e)ma2(f2e)se A b2 = 0   for all m, s E Z+ ,

since/2 < e and

0 < b2(f2e)ma2(f2e)se A b2 ̂  b2{f2e)ma2{e2)se A b2

= b2{f2e)ma2e2e2s A b2 = 0,

by (13) and (10); and (20) implies

(21) eb2if2e)ma2if2e)seAeb2if2e)ke = 0   for all m, s, k E Z+ .

Now (19), (21) and (7) imply that

0 *£ eb2g{a2, f2e)e = eb2g{a2, f2e)e A^akeb2(f2e)ke = 0,

and hence

(22) eb2g(a2, f2e)e = 0.

However, one term in gia2, f2e) is a(/2e)ma2 with 0 < a G F and m > 0; since

g(x, v) G F+ [x, y], (22) implies

(23) e/72(/2e)ma2e = 0.

Now for any k G Z+

(24) b2(f2e) a2 = Z>2(e - ax)e(e - ax)e ■■■ (e - ax)ea2 = b2e2ka2,

since all other terms contain a factor b2era[e with / 3= 1, and b2era[e = 0 by (14).

Thus

(25) ebe2mae = eb2e2ma2e = eb2i f2e)ma2e = 0

by (15), (24) and (23).

If there is a nice polynomial/(x, y) = -g(x, y) + p(y) + h(x, y) with/(a2, /2e)

3= 0, then we again get (18) (some ak may be negative); and if g(x, y) has a

monomial which ends in x, the calculation from (18) through (25) is still valid.

Corollary 4. Suppose that R satisfies the hypotheses of Lemma 14, and it has local

left (right) f-superunits and lT(T) = 0 (rT(T) = 0). FAe« a A b = ab = 0 implies

ba = 0.

Proof. If e G F+ is a left superunit for {a, b}, then by Lemma 14 0 < bae <

ebeNae = 0 for some TV. If r G T+, then e + / is also a left superunit for {a, b}; so

ba(e + t) = 0 and hence bat = 0. Since lT(T) = 0, ba = 0.
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The F-/-algebra R is called iright) weakly p-pseudosupertesimal if whenever u A v

= 0 in R there exists a nice polynomial f(x, y) = -g(x, y) + p(y) + h(x, y) G

F[x, y] (such that g(x, y) has a monomial ending in x) and f(u, v) > 0. Note that

this is a one variable constraint since u = a+ and v = a' for a = u — v.

Theorem 8. Let R be a torsion-free l-algebra over the totally ordered domain F, and

suppose that R has local f-superunits. Each of the following statements implies that the

closed l-ideals of R generated by ab and ba are identical whenever a A b = 0 in R.

(a) R has square positive.

(b) R is unital and strongly p-positive.

(c) R is unital and right weakly p-pseudosupertesimal.

(d) R is right p-k-restricted pseudosupertesimal with k > 2.

Proof. We first note that the hypotheses are satisfied by each homomorphic

image R* of R (for (c) use (9)). Let / be the /-ideal of R generated by ab; I is an

algebra /-ideal by Lemma 12(a), with closure /. If R* = R/Î, then, in each case, we

have seen that M% = M2(R*) ET* = T(R*). For (a) use Lemma 4; for (b) use

Lemma 7(d) (or the fact that (b) implies (c)); for (c) use Lemma 7(f); for (d) use

Lemma 10. Since a* A b* = a*b* = 0, b*a* = 0 by Corollary 4. So ba E Î, and

similarly, ab is in the closed /-ideal of R generated by ba.

It is possible to strengthen Theorem 8(b) by assuming weakly p-positive and the

following. Letp(x) = p,(x) — p2(x) wherep,(x) (respectively, -p2(x)) is the sum of

the terms of p(x) with a positive (respectively, negative) coefficient. Then for each

a E R we require p(x) = Pi(x) — p2(x) E F[x] with p(a) > 0, p(l) — p(0) > 0 in

R, and for each i 3= 0, y, = 2fc>í+] (ak — ßk) s* 0 (ak and ßk are the coefficients of

xk in px(x) and p2(x)). Now the proof of Lemma 14 goes through with e = 1. For

b2f2 = b2il - ax) = b2 by (14), and hence in (19) b2gia2, f2) = 1i>0yib2a2f2i; so

the argument after (19) is still valid.

6. Examples and a remark. Let R be a torsion-free /-algebra over the totally

ordered domain F. In [14, Theorem 8] it is shown that the following statements are

equivalent if R has a left/-superunit e:

(i) R satisfies x+ x'= 0.

(ii) If a A e = 0, then a = 0.

(iii) If a 3= 0 and a A e is nilpotent, then a ET.

(iv) If a 3= 0 and (a A e)2 - 0, then a ET.

(v) R has squares positive and

(26) If a E R+ and (a A e)2 = 0, then a2 = 0.

(vi) Assume e = 1. R is a PPI /-algebra with a polynomial p(x) which satisfies

(26).
In fact, it is easily seen that (iv) is equivalent to

(vii) M2 = {aER+ :a2 = 0} E T and R satisfies (26).

Thus, to get other equivalences, each of the polynomial constraints which gener-

alize squares positive or x+x"= 0 and implies M2 E T can be substituted for

"squares positive" in (v). Hence, these constraints are not that far removed from

their squares positive origin.
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Example 1. A commutative, unital, reduced, /-normal, weakly p-positive /-domain

in which all the idempotents are positive, but which is not a domain (see [4, Example

9f (II), p. 48]).

Let R = Q © Q be the (ring) direct sum of two copies of the rationals with

positive cone R+ = {(u, v): 0 < v < u} and let

R = {(2«,2w) + {k,k): n,m,kE Z.}.

Then R is an /-domain and if a = (u, v) E R, then either p(a) 3= 0 or p(a) < 0,

wherep(x) = vx — x2; so R is an /-normalp-positive /-algebra over Z.

The following table shows that R is weakly p-positive.

Table 1

a = (u, v) GZXZ pjx) withp(a) G R+ andp'(l) > 0

a ER+ U-R+ U{(u, 1): u < 0} p(x

m < 0 and v>2 p(x

m < 0 and v < u p(x

u = 0 and v < 2 p(x

u = 0 and v = 2 p(x

u = 0 and v > 2 p(x

u > 0 and v < 0 p(x

w > 0 and v > u p(x

= x2
2 3

= vx   — X

— -vx2 + x3

= x2 — vx

= 2x + x2 - x3

= vx — x2

= x2 — vx
3      4

= trx — x

Example 2. A unital /-ring with squares positive in which disjoint elements do not

commute.

An example is given by the free algebra generated by the set X. Let A be the free

semigroup (with identity e) generated by X, and let Y be the set X together with a

total order. If í = x,x2 • • • xp E A, then í is said to have length p: l(s) — p. We

make A into a partially ordered semigroup by defining, for s, t E A, s < t if

(i) 1 < l(s) < l(t) or

(ü) s = xx ■■■xmxm+x ■■■xp,t = xx ■■■xmym+x ■■■yp,p>2, and xm+x <ym+x

in Y for some m > 0.

In this ordering the set X U {e} is trivially ordered and is at the "bottom" of A,

whereas the elements of length s= 2 form a chain above X. Let R = A[A] = {f =

2ass: s E h, as E A} be the semigroup ring of A over the totally ordered domain A.

By the support of an element/ = 1,ass in R we mean {s E A: as ¥= 0}. If R is given

the positive cone R+ = {/ = 2ass: as > 0 if s is a maximal element in the support of

/}, then R is a unital /-ring with squares positive (this may be verified directly or it

follows from [16, Theorem 1(b) and Lemma 2]). If X has at least two elements and if

x and y are distinct in X, then x A y = 0 in R, but xy ¥=> yx. Another such example is

obtained by strengthening the order of A slightly by adding

(hi) e < t if l(t) 3= 2.

We also note that, if in (i) and (iii) we stipulate that /(/) s= 2«, and if we require that

p > 2« in (ii), for a fixed positive integer n, then R will satisfy (x2")"= 0 but not

(x",)-=0forw<2«.
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The referee has supplied the following simpler example (any example must take

into account [15, Theorem 1] and the equivalence of (i) and (ii) in the first paragraph

of this section).

Example 3. Let 6 be a nontrivial order preserving automorphism of the totally

ordered field F. Let F[x; 6] be the twisted polynomial ring determined by 6. So the

elements of F[x; 8] are polynomials p(x) = a0 + axx + • • • +anx" where a, G F.

The elements of F[x; 6] are added as usual and multiplied like polynomials subject

to the commutation rule xa — (aO)x for any a E F. Let p(x) > 0 if « s= 2 and

an > 0, and let a0 + axx > 0 if a0 3= 0 and ax > 0. Then squares in F[x; 6] are

positive; a A x = 0 for any a G F, and ax =A xa if aO =A a.
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