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SL(2, C) ACTIONS ON COMPACT KAEHLER MANIFOLDS

BY

JAMES B. CARRELL1 AND ANDREW JOHN SOMMESE2

Abstract. Whenever G = SL(2, C) acts holomorphically on a compact Kaehler

manifold X, the maximal torus T of G has fixed points. Consequently, X has

associated Bialynicki-Birula plus and minus decompositions. In this paper we study

the interplay between the Bialynicki-Birula decompositions and the G-action. A

representative result is that the Borel subgroup of upper (resp. lower) triangular

matrices in G preserves the plus (resp. minus) decomposition and that each cell in

the plus (resp. minus) decomposition fibres G-equivariantly over a component of XT.

We give some applications; e.g. we classify all compact Kaehler manifolds X

admitting a G-action with no three dimensional orbits. In particular we show that if

X is projective and has no three dimensional orbit, and if Pic( X) = Z, then

X = CP". We also show that if X admits a holomorphic vector field with unirational

zero set, and if Aut0(X") is reductive, then A" is unirational.

1. Introduction. In this paper we initiate a geometric study of a holomorphic

action of SL(2, C) on a compact Kaehler manifold X. One of our basic tools is the

Bialynicki-Birula decomposition associated to a maximal torus in SL(2, C). This

decomposition allows one to express a compact Kaehler manifold X on which C*

acts holomorphically with fixed points as a union of affine space bundles over the

connected components of the fixed point set Xe*. When a semisimple complex Lie

group G e.g. SL(2, C) acts holomorphically on a compact Kaehler manifold, then

the second author showed in [SJ that any one parameter subgroup <b: C* -> G

induces a holomorphic C* action with fixed points.

Recently, algebraic SL(2, C) actions have been studied in [B-B2] and [M].

Fa We of Notation.

G—SL(2, C),
B—the Borel subgroup {(ab°-<): a E C*,b E C},

U—the unipotent subgroup {(xb°x): b E C} of B,

T— the maximal torus {(Ua0-.): a E C*} of G,

NC(H)—the normalizer of H in G,

H°—the set of transposes of matrices in H E G,

X—an arbitrary compact Kaehler manifold,

XH—the set of fixed points of an TV-action on X.
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2. Outline of results. In §3 we consider meromorphic actions of general complex

Lie groups and prove or state a number of useful results. In §4 we recall the main

facts about the invariant plus and minus decompositions of a meromorphic enac-

tion on a compact Kaehler manifold. In §5 we classify actions of G = SL(2, C) on a

compact complex surface provided G acts with a dense orbit. In §6 we prove a

theorem to show that a semisimple complex Lie group acting on a compact Kaehler

manifold contains a parabolic subgroup which leaves the plus decomposition with

respect to a maximal torus invariant. In §7 we apply this result to a Borel subgroup

of G. B leaves the fibres of the plus decomposition of a maximal torus T in B stable.

It follows that p(G X Fx) = p(G X Fr) is biholomorpbic to both CP1 X F, and

CP1 X Fr where F, and Fr denote respectively the source and sink of the compact

Kaehler manifold X. This result was obtained independently by A. Bialynicki-Birula

[B-BJ. We call the submanifold p(G X Fx) the plinth of X. We use it in Corollary 7.5

to classify actions with no two or three dimensional orbits.

In §§8-9, we consider G-actions on X with no three dimensional orbit having at

least one two dimensional orbit. §8 deals with the situation in which no isotropy

group is isomorphic to a torus. In this case, Xu is smooth, where U is a maximal

unipotent subgroup, and X is isomorphic to G X B Xu where B is the Borel subgroup

containing U. On the other hand, if toral isotropy subgroups of G exist, then there

exists a distinguished component F of XT of codimension two in X so that p(G, F)

is dense in X. The classification of X is in terms of whether the elment t = (Ü, u) of

G leaves F invariant or not. We refer to Theorems 9.6 and 9.7 for the complete

results. In §10 we apply our results along with a theorem of [M-S] to show that if G

acts on a projective algebraic manifold X with no three dimensional orbit, and if

Pici*) = Z, then X = CPN, W = CPN~X, and F = CP""2.

3. Meromorphic actions. Let p: % X X -» X denote a holomorphic action of a

complex Lie group S on a complex manifold X.

Definition 3.1. We say that the action p is meromorphic if there exists an

equivariant completion S of § for which p extends (equivariantly) to a meromorphic

map p: § X X -> X.

When X is compact Kaehler, then a holomorphic action p: § X X -» X is mero-

morphic when:

(a) @ is semisimple [SJ, or

(b) § = (C*)k and Xs ¥= 0 [SJ, or

(c)Ö = Aut0(Z)[FandLJ.
Moreover, when § is semisimple, then any 1-parameter subgroup C* of § has a fixed

point inside any C*-invariant compact subvariety of X [SJ.

From now on we will let G denote SL(2, C) and fix a compactification G of G as a

quadric in CP4; namely

G= {zl - zxzA + z2z3}.

Observe that G acts on G by

/     Í      /zi     Ml\      f iz'     ZA
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and that there is an algebraic equivariant embedding $: G ^ G, where

♦ ("     bd)=[ha,b,c,d],

so that <i>(G) is Zariski open in G. Note also that the induced action of G on G has as

the complement of <i>(G) the quadric S= {z0 = 0} n G = CP1 X CP1 in CP3.

Note that by Lemma II-C of [S(] it follows that any holomorphic action p of G on a

compact Kaehler manifold X extends meromorphically to G X X.

The following result gives an important property of compactifications of G.

Theorem 3.2. Let p,: 6XÍ,-» X¡ be two meromorphic actions on normal compact

complex spaces Xx and X2. Assume each has a dense orbit W¡ in X¡ and that the isotropy

group G, of a point xx E Wx is conjugate to the isotropy group G2 of some x2 E W2.

Then there is a normal compact complex space T, a meromorphic action p: G X r -> T,

and two G-equivariant holomorphic bimeromorphic mappings m¡: T -» X¡ such that the

meromorphic map m2 ° mx~x: Xx -> X2 is an equivariant biholomorphism from Wx to W2.

Proof. Let b EG be such that bGxb'x - G2. Let p,: G -* Xx be given by

g l-> P\igb, xx) and p2: G -» X2 be given by g h» p2(g, x2). Since p, and p2 extend

meromorphically to G, so does p, X p2: G -» Xx X X2. Since the isotropy group of

(px(b, x,), x2) is G2, it follows that the image of G lies in Ux X U2 and gives the

graph of a biholomorphism from Ux to U2. Let T denote the normalization of the

image of G in Xx X X2 and let tt,: r -» X, denote the induced projection for / = 1,2.

It is straightforward to check that the assertions of the theorem are satisfied.

Theorem 3.3. Let p: G X W -» W be a meromorphic action on a compact complex

manifold W. Then the set W of points x E W with dimcp(G, x) < 2 is an analytic

subset of W. Further, given any one parameter subgroup C of G, dimc Wc > dimc WT,

where T is the maximal torus of G.

Proof. Let P(g) denote the projective space of g = si and let z E P(g) X W be

the family of zero sets of vector fields: i.e. z = {([v], x): v(x) = 0}. Note that

W' = m2(z), where m2 is the projection on the second factor, which shows that W is

an analytic subvariety of W by Remmert's proper mapping theorem. Note that WT

is biholomorphic to the fibre of mx over a dense open set of P( g ). Hence the upper

semicontinuity of the dimensions of the fibres of an analytic map implies the

inequality dimc Wc > dimc WT.

We will also need the following result.

Theorem 3.4. Let p: C X W -> W be a holomorphic C-action on a connected

compact complex manifold. If p extends meromorphically to p: CP1 X W -» W then

Wc is connected.

This theorem is proven for general unipotent groups by Horrocks [Ho]. The proof

of Horrocks can be extended to give a general result for unipotent actions on

compact complex manifolds (see [C-Sj]).
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4. The Bialynicki-Birula decomposition [B-B„C-S,]. In this section we recall the

invariant decomposition associated to a meromorphic C*-action p on the compact

Kaehler manifold X. For a meromorphic action, limx^0 P(^> x) = x0 and

lim^^ooPÍX, x) = x^ exist for all x G X and lie in Xe*. Let Xe* have components

Xx,...,Xr. Then the plus decomposition of X, X = U Xf , is composed of the plus

cells Xj+ = {x: x0 G X/}. Assume 1 <y =£ r.

Theorem 4.1. (a) The map p;+ : X* -* Xj sending x to x0 makes Xj+ a holomorphic

fibre bundle over X¡ with affine space fibres.

(b) Xj+ is analytic and contains X* as a Zariski open set.

(c) For each z E Xj, T^Xf ) is equivariantly isomorphic to T2(Xj) © N% , where N¿

is the subspace of TZ(X) generated by all vectors of positive weight with respect to the

induced C*-action.

(d) If X is connected then there is precisely one component, say Xx, such that

Xf = X.
(e) X fibres meromorphically over this component with generic fibre birational to

CPk where k = codcX,.

This theorem is due to Bialynicki-Birula [B-B,] in the case of algebraic C*-actions

on a complete nonsingular variety. The compact Kaehler case is treated in [C-S,].

There is an analogous minus decomposition X = U Xj~, 1 <j < r, and an analo-

gous result for it.

In §8 we will need to know when the normal bundle N+ (X/) -» Xj is equivariantly

isomorphic to Xj+ -* X. This is discussed in [C-S,]. For us, it suffices to know the

following.

Lemma 4.2. If all weights of C* on N+ (Xj) are equal, then N+(Xj) is equivariantly

isomorphic to Xf .

5. Classification of surfaces with G-action. There are a number of examples that

are closely related to the classification of G-actions which will be presented here

along with the classification of surfaces.

Example 5.1. Let Y be an analytic space and W = Y X CP1. Let p: G X W -> W

be the action p(g, y, w) = ( y, g ■ w), where g = (acbd) acts on w = [w0, wx] by

(c    d) '[wo>w\i = lawo +bwx,cw0 + dwx].

For the C*-action on W induced by the one parameter group <f>(\) = (o°-') tne

source IF, is F X [0,1] and the sink is F X [1,0].

We will show in §7 that any nontrivial action of G on a compact Kaehler manifold

X with at most one dimensional orbits is of this form.

Example 5.2. Let X = (CP1)2 and p: G X X-^ X be given by p(g,w,z) =

(g ■ w, g ■ z) where g • w and g • z are as in (5.1). The one parameter group 4> has

four fixed points. There are two G-orbits: the diagonal A and its complement. The

isotropy group of an x G A n XT is B or B° and for any x E (X — A) D XT is T.

Example 5.3. Let X = CP2 and p: G X X -> Xbe given by

P{gi[z0, zx, z2\) = gAg'
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where

Note that in this example the isotropy group of any element in the dense orbit is

conjugate to the normalizer NG(T).

Theorem 5.4. Let p: G X V -» V be a meromorphic action of G on a normal

compact complex surface V. Assume p has a dense orbit W. If the isotropy group of any

element of W is conjugate to T, then (V, p) is the action of Example 5.2. If the isotropy

group is conjugate to NG(T), then (V, p) is the action of Example 5.3.

Proof. We will do the case when the isotropy group is F. The other case is similar.

Applying Theorem 3.2 to the action of Example 5.2, we obtain the diagram

r

CP1 X CP1 V

where mx and m2 are G-equivariant. First note that mx is both holomorphic and

bimeromorphic. It follows that since T is normal, mx has connected fibres. By

equivariance of mx,

F= [x: dimc77f'(x) > 1}

is G-invariant. But by the principle of counting constants, dimcF < 0. Since G has

no fixed points on CP1 X CP1 the fibres of mx are in fact finite, so mx is a

biholomorphism. By a similar argument, the only way m2 can fail to be one to one is

to collapse a one dimensional orbit of G in T to a point. But T has only one such

orbit 77f'(A). Since wf '(A) is ample in T it cannot be collapsed, so 7r2 is one to one,

and thus a biholomorphism.

Example 5.5. Let p: GX CPN -» CP* (N 3= 2) be given by p(g, z) = [az0 +

bzx, cz0 + dzx, z2,...,zN] where g = (acd) and z = [z0,... ,zN]. For almost all points

z in CP*, the isotropy group of z is conjugate to U° = {(x0 f )}.

Example 5.6. Let p: GX CP2 -» CP2 be the action in 5.5 and let %x denote CP2

with [0,0,1] blown up. Note that p lifts to an action p,: G X %x -> %x since [0,0,1]

is fixed by G. Let u„ be the group of nth roots of unity. u„ acts on CP2 by

y • [z0, z,, z2] = [yz0, yzx, z2] and this action lifts to an action on %x that commutes

with the G-action on %x and makes mx: %x -» CP2 equivariant. Let %n = %x/pn

and let %n = CP2/u„. Clearly %n and %n have G-actions which we denote p„ and pn

respectively. Now pn and pn both have three orbits and for any point in the dense

orbit of either pn or ~pn, the isotropy group is conjugate to

v-={[i M;ye4

We remark that %n is normal and %n is smooth (it is in fact the «th Hirzebruch

surface).
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Theorem 5.7. Let p: GX V-* V be a meromorphic action of G on a normal

compact complex surface V. If the action has a dense orbit, with a point whose isotropy

group is conjugate to Un, then (V, p) is either (%„, p„) or (%„, p„).

Proof. The argument proceeds exactly as in Theorem 5.4. The only difference is

that %n has three orbits; the closed orbits are biholomorphic to CP1 and one has

self-intersection « while the other has self-intersection -«. Only the closed orbit with

self-intersection -« can be blown down equivariantly and this gives %n.

The following corollary summarizes the results of this section.

Corollary 5.8. Let p: G X V -> V be a G-action on a normal compact complex

surface V. Then (V, p) is as in 5.1, 5.2, 5.3 or 5.6.

Proof. To complete the proof, one needs only to know the following well-known

fact.

Lemma 5.9. If A is an algebraic subgroup of G, then either A is finite or is conjugate

to one of T, NG(T), B, or Un for some n.

6. On various invariant sets. We now begin to study the interaction between G and

the invariant decompositions associated to the maximal torus F of G.

Let F be a torus and <£: (C*)n -* T an explicit isomorphism. Given an «-tuple of

integers (/,,.. .,/„), let z1 = z\> ■ ■ ■ z'n- where z = (z,,... ,z„) G (C*)". Let p: T X V

-» F be a holomorphic action of Fon a connected complex manifold V. Suppose p:

V -* F is an equivariant holomorphic retraction of V onto F = VT. We assume F is

compact and that given any x E F, there is a neighborhood U of x and a

biholomorphism /: U X CN -» p'x(U) such that f(u, z'"qx, z'^2,... ,z'-(\n) =

p(<t>(z), f(u, T))), where each «-tuple L has nonnegative entries (i.e. is semipositive)

and each Ik has at least one positive entry. Note that this implies that for all x E V,

p(x) = lim   ■•• ( lim p(<f>(z),x)V--   .

Let t be the Lie algebra of vector fields on V generated by T, and let L be the

integral lattice of elements in the kernel of exp: t -» T. Let {e\,...,e'n} be a basis of

L such that exp(2 w,e,.) = <¡>(ew',... ,ew-) where e, = (v'-TF'e,' for all i. Let g be a

Lie algebra of holomorphic vector fields on V containing t. Say that g is semipositive

with respect to (e,,... ,e„} if g has a basis {»,,... ,vk} such that [e,, «■] = X,7u with

X,y > 0. Let g+ denote the subspace of g spanned by the Vj so that A,7 > 0 for some

/'. Let g0 be the centralizer of t. Clearly g = g0©g+.It can be shown that g+ is a

nilpotent, normal subalgebra of g and that t©g+ = gisa normal Lie subalgebra of

8-
We will now show that a semipositive g can be integrated to give an interesting

action on V.

Theorem 6.1. To every semipositive Lie algebra g of holomorphic vector fields on V

one can associate a complex Lie group % containing t such that:

(1) p extends to a holomorphic action p: S X V -» V,

(2) the Lie algebra of holomorphic vector fields that § generates is g, and
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(3) p: V -> F is equivariant with respect to the homomorphism \p: § -* §/§ where § is

the Lie subgroup of § corresponding to g.

Proof. We will first show that each v, can be integrated to give a holomorphic

action pj-, C X V-> V, where {vx,...,vk} is a basis of g satisfying [e,, Vj] = X^Vj

with A,, 3=0 for all i, i. Let v denote a fixed v¡. Then there exists a local oneij > j j
parameter group of biholomorphisms 0: "311 -> V which induces 0, where <D1L is a

neighborhood of 0 X Fin C X F.

Let e = 2,"= ! fc,e, be chosen so that all k¡ > 0 and

(6.2) lim p(exp(Xe),x) G F.
A->-oo

Set <t>'(\) = exp(Xe) and note that where defined

(6.3) p(*'(X), *(/, x)) = p(<fV(X), *(/, p{*'i\y\ p(*'(X), *))))

= 4»(e^,p(«i»'(X),x)),

where 5 3= 0 is defined by the condition [e, u] = St). This follows from the Lie

algebra identity

ad(exp(Xe))u = esxv.

We know by the compactness of F that $(i, /) Ç 1F2 for (r, /) G Ae X Wx for some

relatively compact neighborhoods Wx, W2 of F and some e > 0, where Ae= {| 11< e}.

Therefore, by (6.2), (6.3) and the fact that S>0we see that 3>(r, x) is defined if

(t, x) E it X K From this it is immediate that i> is defined on C X V.

To deduce equivariance of the projection, note that

p(<D(i,x))= limi••• ( lim pi>(*),*(,,*))•••))
z,-0\ yz„^0 //

= hm (•• ( hm$(e2w's'í,<í»(z)x)--))

where [e,, u] = 5,u with all 8, > 0. If some 5, > 0, then we get i>(0, p(x)) = p(x) as

the limit. If all 5, = 0, we get $(i, p(x)).

Since any basis vector field of g can be globally integrated, it follows that g

induces a complex Lie group § acting holomorphically on X. The assertions (2) and

(3) are straightforward consequences.

7. Interaction with the B-B decompostion. The result of §6 is intended to show that

given an action of a semisimple complex Lie group on the compact Kaehler

manifold X, there is a parabolic subgroup which leaves any B-B decomposition for a

maximal torus invariant. In the case G = SL(2, C) this result is made precise in the

following theorem. We will consider the plus decomposition X = Uly+ associated

to the C*-action pT on X induced by the one parameter subgroup <f>(X) = (q °-i) of

G. Recall that B° denotes the Borel sugroup {(g *-,): a E C*,b E C} of G.

Theorem 7.1. Let X be a compact Kaehler manifold with a holomorphic G-action p.

Then the plus decomposition X = U X* associated to pT is B°-invariant; i.e.

p( B°, Xj+ ) = Xj+ . In fact, the fibres of p^ are B°-invariant. Hence the sink Xr of X is

fixed by B°; i.e. Xr C XB°.
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Proof. That p(B°, Xx+ ) = Xx+ (Xx is the source of X) follows immediately from

Theorem 6.1. Thus B° leaves X — Xx+ invariant. It follows that B° also leaves the

irreducible components of X — Xx invariant. Since these are of the form X£,

X G A, for some subset A of {2,... ,r}, p(B°,Xxf) EXf for all X G A. Since X¿ is

open in (X^) , one may again apply Theorem 6.1 to the retractionp^ : X¿ -» Xx to

conclude p(B°, X¿)QX¿ for X G A. Then proceed to X - Xx+ - UXeA X¿ and

argue as before. This demonstrates the Ä°-invariance of the Xt and, in fact, of the

fibres of each/»* . The statement about the sink follows since X* = Xr.

By a result of Sommese [St] if a compact Kaehler manifold X admits a holomor-

phic action of a complex semisimple Lie group §, then any Borel subgroup ÍB in §

has a fixed point inside any ^-invariant compact set in X. Therefore as a corollary

to Theorem 7.1 we obtain

Theorem 7.2. Let X = U X* be the plus decomposition associated to a one

parameter subgroup C* C 'S. Then each X* is ^¡-invariant and X% D X^ =A 0 for all

)•

We omit the proof. Since one can continuously conjugate the one parameter

subgroup <i>(X) = (o°i) mto <p_1(X), it follows for example that the source Xx and

sink Xr of (X, pT) are interchangeable; i.e. the same. In fact, the next theorem shows

that considerably more is true.

Theorem 7.3. p(G, Xx) — p(G, Xr) and both are biholomorphic to Xx X CP1 (or to

XrX CP1).

Proof. Since B° leaves Xr fixed, p gives rise to a holomorphic map p': G/B° X Xr
-> X.

Claim. The isotropy group of any ^Glris B°; i.e. Gx = B°. To see this, note that

in the first place Gx = G or 5° since Gx is a closed subgroup of G containing B°. Let

us suppose that Gx = G for some x. Then by compactness of G/t3° it follows that

given a polydisc neighborhood U of x in X, there exists a neighborhood V of x in Xr

so that p'(G/B°, V) E U. By the maximum principle and the fact that U is a

polydisc neighborhood, it follows that p'(G/B°, y) is a point for all y E V. By

analytic continuation, p(G, Xr) = p(G/B°, Xr) = Xr. This is impossible since F has

negative eigenvalues on the fibres of the normal bundle of Xr in T(X)\Xr and

positive eigenvalues on the fibres of the normal bundle of p((°irj), Xr) (due to the

fact that g</>(X)g_1 = tf>(X-1) where g = (°_x x0)). Therefore p' is injective. Moreover, it

also follows that p'(g, Xr) C Xx, and hence, by symmetry, that p(g, Xr) = Xx. This

shows that p(G, Xx) = p(G, Xr).

To show that p': G/B° XÍ,-» p(G, Xr) is a biholomorphism, all that remains is

to show dp' is injective on the tangent space to any point of G/t3° X Xr. By

equivariance, it suffices to show injectivity on TZ(G/B° X Xr) where z = ([B°], x), x

an arbitrary point of Xr. To see this, note that « = (°q) G g defines a vector field v

on X whose evaluation at x gives a nonzero vector in Nx(Xr). Otherwise the orbit of

x under G would be a CP1 tangent to Xr at x which cannot happen. To see why, let

9C be the vector field F induces on X. We know [%, v] = 2v. But since 9C is zero on
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Xr and v is tangent to Xr at x, it follows that v = 0 at x. Therefore, x G XG which is

impossible. We also see immediately that dp' maps the tangent space to [B°] X Xr

injectively into T(Xr). Therefore, since Nx(Xr) n Tx(Xr) = x for all x E Xr, we see

that dp' is injective.

Definition 7.4. We call p(G, Xx) = p(G, Xr) the plinth of the action of G on X.

Corollary 7.5. If G acts nontrivially on X with at most one dimensional orbits, then

X is equivariantly biholomorphic to Y X CP1 where Y is compact Kaehler and G acts,

as in Example 5.1, on the second factor only. In particular, if X is a compact Kaehler

surface on which G acts with at most one dimensional orbits, then X is projective.

Proof. We will show that X coincides with its plinth P. First note that all orbits

of G are closed, for if x G X has isotropy group Gx, then dimc G/Gx < 1 implies Gx

contains a Borel subgroup. Hence p(G, x) = G/Gx is compact. Now suppose

x EXX+ . Then x0 G p(T,x) E p(G, x) so x G p(G, Xx); i.e. Xx+ E P. Thus X = P

since Xx is dense in X and P is closed.

The assumption, in the previous corollary, that X is compact Kaehler can be

relaxed. With the obvious change in the conclusion about Y, one may get away with

assuming only that A' is a normal compact complex space and that there exists an

equivariant desingularization X' of X that is compact Kaehler. For example, it may

be assumed that A' is a normal projective variety with G-action.

Recall that U denotes the unipotent subgroup {(xa x): a E C}.

Corollary 7.6. p(G, Xx+) = X if and only if Xu = Xx.

Proof. Y = X — p(G, Xx+ ) is a closed analytic invariant under G. If Y is

nonempty, then Yu ¥= 0 by Proposition II of [SJ. Thus Xu ¥= Xx. Conversely,

suppose X = p(G, Xx ). As a consequence of Theorem 7.3, it follows that Xu D A',.

If Xu =A Xx, then we may choose a point y E (Xu — Xx) n Xx+ that is not fixed by

F due to the fact that Xu is connected by Theorem 3.4. Since the orbit p(G, y) is

open in its closure Z, and the isotropy group Gy of y contains U but not F, it can be

seen that Gy = U„ for some «. We conclude that the normalization Z of Z is G-

equivariantly biholomorphic to %n or %n. Let it: %n -» X be the induced G-

equivariant map with ^(%„) = Z. Since yx = hm^^p^, y) ^y0 because X is

compact Kaehler, the two closed orbits in %n are mapped by ^ to disjoint sets. This

implies that the finite to one map Z -» Z is one to one, hence a homeomorphism.

Therefore, by the functorality of the B-B decomposition, p(G, Xx ) =A X since

otherwise the analogous fact would be true for %n, and it is not.

8. Actions with at most two dimensional orbits. In this section A is a connected

compact Kaehler manifold on which G = SL(2, C) acts nontrivially with a two

dimensional orbit but no three dimensional orbit. Let Gx denote the isotropy group

of x and G'x its identity component. We will classify X according to whether or not

G'x is isomorphic to F for some x G X.

We begin with some general results. Let p: H X Y -> Y be a holomorphic action

of a complex Lie group on a complex analytic space Y, and let (/>: A -* H be a

homomorphism of a closed complex subgroup A of G to H. Define G X A Y to be the
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quotient G X Y/A under the action a(g, y) = (ga'x, p(a, y)). This is the standard

construction, sometimes called balanced product, which associates a G-space to an

//-space (cf. [Bo]). The following results are well known.

Lemma 8.1. (a) 77ie map G -> G/A induces a holomorphic fibre bundle m: G X AY ->

G/A. m is G-equivariant andm~x(e) is isomorphic to Y as an A-space under the natural

induced A-action on Y; and

(b) G XA Y is a complex manifold if and only if Y is.

Next suppose Y = Xa and note that since U is normal in B, it follows that Y is

7?-invariant. Let G XBY denote the G-space with fibre Y = Xu induced by the

inclusion BEG. The next lemma gives a very important (and suprising) property of

these actions.

Lemma 8.2. The inclusion of Y in X induces a G-equivariant holomorphic map f:

G XBY ^> X. Given a E G/B,f\ m'x(a) is an imbedding ofm'x(a) into X. Ifz = f(u)

= f(v) and u ¥= v, then z E XG.

Proof. To be more explicit, we note that f([g, y]) = p(g, y). Only the last

assertion needs checking, so suppose f(u) = f(v) and u ¥= v. Let « = [gx, x,] and

v = [g2, x2] and assume p(gx, xx) = p(g2, x2). Set z equal to this common point.

Now Gz by definition contains both unipotent subgroups gxUgxx and g2Ug2x. It

follows immediately that if gxUgxx =A g2Ug2x then Gz = G; i.e. Gz must be either G or

a Borel subgroup, and the latter situation cannot happen in SL(2, C) since Bu is of

dimension one for any Borel subgroup B. Thus gxUgxx = g2Ug2x, so gxxg2 E NG(U)

which by the normalizer theorem is B. It follows that, for some b E B, [g2, x2] =

[gxb, x2] = [gx, bx2] = [gx, xx], which is impossible since u ¥= v. Hence z G Xe.

An alternate way of stating the above result is to say that x G Xe if and only if

/~'(x) is biholomorphic to G/B.

Now suppose that G'X = T for no x G X. (This does not imply that XT = 0.) We

next prove

Lemma 8.3. Y = Xu is irreducible and f: GXBY -» X is surjective.

Proof. Since G has no orbits of dimension three, every G'x must be conjugate to U

or B or be G for any x G X. It follows immediately that p(G X Y) = X so

f(G XBY) = X. From this it follows that p(G X Y') = A for some irreducible

component Y' of Y. If y G Y — Y', then there exist ay' E Y' and a g É B such that

Pigi y')= y- Indeed, for any g E B, pig X Y) E Y and g leaves the irreducible

components of Y, hence Y', invariant. Hence, by Lemma 8.2, y = y' since/([l, y]) =

filgi y']) and g & B. This contradiction shows that y is irreducible.

As a consequence of these lemmas, we have a complete description of X in the

case G has no isotropy group isomorphic to F and no three dimensional orbits. We

will describe the easiest case, i.e. Xe = 0, first.

Theorem 8.4. Suppose that G acts as in the above paragraph and that Xe = 0.

Then Y = Xa is connected and smooth and f: G XBY -* X is a biholomorphism.



SL (2, C ) ACTIONS ON COMPACT KAEHLER MANIFOLDS 175

Proof. Since Xe = 0, we see that / is a holomorphic homeomorphism. Y is

therefore smooth. Connectedness of Y follows from either 8.3 or 3.4.

Before treating the case where some Gx is a torus we will consider an example

which will be needed in the next proof.

Example 8.5. For each r> 1, let Vr denote the vector space of homogeneous

forms in x and y of degree r. For each r there is a representation of G = SL(2, C) on

Vr induced by the standard representation G C GL(2, C) and these representations

account for all the irreducible finite dimensional representations of G. Note that Vru

consists only of the line (XyT: X G C} while Vj is nontrivial only for even r and, for

such r, consists of the line {Xx'yJ: / =j = r/2, X G C}.

We now finish the classification of X when G has no three dimensional orbits and

no toral isotropy. We let C* act on X via the one parameter group <i>(X) = (o x-0-

Recall that Y is invariant under this action.

Theorem 8.6. Under the above assumptions on the G-action on X, Y' — Xu is smooth

and connected. If Xe ¥= 0, then the open minus cell F~ ofY, where F denotes the sink

of Y, has the structure of a line bundle £ -» F under the projection x\-> xK, and the

action of X G C* on a fibre of £ is multiplication by X"1. Finally, F = Xe, F has

codimension 2, and f: G XBY -> X is the mapping blowing F up.

Proof. To show Y is smooth and connected, it suffices to consider only the case

XG ¥= 0. By the fact that G is reductive and the identity principal, Xe = XK where

K = SU(2) is the maximal compact in G. Thus Xa is smooth. By [R, Proposition

1.1], a neighborhood W of x G Xa is biholomorphic with a neighborhood V of

TX(X) via a biholomorphism that is equivariant for all g G G sufficiently near e.

Under this biholomorphism, the image of Y n W is a neighborhood of 0 in some

linear subspace of TX(X), hence Y n W is smooth. Since/: GXBY - /"'( Xe) -> X

— Xe is a holomorphic homeomorphism, it follows that Y — Xa is smooth, too.

Hence Y is smooth and hence also connected by 8.3.

Next, express Tx( X) = Vr¡ © • • • © Vr © W as a sum of irreducible G-representa-

tions Vr, 1 < i < k, and a trivial G-representation W. Obviously dimc W = dimc Xe.

It can be checked that if k > 1, then G has a three dimensional orbit. Hence k = 1

as G acts nontrivially, and it follows that dimc Yu = dimc Xe + 1. Since Y has

codimension one in G XBY, hence in X, it follows that codimcXe = 2 as asserted.

In fact we have shown that any component of Xe has codimension two in X. Since

Xa E XT, it follows that Xe is a union of components of XT. The only possibility,

therefore, is that Xa is the source of Y, the sink of Y, or the union of the source and

the sink. But the source or Y cannot meet Xa since it does meet the source of X, and

Xa cannot meet the source of sink of A by Theorem 7.3. Hence Xe = F. It follows

immediately from Lemma 4.2 that £ is equivariantly isomorphic to the negative

normal bundle N'(F) -» F, and thus the action of X G C* on the fibre of £ is

multiplication by X"1.

The only assertion we have not proved is that /: G X B Y -» X is blowing up F. For

this, it suffices to consider the case when F is a point; one simply replaces X by

p(G, tx) for any x E F. But since %x is the only smooth surface with an isolated
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fixed point and one dimensional set left fixed by U, p(G, fcx) must be the comple-

ment of the one dimensional orbit in %x. One can check that /|/_1(p(G, tx)) is

blowing down the complement of a one dimensional orbit in %x to the complement

of the one dimensional orbit in DC,. This completes the proof of 8.6.

9. The case Gr = T for some x. We begin with

Lemma 9.1. The image of the morphism f: G XBY -> X consists of all x E X for

which G'x is either conjugate to U or B or x E XG.

Proof. Obvious.

Consequently, if GX = T for some x, then/(G X B Y) is a proper closed subvariety

of X and p(G, XT) must contain X — f(G XBY), a Zariski open dense set of X.

Therefore, there is a fixed point component F of XT with p(G, F) dense in X.

Lemma 9.2. The codimension of F is two.

Proof. In fact, F (¿f(G XB Y), hence most orbits through F have dimension two.

Let F~= {x E X:  xx E F}.  By Theorem 7.1,  p(U, F~) = F~, consequently
p(U,~Fz) = ~F.

Lemma 9.3. F~ is a divisor on X.

Proof. codcF~ < 2. If codcF~ = 2, then F is the source of X. Consequently

F C XB so p(G, F) cannot be dense in X. On the other hand, if F~ = X, then F is

the sink of A. But then F E XB and again p(G, F) cannot be dense. Therefore F" is

a divisor.

Since F~-> F has fibre dimension one, we may identify F" with the vector bundle

A/"(F) -* F (use Lemma 4.2).

Lemma 9.4. There is an s E H°(F, 0(N'(F)) so that (£"-.) E B acts on N~(F) by

sending v E N'(F) to a'2 ■ v + a~x ■ b ■ s(q(v)) where q: N~(F) -> F is the bundle

projection.

Proof. To see this, note that F ¥= XG, since p(G, F) is dense. Since U preserves

N'(F) and acts additively on the fibres, we can define a nontrivial section s of q by

s(y) = p((j?), y) for y E F. It is clear that p((0°-i), v) = a'kv for some integer

k > 0. Thus

= a~kv + ba-xs{q{v)),

k must be two, for

P((d    e-Mi    °a-x)'V)=P((aad + bc-x     a-xc-x)'V)

implies

dc-xs{q{v)) + c-k{a~kv + ba-xs{q{v))) = a'kc-kv +(ad + bc-x)a-xC-xs(q(v))
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which holds if and only if

a-xbc-ks{q(v)) = a-xbc-2s{q{v))

for all a, c E C*, b E C, and v E N~(F).

We summarize the above discussion in the next theorem.

Theorem 9.5. Suppose X is a compact Kaehler manifold with a holomorphic

G-action such that Gx is a torus for some x E X and G has no three dimensional orbit.

Then there exists a fixed point component F E XT of codimension two in X so that

p(G, F) is dense in X. F~ is B-equivariantly isomorphic to q: N '(F) -» F where (£°-¡)

acts by sending v to a'2v + ba~xs(q(v)), where s is some nontrivial section of N~(F).

We can prove a good deal more. Let W = F~. Since F" is B-invariant, the same is

true of W. Thus we can form G X B W. We now prove

Theorem 9.6. Suppose tF # F, where t = (°_x {,). Then W = F~ is smooth, and f:

G X B W -* X is a G-equivariant biholomorphic map.

Proof. If tF ¥= F, then note that either W n rÇF) = 0 or F n t(F+) = 0.

To see this, note t(F') = (tF)+ and t(F+ ) = (rF~). Hence if F3 n rijF) ¥= 0,

then /(tF)</(F) where / is the Frankel-Morse function [C-S2,p. 571], and

similarly if F+ n t(F+) =£ 0, then/(F) </(tF). Consequently, both intersections

cannot be nontrivial.

If the first case occurs, then F" and t(F") are two divisors of the same line bundle

as G is rational. These sections give a map to CP1. By the Remmert-Stein factori-

zation theorem, the fibres are connected. This gives the result in the first case by

Lemma 8.1. In the second case, the same argument applies since codcF = 2 and F is

neither the source nor the sink.

Theorem 9.7. If tF = F, then s (Theorem 9.5) has a smooth zero set which is in fact

XG. There is a G-equivariant holomorphic map g: X — Xa -> CP2 where G acts on

CP2 as in Example 5.3. With respect to this map, f(W — XG) is a line, F — Xe is a

fibre over a point of the dense orbit of G, and the line bundle £ associated to p(G, Xa)

is the square of the line bundle £ associated to W.

Proof. If tF = F, then W D rW = F, hence Xa E F. Next, note that F n XB c

Xe; for any x G F left fixed by B has the property that p(G, x) is the closure of an

orbit of F beginning on F and ending on F, which is impossible. Therefore, XG

which equals the zero set of s is smooth.

Next, consider the line bundle £ associated to W. Since tF = F, rW and F+ both

define £. Let the associated sections be s~ and s+ respectively. Any b G B such that

p(b, F) gives the section s of A7"(F) has the property that p(b, F+) n F = Xa. Thus

if a is the section of £ associated to p(b,F+), then we see that s~, s+ , and a have

zero sets intersecting transversely in Xe. Since G preserves Xa, it preserves

H°(X, £ ® Ixg), which we see is three dimensional. The map X — Xe -* CP2 given

by (s+ , s~, a) is the desired map. Note that the pull back of (s+ )'x(0) n (s")-'(0) ¡s

F - Xe, and the pull back of (O~'(0) is W. Note also that p(G, Xu) - Xe has as

image in CP2 the closed orbit of G, which is quadric and a line is the image of

(í-)-'(O) - XG. Thus, £ = [p(G, Xu)\ = [W]2 = £2.
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10. Two applications. Recently Mori and Sumihiro have shown in [M-S] that a

projective manifold X having a nontrivial holomorphic vector field vanishing on an

ample irreducible effective divisor D is CP" and D is a hyperplane. This yields the

following interesting application.

Theorem 10.1. Suppose X is a projective manifold having an algebraic G-action and

suppose Pic( X) » Z. Then // all G-orbits of X are at most two dimensional, then X is

biholomorphic to CP".

Proof. By Corollary 7.5 and §§8-9, either X is a holomorphic fibre bundle over

CP2, or there exists a closed nonsingular codimension two sub variety F which is a

component of XT such that both W+ — F+ and W_= F~ are smooth effective

divisors in X. The first possibility cannot happen if Pic(A) ^ Z, consequently we

have a pair of effective divisors W+ and W_ on X. Since Pic(A') s Z, every effective

divisor is ample, so in order to show X = CP", it will suffice to show either W+ or

W_ is CP""1. This is proved in [S2] if « 3* 3 and in [F] if « 3= 2. By the theorem of

Mori and Sumihiro, it will suffice to show that F is an ample divisor in, say, W+ .

Lemma 10.2. Xe* — F is finite. Moreover, We* has exactly two components.

Proof. Suppose X¡ is a component of Xe* that contains a curve C. Then if

A, ¥= F, then C f~l W+ = 0 or C n W_ = 0 as is seen by using the Frankel-Morse

function [C-S^ which is constant on components of Xe* and increasing on R+

orbits. But C must meet any ample divisor, so it follows that A, = F. By the same

reasoning, if We* has three components, F, Xx, X2 and if A, is not the sink of W+ ,

then Xx+ contains a curve missing W_. This is impossible, so the lemma is proved.

By the Z homology theorem [C-S2] applied to the minus decomposition of W+ it

follows that H2n 4(W+ ,Z)sZ and that F is an explicit generator. This implies that

every effective divisor on W+ is ample, so by the theorem of Mori and Sumihiro W+

isCP""1.

Our second application is a contribution to the question of whether a compact

Kaehler manifold A that admits a holomorphic vector field V with nontrivial

rational zero set is rational.

Theorem 10.3. Suppose X is compact Kaehler and every component of zero(F) ¿s

unirational. Then if Aut0(X) is reductive, X is unirational. Moreover, 7/dimczero(F)

< 2, then X is rational.

Proof. By a standard argument, we can reduce the proof to the case where V is

generated by a one parameter unipotent subgroup of Aut0(A). Hence, by the

Jacobson-Morosov Lemma, there exists an SL(2, C) E Aut0(X) for which V is

generated by B°. By Theorem 7.1, the sink Xr of A (associated to F C 5L(2, C)) is

contained zero(K) = XB\ Moreover, since F normalizes B, zero(F) is F-invariant.

Now, by Hironaka's equivariant resolution theorem, we may find a smooth projec-

tive variety Y with T action and a F-equivariant resolution of singularities /:

Y -» XB\ By [CS,], we may argue that Y is unirational, and therefore the sink of Y

is too. But this means that the sink of X (which is the sink of a component of
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zero(F) too) must be unirational as well. Finally we conclude that X is unirational.

The assumption that dimczero(F) < 2 ensures that Xr is rational, hence so is A.

11. Concluding remarks. If A is a projective variety with an algebraic G-action,

then by [Hi], there is an equivariant desingularization W -> W where W is the set of

points in A having at most two dimensional G-orbits. §§8 and 9 give some insight

into the structure of W. It would be interesting to answer the following problem in a

nice way.

Problem. Work out the structure of the set of points in X with at most two

dimensional orbits.

Our methods break down in a number of cases. For example, the B-B decomposi-

tions in question may no longer be locally trivial affine space bundles. Moreover, we

cannot use Cartier divisors and line bundles, but only Weil divisors. On the other

hand, there are some recent results on C*-actions on singular varieties that might be

useful; e.g. [C-G].
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