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ON WAVE FRONTS PROPAGATION

IN MULTICOMPONENT MEDIA

BY

M. I. FREIDLIN

Abstract. The behavior as t -» oo of solutions of some parabolic systems of

differential equations of the Kolmogorov-Petrovskii-Piskunov type is investigated.

The present approach uses the Kac-Feynman formula and estimates on large

deviations.

The behavior as t -* oo of solutions of some parabolic systems of differential

equations of the Kolmogorov-Petrovskii-Piskunov (KPP) type [1] is treated in this

paper. Our approach is based on the following two ideas: First, the solution of the

system under consideration satisfies some integral equation in the space of functions

with integration over the space of trajectories of an appropriate Markov process.

Secondly, we will make use of limit theorems for the probabilities of large deriva-

tions. A similar approach has been used in [2]. We shall formulate accurate

assertions and provide proof in the simplest nontrivial situation, and then indicate

possible generalizations.

So, let us consider the Cauchy problem

(1) -£ = -^-^ + cu(u,v)u + cnv,       u(0,x) = gx(x),

^ = yr¡ + c2Xu + c22(u, v)v,       t>(0, x) = g2{x).

We make the following hypotheses:

1. Dx, D2, cx2, c2x are positive constants.

2. The functions cxi(u, v) and c22{u, t>) are bounded from above and Lipschitz

continuous.

3. The vector field (c,,(w, v)u + cnv, c2Xu + c22(u, v)v) on the plane (u, v) has

an unstable equilibrium at the point (0,0) and a stable equilibrium at the point

(a, b), a > 0, b > 0. All integral curves starting at the points of the set {(«, v):

u > 0, v > 0, u2 + v2 ¥= 0} are attracted to the point (a, b) as / -> oo.

4. c,,(0,0) = max„>0iOS.oCn(i/,ü), c22(0,0) = maxu&0^0c22(i/, v).

5. One can choose a, h>0 and a function1 H(u,v) such that the following

conditions hold:

Received by the editors December 21, 1981.

1980 Mathematics Subject Classification. Primary 35B40; Secondary 35K22, 60J60.

Key words and phrases. Nonlinear diffusion, wave fronts, parabolic systems.

]H(u,v) is Lyapunov's function of the stable equilibrium point (a, b). The specific character of

hypothesis 5 is that this function is assumed to be defined in a large domain and to be convex downwards.
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182 M. I. FREIDLIN

(a) H(a, b) = 0, H(u, v) > 0 for (u, o) G Aa/2 = {(«, o): u » 0, v > 0; (m, u) ^

(a, b); u + v> a/2}.

(b) The derivative ¿tf//<ft of the function H(u, o), by virtue of the system

du , ,    ., ¿o ,      ,
^- = C„(ll, ü)tí + C120, -^- = C21M + C22(«, OJO,

satisfies the inequality

—^-^<-p((«-fl)  +{v-b)),

where p(z), z s* 0, is an increasing continuous function, p(0) = 0.

(c) The function H(u, v) is convex downwards.

(d) c,,(m, o) + c2l > 0, c22(w, o) + cX2 > 0 for (u, o) E fia = {(«, o): m > 0, o >

0, m + o « a}.

Let v(t), t > 0, be a Markov process with two states, 1 and 2, for which

P{v(t + b) =j\v(t) =/} = c,7A + 0(A),       A-»0,1*=./.

Consider the process X, defined by the equality

dXt={D~^dW„       t>0,Xo = x<=R\

where W^ is a Wiener process, Dx, D2 are the coefficients of system (1). It is easily

seen that the couple (Xr v,) forms a Markov process in the state space Ä1 X {1; 2}.

The following theorem is based on an idea belonging, apparently, to M. Kac. This

is the idea of using the representation of some linear parabolic system via the process

Theorem 1. Suppose that hypotheses 1 and 2 hold. Then the solution (u(t, x),

v(t, x)) of problem (1) obeys the following equations:

(2)       u(t, x) = Exjgm(X,)cxp[£c(p„ u(t - s, Xs), v(t - s, Xs)) <fc),

v(t, x) = Ex^gr(t){Xt)espyfc{vs, u(t - s, Xs), v(t - s, Xs)) <fc),

where c(l, u, v) = cxx(u, v) + c12,  c(2, u, v) = c22(u, v) + c2X.  System  (2)  has  a

unique solution bounded in every band {x G R], 0 < / < T}, T < oo.

Proof. If («(/, x), v(t, x)) is a solution of problem (1), then equations (1) can be

looked upon as linear equations, where cu(u(t, x), v(t, x)) = c(t, x, i) are known

functions of t and x, i = 1,2.

For the functions, smooth enough in the first argument, the infinitesimal genera-

tor A of the process (Xn vt) has the form

Af(x, 0 = y 0 - cuf(x, i) + cuf(x, j);        ij E {1,2}, i +j,x €E Rl.

So equalities (2) turn into a version of the Kac-Feynman formula for the equation

dw(t,x,i) _ , ..
-r-— Aw + c(t, x, i)w.
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The second assertion of Theorem 1 is straightforward from the fact that the

mapping

(«»(/,x),v°(t,x)) -*(ii»(i,x),vl(t,x)),

ux(t, x) = Ex>tgHtiXfexp{jo'<?(*,> «°(' - h Xs), v°(t - s, X,)) ds],

vx(t, x) = £x,2g„(/)(*r)exp{£c{p„ u°(t - s, Xs), v°(t - s, Xs)) <fc)

is a contractive one in the space C0 ,o (in the uniform norm) for sufficiently small

t0 > 0 (cf. [3]). Here the constant r0 depends only on the Lipschitz constant of the

functions cu(u, o), i = 1,2, and on supUitM- cu(u, o), supx | g¡(x) \ .

For the sake of simplicity, let gx(x) = axx<0(x), g2(x) = bxx<o(x), where

Xx<o(x)IS the indicator function of the set {x < 0} C Rl. Just as in the case of the

KPP equation, one can expect that, for large /, the solution (u(t, x), v(t, x)) of

system (1) has the form of a wave propagating from left to right with some velocity

c*:

(u(t, x), v(t, x)) **(U(x- c*t), V(x - c*t)).

This wave is determined by its profiles U(i-), V(£) and by the propagation velocity

c*. Given c*, the profiles may be obtained as a solution of the system of ordinary

differential equations, which is derived from system (1) by setting u(t, x) —

U(x - c*t), v(t, x) = V(x - c*t):

^1t/" + c*C/1 +c]X(U,V)U+cX2V=0, lim t/(£) = ö,   lim F(j) = b;
2 |-<-00 {-»-00

^r + c*Vl + c2XU+c22(U,V)V=0, lim l/(£) = üm K(¿) = 0.
L {-♦ oo £-* oo

A weaker version of this assertion is as follows: there is a c* such that

(3') lim«(f,(c* + A)/)=0,        Mmo(i,(c*+A)/) = 0;
'-►oo r->oo

(3") limw(i,(c* -h)t) = a,        lim v{t, (c* - h)t) = b
/-*oo /-»oo

uniformly in h > h0 for every h0 > 0. It is this assertion we shall be concerned with.

We shall evaluate c* and prove relations (3).

Let us consider the following matrix whose elements depend on a parameter

a GRU.

I -cx2 + <xDx cX2        \

\        c2x -c2X +aD2J'

Let \(a) be the largest eigenvalue of this matrix. It is not hard to verify that the

eigenvalues of this matrix are real. Moreover, it is readily checked that X(a) is a

nondecreasing, downward convex function. In addition, A(a) has an asymptote with

the slope min(Z),, D2) as a -* + oo, and an asymptote with the slope max(Z),, D2) as

a -» —oo.
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We will denote by /(ß), ß E R\ the Legendre transform of the function \(a):

(4) /(/?) = sup (a/?-\(«)).
a

Let, for definiteness, Dx < D2. From the above listed properties of the function

A(a) it follows that l(ß) = oo outside, [Z>,, D2]. On the interval [£>,, £>2], the

function /(/?) is finite, positive and convex downwards. It is differentiable on

(£>,, D2), and its derivative tends to +00 as ß -» Z)2, and tends to -00 as ß -» Dx.

Theorem 2. Suppose hypotheses 1-5 and iAe condition Dx< D2 to be valid. Then

relations (3) hold for

,      |M«*)+£|
/2(a* -^)

wAere

f  _  C22 + f2l  "Cil  ~g|2 _  D2(c,i  + C12) - Z)|(C22 + C2|)

0,-D, ' Z)2-D,

a«i/ a* ¿s a roo/ 0/ the equation

d\(a)
\(a*) +B = 2X'(a*)(a*-A),       \'(a)

Proof. First, we shall prove that for every h > 0

da

lim u(t, (c* + Ä)r) = lim o(í, (c* + h)t) = 0.
r—oo /-»oo

We shall find bounds for the function u(t, x); that the second limit is equal to zero

can be demonstrated in a similar way. Hypothesis 4 leads to

(5) K(^)<£Xilg,(l)(*Jexp{jPc( *,)<&),

where c{vs) = c(vs,0,0). Next, we note that X, = W(f¿Dy^ds), where W^, is a

proper Wiener process independent of vr Relying on this, we get from (5) for x — ct,

c>0,

(6) a(/,x)<£cl.,gr(l)(»F(jf'í)r(j)dí))exp{jí'c(FJ)<fc}

< max(a, b)-EP{ W(l,) > ct \ t,}exp{Att + Bt).

Here we designate £, = J¿Dr{s) ds; the constants A and B being defined by condi-

tions c(i) — ADj + B for i — 1, 2. Since

c2i2
P{W(t,)>ct\t,} < const • expj—2j-

from (6) one can infer that

(7) n(/,rt)*=C1£exp^--27- + ^f, + Br[,
c2t2
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where c, is some positive constant. Let us show that, for c > c*, the right-hand side

of (7) tends to zero as t grows. To this end, we shall compute the logarithmic

asymptotics of the expectation as t -» oo. These asymptotics are determined by the

large deviations of the random process £t/t from its limit as t -» oo. According to [4]

(see also [5]), the deviations of order 1 as t -» oo for £,// are described by the action

function /(/?) defined by equality (4):

lim   limr'lnP
8^0  f-oo H-><S    =-/(£).

From this it follows that the logarithmic asymptotics of the expectation on the

right-hand side of bound (7) are as follows:

(8)     l.mr4n£exp{-í(^-4f,-£)} = -mrn(¿-^-5 + /W).

Since the function l(x) is +oo outside [Dx, D2], this minimum may be taken only

over [£),, D2]. The above properties of T(x) imply that the minimum is attained

inside the interval (Dx, D2). Let us show the right-hand side of equality (8) vanishes

for c — c*. We will denote by ä = â(x) the solution of the equation X'(ä) = x. Such

ä(x) is defined in a unique way for x £ (£),, D2). Then l{x) — xá(x) — X(á(x)),

x £ (Dx, D2). It is not hard to check that !'(x) = ä(x). The minimum of the

function f(x) = (2x)~\c*)2 — Ax — B + l{x) is attained at some point x £

(Dx, D2). We will denote ä = ä(x). Then remembering the definition of &, from the

condition/'(x) = 0, we derive the equations

(9) \?:   ,:-2+^-" = 0»   v(ff) = x
(X(a*) + B)2

4(a* - A)x7

The equation for a*

should be joined to (9). From (9) and (10) follows that

X2(â)(â - A) = X'2(a*)(a* - A).

Since X'2(a)(a — A) is an increasing function of a, the last relation yields

-_   *         -_w  ^ _ M«*) + Ba = a*.        x — X[a*)=—7—--.
v    '      2(a*-A)

Noting these equalities we arrive at

min/(*)=/(*) = Kt,J    ,J   - Ax- B + xa* - X(a*) = 0.
4(a* — A)x

So the right-hand side of (8) vanishes for c = c*. It is easily seen that the function

(11) y(c) = náalj¿-Ax-B + l(x)}
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increases with c for c > 0. Therefore, y(c) > 0 for c > c*, and according to (7) and

(8), u(t,ct) < cxe~'y(c) for sufficiently large t. The second of relations (3') can be

verified in a similar way.

We proceed to prove (3"). The following assertion results from (3'): For any

8 > 0, if h is small enough and / is sufficiently large, then the inequality

c{v(s), u(t - s, Xs), v(t - s, X,)) > c(ps,0,0) - 2 .       0 < s « t,

is valid, with probability close to 1, for the trajectories Xs starting from the point

X0 = (c* + h)t. On account of (8), this implies that, for sufficiently small h > 0 and

sufficiently large t,

(12) u{t,(c* + h)t) > £(f.+A),,1gF(,pp{jr(c(i'J) - f ) *} >e

v(t,(c* + h)t) > E(c.+h)iagHlfxp\f^c(t>s) - 2 ) ds

St

>e-°'.

First of all, we will show that, for any h > 0 and T sufficiently large,

(13) (u(t, x), v(t, x)) £ Aa/2 = {u > 0, v > 0, u + v > a/2}

for t > T, x<(c-h)t. Let us denote Dß = {(t, x): -oo < t < oo, 0<x<

(c* + ß)t, u(t, x) + v{t, x) < 3a/4}, t = inf{j: (t - s, Xs) £ Dp). Below, it will

be convenient for us to designate ux(t, x) = u(t, x), u2(t, x) = v(t, x). Since

(Xs, v(s)) is a strong Markov process, and t is a Markov time, relations (2) yield the

equality

(14) u,{t, x) = EX4uv(T)(t - r, *T)exp{ fc{vs, «,(/ - s, Xs), u2{t - s, X,)) ds).

Hypothesis 5(d) implies that there is k > 0 such that c(i, ux(t, x), u2(t, x)) > k > 0

everywhere in the domain Dß. Suppose that x > (c* — h)t, h > 0. Then, the time

required for the "heat" process Zs = (t — s, Xs) to reach the set r = {(s, x):

s = max(0, x/(c* + /?))}, starting from the point (t, x), tends to infinity together

with t. By virtue of bounds (12), everywhere on the set T

uAt,x)>Kexp{-8t},       ¿=1,2,

for some K > 0. Choosing ß involved in the definition of the set Dp sufficiently

small, one can ensure that 8 < k/2. From these bounds, with the help of (14), we

conclude that (13) holds for some T > 0.

Now we will show that, no matter what the A, > 0,

(15) (u{t,(c* - hx)t),v(t,(c* - hx)t)) ^(a,b)   as?-oo.

Let us choose h £ (0, hx) and T = T(h) so that (13) should hold. We put

DST = {{s, x):s>T,0<x<(c*~ h)s,

p({u(s,x)-a)2+(v(s,x)-bf)>8},
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where 8 is a small positive number. By (13), Lyapunov's function H(u(s, x), v(s, x))

is defined at the point (u(s, x), v(s, x)) for (s, x) £ DST. We note that, for small A,

the transformation2

(«?, u\) - (iif, iif),       «f = £.«,°(A)exp{ jfAc(,„ «?, «2°) A

is (up to an infinitesimal of a higher order) the translation along the trajectories of

the dynamical system

/,^\ dux . du2
(16) -jf = cxx{ux,u2)ux + cX2u2,       -¿¡- = c2Xux + c22(ux,u2)u2.

Let ¡jl and A = A(ju) be positive numbers whose choice will be specified below. We

will designate by t, the first exit time of the process (t — s, Xs) from DST:

t, = inf{s: (t — s, Xs) Ç DST). Let us introduce into consideration the Markov time

Â = min(A, T,). From the strong Markov property of the process (X„ v,) we get the

following equality:

(17) u,(t, x) = Exiuv(h(t - Â, A¿)exp{|Ac(^, ux(t-s, Xs), u2{t - s, X,)) ¿s),

i — 1,2; t > A. Since the function H(ux, u2) is convex, for / > T + ¡u, x < (c* — h)t

— ¡i, relation (17) yields

H(ux(t, x), u2(t, x)) = H(ExÊxuHhe^ds, ExÉ2uHhe^d°)

<ExH(Éxuv(l)e^d\É2uv,he^ds)

< ExX~à=AH(Éxuv(A)e^d*, Ë2uHA)ef^)

+ExX~A=TH(ÊxuHTi)ef°'c«\É2u„(Ti)ero««sY

where xâ=a and XS=T) are tne indicator functions of the sets (À(w) = A} and

{À((o) = t,} respectively. The above inequality implies that for fixed (i and small A,

(18) H(ux(t, x), u2(t, x)) « ExXl=AH(Éxu^)e^ds, É2uHA)e^ds) + o(A).

Next, noting that the functions c(i, u, v) and u¡(t, x) are uniformly continuous for

t > T, x £ R], i: — 1,2, inequality ( 18) can be rewritten in the form

(19)

H(ux(t,x),u2(t,x))

< ExXl=AH(Êxuv^{t - A, Xi)e^<»«-^x^<-^d°,

È2uv(a){t - A, ;rA)tf/i«'.."i('-A,*),«2c/-A.JM)AJ + o(A).

2 By Èj we denote expectation supposing that c(0) = ;'; ; = 1,2.
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As it was noted before, the argument of the function H{ ■, • ) on the right-hand side

of inequality (19) is (up to o(A)) the translation of the point (ux(t — A, A"A),

u2(t — A, XA)) in the time A along the trajectories of system (16). Hence, by

hypothesis 5(b) one can find a constant qx > 0 such that

(20) ff(£,«,(A)(< - A, xA)el^u<'-*'x^'-A'x'))ds,

4W - A, xA)e^-u¿'-^x^'-a>x*))ds)

< H(ux(t - A, XA), u2(t - A, Xá)) - ?,A.

From (19) and (20) results that there is A > 0 so small that

sup H(ux(t,x),u2(t,x))^     sup     H(ux(t,x),u2(t,x)) - qxA.

r>r+M,*<(c*-A)f-f» (r,*)eös,r

For any 6, by selecting sufficiently small 8 and using this bound a sufficiently large

number of times, we obtain that H(ux(t, x), u2(t, x)) < 0 for the points (t, x) £ Ds T

which are far enough from the boundary of the domain DST. Whence, remembering

that (a, b) is the only point where Lyapunov's function H(ux, u2) vanishes, we

deduce (15). Our reasoning implies also that the convergence to the limit in (15) is

uniform in h > h0 > 0. This completes the proof in Theorem 2.

Remark 1. When proving relations (3'), we made use of the fact that c(i) = AD +

B, i = 1,2 (see inequality (6)). If Dx = D2, then such A and B may not exist. The

argument used above cannot also be exploited for a system with more than two

unknown functions. In these cases one can act as follows (for brevity, we restrict

ourselves to the case of two equations): We will denote by X(a\ a2) (a\ a2 £ Rl),

the maximum eigenvalue of the matrix

l-cx2 + alDx+a2c(\) cX2 \

\ c2x -c2l + <xxD2 + a2c(2) J '

It is established that the function À(a', a2) is downward convex. Let /(/?,, ß2) be the

Legendre transform of X(a\ a2). Then the velocity c* of the wave front propagation

is the root of the equation

(21) ttwl^-y + l(x,y)}=Q.

It should be borne in mind that usually the function /(/?,, ß2) is finite only in some

interval in the plane (ßx,ß2). For example, let Dx = D2 = D, c = c(l,0,0) =

c(2,0,0). Then a simple calculation shows that X(a\ a2) = a]D + a2c, l(D, c) = 0

and l(ßx,ß2)= +00 for (/?,, ß2) =£ (D, c). In this case equation (21) yields c*

= iTÏDc.
The proof of equation (21) is analogous to the reasoning in proving Theorem 2, if

one notes that /(/?,, ß2) is the action function describing the large deviations for the

two-dimensional process ( f¿Dp(s) ds, /„' c(vs) ds) (see [4,5]).
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Remark 2. If, as the initial functions, one picks any nonnegative functions whose

support is bounded from above, then the wave front propagates with the velocity

indicated in Theorem 2. In the case when the initial functions are positive, the wave

front may propagate with a large velocity. For example, let gx(x), g2{x) > 0 and

g,(je) ~ exp(-/ix), n > 0, as x -» oo. Then a simple modification of the argument

exploited in proving Theorem 2 shows that relations (3) hold for e*, defined by the

equation

mm (w + ^p- + l(x)-A*-B]j=0.

The function l(x) is specified by equality (4).

Remark 3. Wave front propagation in the process described by equations (1) is

the result of interaction of the two factors: first, diffusion, and secondly, multiplica-

tion and mutual conversion of particles. For the random process describing particle

motion in space, one need not take diffusion. For instance, particle motion may be

described by a homogeneous process with independent increments. In doing so,

generators (integro-differential) of the corresponding processes with independent

increments are involved in equations (1), rather than the operators Z),(82/3x2).

Under certain hypotheses on regularity of these processes, it is not difficult to write

down an equation for c*. Particle motion along the x-axis need not be described by a

Markov process necessarily. For example, let the motion X\ of the particle of ¿th

kind be described by the differential equation

X! = b{Yt%

where Y,' is a diffusion process on [-1,1] governed by the operator (Di/2)(d2/dy2)

for y £ (-1,1) and subject to reflection at the endpoints of the interval. We observe

that the couple ( Xf, Y¡ ) forms a Markov process. Then, for the concentrations

u(t, x) and o(r, x) of the particles of the first and second kind, we have the

equations

du(t,x, y)      Dx d2u  .  ,,,   .du ,       v
a/    -t^7 + ¿,(-v)^ + Cii(m'ü)m + C|2°'

dv(t,x,y)      D2 d2v        2,   J« ,       v

xe (-oo, <»),>'e(-i,i),f>o,

u(0,x, y) = gx(x),       o(0, x,y) = g2(x),

_ dv{t,x, y)

y=±\ dy

du(t,x,y)

dy
= 0.

y=±\

We will assume hypotheses 1-5 to be fulfilled, and let gx(x), g2(x) > g0 > 0 for

x < 0 and gx(x) — g2(x) = 0 for x > x0 > 0. Moreover, for brevity, we will assume

that ¡}xb'(y) dy — 0, i = 1,2. Then it is possible to establish that a wave propagates
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along the x-axis with some velocity c*. To determine this velocity, let us consider the

eigenvalue problem (a, ß are real parameters)

^<p'yy+[ß(cxx(0,0) + cX2) - cX2 + ab\y)]<p(y) + cx2^(y) = X<p{y),

Y^'y + [/feM + c21) - c2X + ab2(y)]t(y) + c2Xcp(y) = X^(y),

ye(-l,l),^(±l) = ^(±l)=,0.

Let X(a, ß) be the eigenvalue having maximal real part. Such X(a, ß) is single and

real. The wave velocity c* is the solution of the following equation:

inf sup [ac* + (ß - \)z - X(a, ß)] = 0.

The parameters a, ß, z vary in the real line.

Remark 4. Suppose that x £ Rr and let, in equations (1), the terms of the form

(Z),/2)(82m/3x2) be replaced by {-lrk l=xaî'(d2u/dxk dx'), where a?, 1= 1,2, are

constants, the matrices (ax!) and (a2) being positive definite. The initial functions

are assumed to have the form g,(x) = ax0(x), g2(x) = bx0(x), where Xo(x) *s tne

indicator function of some half-space. Since the diffusion is, generally speaking,

nonisotropic now, the velocity of the wave front propagation will depend on

direction. Simple calculation shows that the wave propagation velocity in the

direction e = (ex,... ,er) is assigned by the same formula as in Rl (see Theorem 2), if

one puts Di = 1rk ,= xaklekeh i = 1,2.

Remark 5. Theorem 2 may be slightly reformulated. We shall let u%t, x) =

u(t/e, x/e), v\t, x) = v(t/s, x/e). If u(t, x), o(i, x) is the solution of problem (1),

then the functions u\t, x), v%t, x) satisfy the system of equations:

(22) ^ = ^^ + \[cu^,v^ + cX2v%

3oe _   D2 3 V      1 r e ,
-jjf - e~2 ^ + 7 Lc22(" . v )v + c2Iw£J.

Theorem 2 straightforwardly implies the following

Theorem 2'. Suppose that the hypotheses of Theorem 2 are fulfilled. Then, no matter

what the h > 0,

limííE(í, x) = limo£(f, x) = 0   for x > c*t

uniformly in {(t, x): x — c*t > h);

lim«£(í, x) = a,        limüe(í,x) = 6   forx<c*í

uniformly in {(/, x): x — c*t < -h).

In such a formulation, Theorem 2' may be generalized to the case when the

coefficients of system (22) depend on x. In the nonhomogeneous case, such effects

as, for example, "appearance of new sources" may occur, analogously to what

happens in the case of one equation [2].
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