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ON THE GRÖSSENCHARACTER OF AN ABELIAN VARIETY

IN A PARAMETRIZED FAMILY

BY

ROBERT S. RUMELY

Abstract. We consider families of abelian varieties parametrized by classical

theta-functions, and show that specifying the family and a CM point in Siegel space

determines the grössencharacter of the corresponding CM abelian variety. We

associate an adelic group to the family, and describe the kernel of the grös-

sencharacter as the pull-back of the group under the map in Shimura's Reciprocity

Law.

The purpose of this paper is to give a formula for the grössencharacter of an

abelian variety with complex multiplication, belonging to a family parametrized over

the moduli space by theta-functions. In a previous paper [7] we have given a special

case of the formula for elliptic curves, focusing on applications. Here we present the

general case.

It has long been known that the grössencharacter determines the zeta-function of

the variety (Deuring [3] for elliptic curves; Shimura and Taniyama [16], with later

contributions by Serre and Täte [17], for higher-dimensional abelian varieties). The

grössencharacter controls other arithmetic properties of the variety as well [17,15].

However, it has been difficult to approach directly. The Jacobians of Fermât Curves

(implicitly, in Weil [21]) are one class where it can be independently studied. This

paper provides another class.

We study families <$ of abelian varieties, parametrized over Siegel space by maps

F(u, z): C"X§n-> Pm constructed from classical theta-functions. Arithmetic infor-

mation about F(u, z) provides arithmetic information about the abelian varieties.

Each variety <5(z) is isomorphic to a complex torus C"/L(z) with L(z) C (z 1)Q2",

so if z is a CM point, the corresponding variety has complex multiplication. The

grössencharacter indirectly comes from the functional equation of theta-functions

under the symplectic group.

Our approach is based on the complementary relationship between abelian variety

and modular functions, and uses Shimura's reciprocity laws for modular functions

and theta-functions. We associate a certain adelic group to the family (its "projective

group"), and describe the kernel of the grössencharacter as the pull-back of the

group under the reciprocity law map. Thus, the data

Family + CM point in moduli space

is enough to specify both variety and grössencharacter.
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The paper is divided into three sections. In the first we review facts about modular

functions and complex multiplication. In the second we prove our main theorem,

and in the third we illustrate it for one-, two-, and «-dimensional families. As was

noted in [7], our results apply to the classical Legendre, Jacobi, and Hesse curves

y2 = x(x- l)(x-X),

y2=(l-x2)(\ -k2x2),

x3 + y3 + I — 2>fixy.

We determine the projective groups of each of these families. In the case of abelian

surfaces, we give a family parametrized by functions which generalize the Jacobian

elliptic functions, determine its projective group, and work out some numerical

examples. In the «-dimensional case we reformulate a result of Shimura to give a

subgroup of the projective group for a family with arbitrary polarization type.

Really, we have barely touched the higher-dimensional case; these results may

perhaps serve as a guide to interesting families for study.

This is a revised version of the author's doctoral thesis under Professor Goro

Shimura at Princeton University. The author is very grateful to Professor Shimura

for his kindness and generous help.

Notations and conventions. Z, Q, R and C mean as usual the ring of rational

integers, and fields of rational, real, and complex numbers respectively. A will be the

ring of rational adeles, \f its finite part, and Zf = VipZp the closure of Z in Ay. x^

will be the archimedean component of an adele x; xp its component at the prime /».

Similar notations will apply to other adelic objects.

Throughout the paper, n is reserved for the dimension of the abelian varieties

under consideration. All vectors will be column vectors. The transpose of a matrix x

is written 'x, and 1 will denote the appropriate-dimensional identity matrix. Yx

means the group of invertible elements of a ring Y.

All number fields are taken to be subfields of C. If AT is a number field, Kah

denotes the maximal abelian extension of K, and K% the idele group of K; we regard

Kx as embedded in K% . The Artin map will be written [s, K] for s G K¿ .

1. Preliminaries on abelian varieties, modular functions, and theta-functions. Siegel's

upper half-space ¿p„ is the set of complex symmetric matrices of degree n, with

positive definite imaginary part. The symplectic group Sp(«, R) acts on ¿p„ by

y(z) = (az + b)(cz + d)']    for z G §„, Y = (^    *) G Sp(n.R).

A Siegel modular form of weight k (k G Z) is a holomorphic function/(z) on§„

(finite at the cusps, if n = 1), satisfying

f(z) = (f\ky)(z) = det(cz + dykf(y(z))

for all y in some congruence subgroup T(N) of Sp(«,Z). Such a function has a

Fourier expansion of the type

/(*)=      2     c„e(tr(az)/A)        (e(w) = e2™' ).

'a —a

a G M„(Z)
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The arithmetic modular forms are those with cyclotomic Fourier coefficients. One

defines the space &k(Qib) of arithmetic automorphic forms of weight k to be the set

of quotients g(z)/h(z), where g(z) and 0 ¥= h(z) are arithmetic modular forms of

weights k + m and m respectively, with arbitrary m.

Let J be the 2« X 2« matrix

(Ï    o')
and define the groups of restricted symplectic similitudes

&V = {y G GL2„(A) \'yjy = v(y)J, where v(y) G Ax and v(y)x > 0},

GQ+ = Gx+n GL2„(Q).

There is an associative right action of GA+ on the <Jt(Qab), written /-»/" for

/ G #¿(Qab) and u G GA+ , characterized by the properties (see [12])

I- f = /|*Y = detO + d)~kf(y(z)) for y = (acbd) G GQ+(note that the factor

v(y)k/1 one frequently sees is omitted here).

IIy1(0=y[',Qlwith

i(0 = i    o
0   r'l

for t G Zf

where for a modular form,/[(Q) means the modular form obtained by letting [t,Q]

act on the Fourier coefficients.

HI. The subgroup of GA+ fixing/is open.

The quotient of £„ by an appropriate congruence subgroup of Sp(«,Z) is the

moduli space for abelian varieties with given polarization type. To construct the

point corresponding to an abelian variety A with a nondegenerate polarization P,

take an isomorphism X from a complex torus C/L onto A, and let E(u,v) be the

alternating Riemann form corresponding to a basic polar divisor in P. If P

determines the matrix of elementary divisors e = diag(e,, e2,... ,e„), where e, = 1,

e,|eJ+, and 0 < e, G Z, then there is an n X 2n complex matrix ß (which we

decompose as fi = (o¡xu2) with square matrices w,, w2) whose columns form a basis

for QL, such that

E(Slx, Qy) ='xJy   tor x, y G R2",

z. = 0(¿   »)z-

The point corresponding to (A, P) is z0 = u>2lux; z0 is unique up to translation by

Sp(».Z)n(J   °)"'gl2,(Z)(J   »).

Assume from now on that A has many complex mutiplications, that is, A is

isogenous to a product IIAr¡' of simple abelian varieties A,, where each End(v4;) ® Q

is a CM field K¡ of degree 2 • dim(/l,). Fix an anti-isomorphism

t: y = Mr|(Â-,) e • • ■ ®M (Kd) - End(^l) ® Q.
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(The choice of an anti-isomorphism rather than an isomorphism is made for

compatibility with Shimura's Reciprocity Law.) Then the formula

r(y)\(Qx) = \(Q't(y)x)    for x G R2", y G Y,

determines a representation £ of Y in M2n(Q). There is an involution 5: Y -» Y such

that for k, v G R2", y G Y,

E(Q't(y)u,Qv) = E(Qu,Q't(y8)v);

8 coincides with complex conjugation on each of the fields K¡.

t also determines an anti-representation $ of Y in Af„(C) via the complex structure

provided by X. Write K for the center of Y, and e¡ for the identity element of

Mr(K¡), so K = ®K¡e¡. The restriction of </> to AT, is equivalent to r¡ copies of a

representation </>,, where the pair (K¡, $,) is a CM type in the sense of [16, p. 44]:

when diagonalized, <¡>¡ is the direct sum of embeddings a,,... ,a„ of AT, into C, such

that from each pair of conjugate embeddings a and rJ, precisely one appears among

the a,. Let (A",', <p(') be the reflex to (A",, <j>¡) (called the dual in [16, p. 70]), and let K'

be the composite of the A",': K' is a field, even though K is in general not. There is a

homomorphism

7,:a-'x-a:x,

d

,(*') =   2   det #(#*'/*;(*'))*,■
1=1

Since ô is the complex conjugation on A",, ij(fc') • tj(/c')s G Q.

It is not hard to see that for any y G Tx satisfying J'/ëQ,^) belongs to

GQ+,and

t(y)(z0) = zo-

For this reason £ is called the embedding at the fixed point z0. £ ° tj takes A"'x to

Gq+, and A"AX to GA+; it is the higher-dimensional "Reciprocity Law Map".

Shimura's Reciprocity Law for Siegel modular functions [9,1,2.7.3, II, 6.2.3] says

that for any/ G 6B0(Qab) finite at z0, f(z0) belongs to A"ab; and for any s G A~AX ,

(1) f(zof'-K1=f"*'',Xzo)-

Shimura's Reciprocity Law corresponds to the Fundamental Theorem of Complex

Multiplication in the theory of abelian varieties. The following version of the

Fundamental Theorem may be found in [10, Proposition 2.3]; see also [9,1,4.3].

Proposition 1. Let (A, P) be a polarized abelian variety with many complex

multiplications, with isomorphisms t: Y -» End(.4) ® Q, X: C/L -* A, and a Rie-

mann form E(u, v) as above. For any automorphism a of C over A"', let s G A^AX be

such that a | A"ab = [s, K']. Then there is an isomorphism X': C"/t)(s)"'L -» A" such

that X(v)° = X'(-q(s)~iv) for all v G QL/L, and P" determines the Riemann form

N ■ E(u,v), where N is the absolute norm of the ideal of K' associated to s.

If k is a field of definition for A, denote by Yk the subalgebra of all y G Y rational

over k (more properly, such that for some m G Z, r(my) G End(A) is rational over
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k) and let Ck be the center of Yk. The following proposition asserts the existence of

the grössencharacter of an abelian variety with many complex multiplications,

assumptions being as in Proposition 1.

Proposition 2. Suppose A and its polarization P are rational over a number field k,

and there is a maximal commutative semisimple subalgebra D of Y contained in Yk.

Then K' C k, and every torsion point of A is rational over kab. Further

1. For each x G kA , writing ¡i(x) = tj(Nk/K,(x)), there is a unique element a(x) of

Yx such that a(x)^(x)'{L = L and, for allv G QL/L,

X(<x(x)1l(x)-ív)=X(v)[xM.

The elements a(x) generate Ck, and Yk is the commutor of Ck in Y.

2. The matrices (¡>(Ck) can be simultaneously diagonalized, giving linear representa-

tions xf- Ck -» C, j = 1,...,«. For each j, if Xj 's extended to a homomorphism

(Ck ® R) -> C, then

is a grössencharacter of V.; the \-dimensional part of$(s, A/k) and\["=xL(s, \p)L(s, i// )

coincide up to finitely many Euler factors, with equality if Ck is a field.

Proof. This is a mild generalization of results in Shimura [8, §7.8] to the case of

nonsimple abelian varieties, based on the version of the Fundamental Theorem given

above. The condition Ks — K assumed in [8, §7.8] is automatic, since A" is the center

of Y; and the fact that K' C k is noted in [9,1,4.2.1].

All the assertions except those about the rationality of the a(x) are proved

word-for-word as in [8,7.40-7.42], with the algebra D replacing the field K there.

As for the rationality, first note that >> G Y commutes with all the a(x) iîiy G Yk.

Indeed, for each a G Aut(C/k) choose x G kA such that a|kab = [jc,k];jti(jc) lies in

the center A"A of Yx. Hence for any y which commutes with all the a(x), and for all

v G QL/L,

T(yYX(a(x)n(x)',v) = T(y)aX(v)a = X(yv)°

= X(a(x)/x(jc)"' yv) = X(ya(x)ix(xYiv)

= T(y)X(a(x)ix(x)~lv)

so that t(_v)° = r(y); conversely, if r(y) is fixed by Aut(C/k) the same circle of

equalities shows that y commutes with the a(x).

By the uniqueness of a(x), if x = k G k, then a(x) — ¡i(k). Now, by the same

method as in [9,1, Proposition 1.9.2] it can be shown that ¡u.(kx ) generates K over Q.

Hence, letting C be the subalgebra of Y generated by the a(x), we have shown that

K C C C Ck C Y and Yk is the commutor of C in Y. It is well known that in this

situation C = Ck.    □

Classical theta-functions provide specific examples of projective embeddings of

abelian varieties. Writing e(w) for e2niw, the classical theta-function 0(u, z; r, s),
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with fixed r, i G R" and arbitrary u G C", z G £„, is defined by

(2) 6(u,z;r,s)=    2   e{\'(m + r)z(m + r) +' (m + r)(u + s)).

mGZ"

Let e be a given matrix of elementary divisors, and w an integer s* 3. Then, taking f

to be a set of representatives for (we)'1Z"/Z",

eeJu,z) = (0(wu,wz;j,0))jei

embeds C"/(ze)Z2" into projective space, and the polarization induced by hyper-

plane sections is of type e (cf. [10, p. 676]). Other examples will be given later.

Classical theta-functions satisfy many identities, of which we note only a few; [10]

is a good reference for these and others. Let {m} denote the diagonal vector of a

square matrix m, and put

Te=[y= (a    M GSp(«,Z)| {'ac) ={'bd) =0mod2Z").

Then

(3) 6{u + zk + l, z;r,s) = e(-({-'kzk+'ku) + ('rk-'sl))-6(u, z; r,s)

îork,leZ".

(4a)       e('(cz + d)~]u, y(z); r, s) = Xye(^{'rs - W))det(cz + ¿)1/2

■e{{'u(cz + d)~lcu)-6(u,z;r',s')

for y G Tg, where (£) ='y(rs), and Xy is an 8th root of unity depending only on y

and the choice of branch of square-root.

(4b)

e('(cz + d)~\, y(z); r,s)=Ç det(cz + d)'/2e(h'u(cz + d)~'cu)6(u, z; r", s")

for y G Sp(«, Z), where f is a constant of absolute value 1 depending on r, s and y,

and

(5) 0(u + zp + q, z; r, s) = ey-\ pzp ~'p(u + q + s))0(u, z; r +/», 5 + q)

forp,q G R".

(6) 6(u,z;r+k,s + l) = e('rl)e(u,z;r,s)    iorkJ&Z".

Equation (4a) provides the connection between classical theta-functions and

modular forms of half-integral weight: for r, s G (l/w)Z" and y G T(2m2), by (4a)

and (6)

0(0, y(z); r, s) = Xydet(cz + ¿)'/20(O, z; r, s).

Arithmetic automorphic forms of weight k/2 are defined to be elements of

9(0, z; 0,0)*6E0(Qab), for k G Z. It can be shown that when k/2 G Z, this definition

coincides with the earlier one.
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Any theory of modular forms of half-integral weight must take into account the

indeterminateness of det (cz + d)x/2. In [12], Shimura enlarged GA+ to a group SA*

modeled on Weil's metaplectic group, containing "all possible" holomorphic branches

of det(cz + d)l/2. He defined an action of it on the &k/2(Qab) and distinguished

subgroups §Q+ and ix(Z^ ) in it, such that with respect to these groups, the analogues

of properties (I)—(III) hold. We recall only briefly that §Q+ may be identified with

the set of all pairs (a, \¡/(z)) where a G GQ+ and \p(z) = f • det(cz + d)x/2 with a

root of unity f and a holomorphic branch of square-root; and that t,(Z? ) acts as

usual on the Fourier coefficients. There is a natural surjective map tr: @A+ -» GA+

which is open and continuous; conversely, there is a natural lifting of Te to SQ+,

defined by

a-»(a,0(O,a(z);O,O)/0(O,2;O,O)).

A congruence subgroup of §Q+ is one containing the lift of some T(m), with finite

index.

Shimura then studied functions/(m, z) on C° X §n which generalize the classical

theta-functions. Fix k G Z, 0 *£ w G Q, take y = (a, \p(z)) G §Q+, and put

(/|*/2.wY)(«. *) = ^{zTke(-\v(a)w'u{cz + d)-lcu)f('(cz + dfu, a(z)).

He defined an arithmetic theta-function of weight (k/2, w) to be a holomorphic

function onC"X§n such that

(7) {f\k/2,Ky){u,z)=f(u,z)

for all y in some congruence subgroup of Sq+ ,

(8) f(u + za + b,z) = e(-w{{'aza +'au))f(u, z)

for all (I) in some lattice in Q2", and

(9) the Fourier coefficients of f(u, z) belong to Qab.

(The existence of a Fourier expansion is implied by (7) and (8). If n = 1, one must

also assume that the f^(il2v, z) defined below are finite at the cusps.) The

9(wu, wz; r, s) with r, s G Q" provide examples of arithmetic theta-functions of

weight (2, w); the Fourier expansion of a classical theta-function is essentially given

by its defining series.

For such a function, put

/„(«, z) = e{W(u - U)(z - ï)-\)f(u, z)

and write Bz for the matrix (zl„). If n > 1, it can be verified that for each

x G Q2", /1|t(fizx, z) is an arithmetic modular form in &k,2(Qab)- When n = 1, this

is also true, except one must assume the finiteness at the cusps. Further, whenever

x, y G Q2" approximate v = A2" closely enough, f^(üzx, z) = f^(üzy, z). Conse-

quently, for adelic v, /+(S2zü, z) can be defined to be this common value.

There is an action of SA+ on the arithmetic theta-functions such that/1' = f\k/2iWy

for y G Öq+ , ix(ZJ) acts on the Fourier coefficients, and the subgroup fixing a given

/ is open. This action is compatible with the action on the &k/2(Qab) m tne sense
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that the following "Generic Reciprocity Law for Theta-functions" holds [12, Theo-

rem 3.10, p. 54]:

Proposition 3. Given an arithmetic theta-function f(u, z), for any y G SA+ with

x = tr(y) G GA+ , and any v G A2",

/,(«/>,*)'= (/').(0>,z).

It will be convenient for us to broaden the above notion of an arithmetic

theta-function slightly, allowing it to be meromorphic instead of holomorphic in the

variable z: we will call an arithmetic theta-function of weight (k/2, w) a function

g(z)f(u, z), with g(z) E éEy2(Qab) and /(«, z) an arithmetic theta-function in

Shimura's sense of weight (A/2, w), where j + h = k. Proposition 3 remains valid

for these functions.

2. The main theorem. Let/0(w, z),... ,fm(u, z) be arithmetic theta-functions of the

same weight (k/2, w), and suppose the map

E(u, z) = (fj(u, z))0<Jt.m

parametrizes a family of abelian varieties W: that is, for all z in an open subset of §n,

the map Fz(u) = ^(i/, z): C" -> Pm is a nonsingular projective embedding of a

complex torus. Because of the functional equation (8) satisfied by arithmetic

theta-functions, the kernel of Fz is a lattice L(z) C fi2Q2"; in fact there will be a

matrix M £ GL2n(Q) independent of z, such that L(z) — QZMZ2". Hence hyper-

plane sections induce the same type of polarization in each member of the family,

and if z is a CM point in $„, the corresponding abelian variety 'S(z) has many

complex multiplications.

Definition 1. Such a map F is said to parametrize the family of abelian varieties

5" by arithmetic theta-functions.

Consider the subgroup 9 of all p E SA+ which fix F, that is, for which fjp(u, z) —

fj(u, z), 0 </ < m. Since the subgroup fixing eachj^(«, z) is open, 9 is open, and so

is its canonical projection P = wC?) C GA+ . We will shortly see that the finite part

of P is compact.

Definition 2. P = ir(9) is called the projective group of the family ÍF.

We now give the main theorem, determining a field of rationahty for <§(z) and

deriving a formula for its grössencharacters, if it has many complex multiplications.

Write tP for the subfield of ï = 0o(Qab) fixed by P, and let tp[z] (resp. i[z]) be the

subfields of C obtained by evaluating the functions at z. The first part of the

theorem is similar to [11, Theorem 1.1, p. 368].

Theorem 1. Suppose z is a point for which there is an abelian variety 'S(z) in the

family parametrized by F, and take 'S(z) to be polarized by the hyperplane sections.

Then

(1) <3(z) and its origin are rational over tP[z], and the smallest field of rationality for

all the torsion points on^(z) is f [z].
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(2) If z = z0 is a CM point, then every element of End(ÍF(z0)) is rational over

k - f pUol 'K'> wnich is the classfield to K'x ■ (£ ° r))"'(P) C A:ax ; all torsion points

of$(z0) are rational over A7ab; and the gróssencharacters tpj o/5r(z0)/k are given by

where Nk/K,(x) = k' -u, with k' £ A"'x and u E (£ ° t])~\P). k' is unique iff n = 1.

Proof. In the following, we use z to denote a free variable in ¿p„, and regard z and

z0 as fixed. Let F^u, z): C" X §„ -> P™ be the map obtained from F by applying

the «-operator to the coordinates of F. Since these all have the same weight, F^(u, z)

gives the same projective embedding as F(u, z). Adelizing the functions (/))„ as

above, we obtain a homomorphism

F„:A2/^(z),

(10) -((i)A^)U

parametrizing the torsion points of 'S(z). Now ï is the union of the fields of moduli

for abelian varieties with level N structure, for all N, so certainly any field of

rationality for the torsion points of ^(z) will contain f[z]. In our case, since the

quotients of the ( ̂ )*(ßzt>, z) belong to f, the torsion points are actually rational over

i[z]. Hence 'J(z) itself is also rational over f [z].

Given x £ P, let x be a lift of x to 9. Then, for any v E A2", and for any indices

i, j such that/¡(ñzo, z) ¥= 0,

"(/,),(P,«,s)

U)*(Ozo,z)

(/iUa,M
"   (jÇ.),(û>,z)

L S      z

by Proposition 3 and the definition of the projective group. We can write this as

(11) F.(Qtv,z)x\z = Fm{Qz'xv,z)   forxEP.

First suppose z is a generic point for ï in the sense of [8, p. 137]. By definition, all

automorphisms of f[z] over fP[z] are induced by elements of P, and by formula

(11), ^(z) and its origin are stable under P, so f P[z] is a field of rationality for them.

We also see that the finite part of P is compact, since otherwise formula (11) would

provide a torsion point of ^(z) with infinitely many images under Gal(f [z]/f P[z]).

Now again let z be arbitrary. Since the finite part of P is compact, f[z] is galois

over tp[z], and as in [ll,Theorem 1.1,p. 368] to each a G Gal(f[z]/fP[z]) there

corresponds an x E P such that h(z)° = hx(z) for all h £ f with h(z) finite. Thus, as

before, ?F(z) and its origin are rational over tP[z\.

(/f').(0>,z)

(jç*);(a/xto,i)
J      z
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Next, suppose 9(z0) has many complex multiplications. By Shimura's Reciprocity

Law (see [9,1,2.5.5]), k = f P[z] ■ K' is the classfield to A"'x • (£ ° i)Y\P). Further-

more f[z0] C A4, and A~;x acts on it by the formula h(z0)[s-K'] = A(£<",)(s"')(z0).

Consider an element}' E Y with t( y) E End(<f(zo))- Given a E Gal(A"ab/k), choose

s E (£ ° tj)-'(P) such that a = [s, A"']. By the definition of £, for all v £ A2/,

<y)(Fm(Qzv, z0)) = F„(ß2o<£(y)v, z0).

Applying a to both sides, using Shimura's Reciprocity Law, formula (11), and the

fact that t\(s) is in the center of Yx, we obtain

F¿Q¿í(y)v, z0)° = F^Zo'^(s-l))'è(y)v, z0)

= T(y)(F,(azo'è(v(s->))v,z0))

while

r(yY(F^zv, z0))° = r(yY(Fl,(Q^(r,(s^))v, z0)).

ThusT(^)0 = t( y).

Lastly, to determine the grössencharacter of ÍF(z0)/k, note that in terms of the

map F+, Proposition 2 asserts the existence of a unique a £ Yx corresponding to

each x E kA such that the following diagram commutes:

A2/ - 9(z0)

A2/ - 9(*o)

In view of Proposition 2 and the fact just proved that Y = Yk, a belongs to the

center K of Y. Now fix x E kA and decompose Nk/K,(x) = k' ■ u as in the statement

of the theorem. All torsion points of ?F(z0) are rational over ï[z0] C A"ab, and

[x, k] | A"ab = [u, K']. Traversing the diagram in two ways, we find first

F,(ilzv, zJxM] = F„(0,0'€(a -r,(krlv(u-l))v, z0)

but also

F.(0^,*éy-r, = F.(Q^(,(i,-I))i,Iío)

by Shimura's Reciprocity Law and formula (11), since £(tj(m)) E P. Since this holds

for all v E A2" and £ is an injection, a — -q(k').

When n — 1, we have Y = K, and the isomorphism t: K -> End(^(z0)) ® Q can

be choosen so that the CM type (A", <f>) is (AT,id); in this case t is said to be

normalized. K' coincides with K, and tj is the identity map. Since £ is injective, k' is

unique.

When n ¥= 1, (£ ° i?)"'(P) contains AF"yQ(l), where F' is the totally real subfield

of AT', so k' is not unique.    D
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In the special case n = \, with t normalized, the embedding £: K -» M2(Q) at the

fixed point z0 is just the map qz defined by

"(?)-**■>(?)■   ■«•

We isolate this special case as

Theorem 2. Lei 9 be a family of elliptic curves parametrized by arithmetic

theta-functions. The curve 9(z) corresponding to z G ÍQ has complex multiplication iff

z = z0 lies in a quadratic imaginary field K, and if %f C GL2(A)+ is the projective

group of 9, then for every CM point z0 where 9(z0) is defined,

(1) The classfieldk to Kx -q^C^p) is a field of definition for 9(z0);k = AM%f[z0].

(2) For each s E kA , there is a unique decomposition Nk/K(s) = k-u with k — k(s)

E Kx , u £ q;l(%F).

(3) The grössencharacter of9(z0)/k is given by

3. Examples. In this section we will compute the projective groups of some specific

famihes. The following corollary of the Strong Approximation Theorem is useful in

this regard. Recall that for x E GA+ , v(x) is the multiplier such that 'x7x = v(x)J;

when n = 1, v(x) is just det(x).

Proposition 4. Let V be an open subgroup of GA+ . Then V is generated over any

smaller open subgroup by elements of GQ+ n V and a set of representatives for

v~x(v(V)). If V C W are two open subgroups such that GQ+ C\V' = GQ+ C\W and

v(V) = v(W), then V = W.

Proof. The second assertion follows immediately from the first. Suppose, then,

that t/is a given small open subgroup of V. Put S = Gx+ ■ {x G U\ v(x) =1}; note

S C V. By the Strong Approximation Theorem (as stated in [12, Lemma 1.1, p. 39]),

GA+ = Gq+ ■ i(Z^ ) ■ S. If v E V is given, let r be the representative for v'x(v(v)),

and decompose o • r~x = y • i(t) • s with y E GQ+ , t E Z^ , s £ S as asserted. Apply-

ing p to both sides, we find that

v(y-x) = p(i(t)-s) £ Qx n (r+ xz; ) = (1)

so that v(s) = 1 and t = 1, and y = v ■ r~x -s~x E GQ+ DV.    □

In the following, we write % for the subgroup of GA+

^=GA+nGL2„(R)xIlGL2„(Z/1),
p

and %( A) for the group

%(N) = {u E <?L|u   = lmod JV-A/2(Z ) for all/»}.
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A. One-dimensional examples. (1) The Legendre curve y2 — x(x — l)(x — X)

and the Jacobi curve y2 = (1 — x2)(l — k2x2) are 2-isogenous over Q(X) to a third

curve, parametrized by the Jacobian elliptic functions

x = sn(u,k2(z)),

2     ,     Jt \ 2      y = cn(u,k2(z)),
¿ = 1 — kz(z)x ,

w = dn(u,k2{z)).

Here X(z) = k2(z) is the modular function of level 2 satisfying

/(z) = 28(X2-X+l)3/X2(X-l)2,

with values (1, oo, 0) at the cusps (0,1, oo). It is fixed by precisely the subgroup %(!)

of GL2(A)+ .

Since curves having complex multiplication, isogenous over their field of defini-

tion, determine the same grössencharacter, to find the projective group of the

Legendre and Jacobi families it suffices to find the projective group Pj of the family

Í-
The modular function and the Jacobian elliptic functions can be expressed in

terms of theta-functions as follows, writing drs = #„(z) for 6(0, z, r, s).

k2(z) =

sn(u,k2(z))

#,
(1/2)0 (*)'

#oo(z)4

#(./2)o «(«/*&,

cn(u,k2(z))
_ #0(1/2)  g(«/fl¿,*

#(./2)o e(u/^,z

*00      0(w/#¿,

.*)

o,0'

i.o)
04)

0,0)

o,i)'

For our purposes the factor d^ dividing the u-variable is irrelevant; a convenient

equivalent form of the map parametrizing the family f, in projective coordinates, is

/(«,z):CX$^P3,

#,
J(u,z)= \9(u,z,0,0),T^L-e(u,z,12;0),

#,

#(1/2)0

000   0{u,z;O,{),    *°°
'00

0(1/2) #(1/2)0 #0(1/2)

0{u,z; {,{)].

Since the projective group of the family £ must fix k2(z), we have that GL2(Q)+

OP, C GL2(Q)+ C\Gli(2) = T(2). Now we require a transformation formula, which
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is a consequence of (4a), (5) and (6); for future use we state it for arbitrary-dimen-

sional theta-functions: for r,s£ \Z" and y = (acbd) E T(2),

(12) e(^{cz + dy\,y{z);r,s)

= X/(v(^)r-V(fl-l)í-'í(^Üdct(cz + ¿)l/2

■el-'u(cz + d)'lcu\-6(u, z; r,s).

Applying this in the case n = 1, we see that T(4) and the elements (0 2), (2 °) of T(2)

belong to P$.

6(u, z; 0,0), 6(u, z; j, 0) and 6(u, z; 0, \) are even functions of u and have rational

Fourier coefficients, while 6(u, z; 5, {-) is odd and is i times a function with rational

Fourier coefficients. From formula (12) one sees that -1 fixes the even thetas and

takes 6(u, z; \, \) to its negative. Hence, with a slight abuse of notation,

J(u, z)    =J(-u,z)

J(u,z),(,)=J(Elu,z)

where ±1 = e, = i[',Q]/J = t mod 4. Combining these, we have that for t £ Zf ,

i(t) £ Pjif t = 1 mod4, and -i(t) £ Pj if / = 3 mod4. Thus v(P) = R+ XZ^ . On

the other hand P contains an open subgroup of GL2(A)+ . Hence

Theorem 3. The projective group of the Legendre and Jacobi families is the group

Pi= L= (a    M e%|M2 = lmod2M2(Z2),í/2 = lmod4Z2|.

Furthermore the field tP is just Q(X) = Q(k2).

Proof. Indeed, P<¡ has the same intersection with GQ+ as this group, and shares a

common set of representatives of i'"'(Rx XZ^ ), so by Proposition 4 the two

groups are equal. Since now %(2) = ± 1 • Pp and all modular functions are fixed by

±1, f P — Q(X). The index [% : Pj] = 12, the smallest possible value for a family

defined at all points of §.    D

(2) The Hesse curves, in homogeneous coordinates, are defined by the equation

%: x3 + y3 + w3 = 3/ixyw.

It is classical (see Bobek [2, p. 251]) that these curves can be parametrized by

products of translates of any theta-function with a single zero in each period lattice;

to obtain the largest possible projective group we will choose the particular basic

theta

1

*(«,*)=  II ö(w>z;f'f)-

and for t E Zf
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As a function of u, <¡>(u, z) is a theta-function for the lattice \\z, 1] with a simple

zero at each lattice point. For k = -1,0,1 put

<¡>k(u, z) = i-e(fz)-<i>(u-§z + f/c,z)-</>(w + |A:, z)-<f>(« + fz + §&, z).

Then from (3), (5) and (6) one finds the functional equations

(13) $k(u + {-,z) = -$k(u,z),       $k{u + \z,z) = -e(-\z-(>u)-4>k(u,z),

(14) <t>k(-u,z) = -<b_k(u,z),

(15) <pk(u + \z, z) = £-*•«(-!* - 8«)-^(«, z).

From these, in turn, it can be shown that

.       v      c/>3_,(w,z)+ <^(u,z) + <f>3,(«, z)
X("'z) = —T7-TT7-ÎT7-r~

4>_x(u,z)-4>0(u,z)-<j>x(u,z)

is doubly periodic in u for the lattice [\z,{] and has no poles;  hence it is

independent of u. The projective embedding

H(u,z):CX$^P2,

H(u, z) = (</>_,(h, z), <f>0(u, z), <.,(«, z))

is a holomorphic isomorphism of C/ j[z, 1] onto the curve %(z), where ju. = /x(z)

=   3X(«,2).

We will now determine the projective group P% of H(u, z). From (5) and (6) and

the definition of classical theta-functions,

(i6) ♦*(«,*) = ,■ n  n •(«.*; f + f'.f + f*.)
/=-l m, n = 0

(17)

= n  n 2 (-írv^íx + f + f/)2z + (* + | + §/)«).
/=-l m,n=0 jêZ * '

A calculation using (4), (5) and (6) now shows that T(6) C P%. Actually T(3) is

contained in P%. To see this, we need the following supplement to formula (4b).

Recall formula (4b):

(18)

@('(cz + d)~lu, y(z); r, s) = £det(cz + d)W2e{\'u(cz + ¿)~%)©(u, z, r", s").

Lemma  1. The quantity f- det(cz + d)x/2 in (18) can be made explicit in the

following cases:

(19) ify=(l     ¡),    ¡;-det(cz + d)i/2 = Xy-e(-Hr2 + r))(cz + d)V2,

(20) ify=(\     J),    rdet(cz + J)'/2 = X7-e(-^2)(cz + i/),/2,

where X   is an 8/A root of unity depending only on y.
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To obtain (19), expand 6(u, z + 1; r, s) using the definition of classical theta-

function; to obtain (20), use (4a), (19), and the decomposition

(1 ÏHÏ -.'Hi !)"'(! -.')"•
Now a lengthy calculation using (16), (5), (6), (8), (19) and (20) shows that (0 3) and

(3, ) belong to P%; these generate T(3) over T(6).

From (17) it is evident that for t £ Zxf,

(21) <¡>k(u, z)'(,) -4>eik(u,z)   where ±1 = er = imod3.

From this it follows that ¡x(z) is a modular function with rational Fourier coeffi-

cients belonging to T(3). Igusa [4, p. 456] gives the formula

and a careful analysis of the <j>k(u, z) shows that ¡i(z) takes values (f3 ', 00, f3,1) at

cusps (-1,0,1, 00). We see that [Q(fi) : Q(j)] = 12 = [%: %(3)], so %(3) is the

group fixing Q(/x).

Combining (14) and (21), we have that for t E Zf, t(t) £ P% if ? = 1 mod 3, and

-t(f) EPK if t = 2mod 3.

Theorem 4. The projective group of the family of Hesse curves is

P%={uG%\u3=(±Ql     J)mod3M2(Z3)}

andïP%= Q(/i).

Proof. Again by Proposition 4, we see that this group P is contained in P%.

However, %,(3) = ± 1 • P, and P^ fixes Q(ju), which is fixed by precisely %(3). Since

-1 £ P% we conclude that P = P%, and also that ïf  = Q(/x).    D

B. A two-dimensional example. We now turn to the case n — 2 and consider

abelian varieties parametrized by the 6(u, z; r, s) with r,sE \Z2. If f is a set of

representatives for \Z2 X Z2/Z2 X Z2, then it is known [10,p. 682] that for any

z E §2.

ui-» (0(u, z; /",i))(r>J)<=$

gives a nonsingular projective embedding of C2/2(z 1)Z4. Unfortunately this family

has a relatively small projective group: one sees, using (12) above, that the largest

subgroup of Sp(2, Z) contained in it is {(acd) £ T(4) | ¿» = c = 0 mod 8Af2(Z)}.

To obtain a larger projective group, we use an embedding modeled on the one

obtained above from the Jacobian elliptic functions. Of the sixteen 0(u, z; r, s) with

(r, s) E f, ten are even functions of u and six are odd. Suppose z is a point where all

ten even thetas are nonvanishing at u = 0 (this is the generic case) and consider the

embedding $(«, z) given by the functions <¡>(w, z; r, s) in Table 1 below. (For

compactness of notation, we have written

il :;HM:;)'C;)) -»(-«s îHMMï))-
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The first ten <j>(u, z; r, s) arise from the even theta-functions, and the last six from

the odd ones.)

Since the even thetas have rational Fourier coefficients, while each odd theta is i

times a function with rational Fourier coefficients (as can be seen from their

definition), i(Z^ ) is contained in the projective group P of <£>(«, z). P also contains

the following subgroup of Sp(2, Z), which has index 2 in T(2):

Tp=[y=(ac    d)ET{2)\a=(Z    ^2)=lmod2,withail = lmod4

Indeed, if <¡>(u, z) is any one of the functions in Table 1, and y E Tp, then

(22)    $('(cz + d)'lu, y(z)) = Xydet(cz + d)V2e(^'u(cz + d)'lcu)<i>(u, z).

This follows from equation (12): the essential point is that the modifying factors

have been chosen so that every parameter r = ('•) or s — (Jl) which occurs in a theta

in the numerator also occurs in one in the denominator. Hence all terms of the type

e('r(a'b/2)r) and e('s(c'd/2)s) from equation (12) cancel. If (¡>(u, z) is derived from

one of the even thetas, (22) obviously holds for all y £ T(2). The modifying factors

for the odd thetas have been chosen so that the terms e(-'r(a — l)s) cancel as much

as possible.

Since the abelian varieties parametrized by $(m, z) are principally polarized, it

follows that Pet; and also by the transformation formula (4b), any y E Sp(2, Z)

which belongs to P must belong to T(2). Hence GQ+ HP = TP, and by Proposition 4,

Theorem 5. The projective group of the family of Table 1 is

P- (a    b\ E%|u2 = lmod2Ai4(Z2),

„  - ia'i     '

22
with axx = 1 mod4Z:

The index [% : P] = 25325.

Table 1. Modified Theta-functions

'("'z;o   Ô)
< I) I

2

1    o\

o   i

ê(o   o)j    A   o\ *(S   o)

0

e\u,z: 2
i   o\ \      o   0/ Jo   iU "i

*tt    îi^r.0     M J°    °°h\u,z;
Jo   k\  \      0   0/ q/i   o\   \       \   o,

0    0/ 4     02

0
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d(o   o)j      o   o\ *(°o   jj)
v\u,z;x     a I ——-rr^l "' z;

*x{    0

„/0    0
*(o   0

o    o\   \     ■ i    0} 0*0

9
0     0

o    4

e[ u, z;
0     0

1

< l) il l)
\u,z;2     2

We will now determine the fields of definition and grössencharacters given by

Theorem 1 for two specific varieties in this family. In both cases the ten even

6(u, z; r, s) are numerically found to be nonzero.
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Recall [16, p. 50] that if we are given a CM field K of degree 2n, embeddings

a,,... ,an of K into C no two of which are complex conjugate, and a lattice LOK,

then putting

u(k)

lk.t\

\JfcM

for kGK,

the torus C"/u(L) is an abelian variety A having CM type (K, (a,,... ,a„}). Every

polarization P of A is induced by an element ß of K whose image under each of

a,,... ,a„ lies on the positive imaginary axis: namely, its associated Riemann form is

E(u(a), u(b)) = TrK/Q(ßabp)   for a,b£K,

where p is the complex conjugation.

If such a ß is given, and x,,... ,x2„ is an ordered basis of L such that the 2« X 2n

matrix (JtK/Q(ßxix^)) is /, then P is principal. Moreover, by the recipe at the

beginning of this section, if ñ = (<o1w2) is the matrix whose columns are

u(xx),...,u(x2n), the point in §„ corresponding to (A, P) is z0 — u>2xwx, and the

embedding £: A" -> M2n(Q) at the fixed point z0 is determined by

Q = 0'i(fc)     for/VEA".

\ fcM

(1) Our family contains a twisted form of the Jacobian of y2 = 1 — x5, which

admits complex multiplication by the maximal order of Q(f5) and is canonically

principally polarized. It is isomorphic to C2/u(6K) and has CM type (A", (a,, a2}),

where ay. K = Q(f5) - C takes £ = £5 to <?(y/5). One checks that ß = (f - T')/5

and the ordered basis f2, f4, f, £ + f3 of 0^ satisfy the conditions above, giving

?2-f3

S + f3 + f4

f + f3 + f4
-Í4

€(?)

0 0
-1   -1

1 0
1\ 1

-1

0
0
0

1
-1

0
0 /

(A", (a,, a2}) is its own reflex, that is, K' — K. K' = Q(£5) and its totally real

subfield F' = Q(/5~) have class number 1. All units of K' are of the form ±Çcud

where u = |(1 + /5~) is the fundamental unit of F'\ w has norm -1. The prime (2) is

inert in A"'/Q; we write p2 for 20^.

We want to find (£ ° v)~\P) where i\: K'x -> A"^ is given by tj(/c) = Â:a'Â:<'2. By

direct calculation the part of (£ ° t])'x(P) contained in the unit subgroup of K^x is

S0 = CxXCxx[{-l,w2,l +2f2,l +2f + 2f3}- (l+p2)] xTJ%p-

W2

Here the quantity in brackets means the subgroup of A"¿x generated over 1 + p \ by

the given elements. S0 has index 10 in Cx XCX Xü^,, and coset representatives are

given by the Çcud; hence A"AX ■ S0. Decomposing an arbitrary x £ (£ ° í])_1(P) as

x = k' ■ s with A:' E A"', j £ S0, we find (£ ° i\)(k') GP n (£ ° t\)(K'x ) = {1}. As £

is injective, t](k') = 1. Let (/V') be the ideal of K' generated by k'\ so (&')"' • (k1)"1 =

(1). Examination of the galois action on primes in A"'/Q shows that (k') is an ideal
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of F': k' = r/with some c G Z, / G F'. But 1 = ti(k') = f 3cNF,/Q(f) forces k' = /;

(£orïr,(P) = ^yQ(1)^o-

In the course of the analysis we have shown that the variety is defined over

K' = Q(£s) itself, the classfield to A"AX . By the theorem, the grössencharacters

i//,, \p2: K'/f -» Cx belonging to it are

$\\X) -      /    -,       » »M*) -      /    N
*?(*)oo, ^}(*)°o2

for x G ATAx , where x = k' -s with some /c' G A"'x and s G (£ ° t))"'(P), and 00,

and oo2 are the archimedean primes of K corresponding to the embeddings a, and a2

respectively.

(2) For a second example, take

A-=q(/3 + /2/),

and consider the torus C2/m(0ä-) with CM type (A", (a,, a2)), where a, and a2 are

chosen so that

Iml > 0.3+ 1/2/)"')

This is a "dihedral" example: K is not normal over Q; the galois group of its galois

closure is the dihedral group with 8 elements. The torus is principally polarized by

0 = ¿(2 + 4)l/3+7'.
and through the ordered basis

(2 - /2)/3 + /2/, (-1 + fijft + fii, 1, i/2

of 0JJ-, we obtain the point and embedding

Ir- 1— \ / 0     0     -4       1   \
2 + 1/7        —L - -¡-1/7       ,_ /   ,_ »

0    0      1-2
110       0i _ 1"2 2 /7       1 + i/7

1/3-/7 /,   £(^3 + /2¿) =

\ 1     2     0       0 /

The reflex to (A", (a,, a2}) is (A"', {?„ «»2}) where A"' = Q(/3 - ]/T i) and e, and v2

take y 3 — \/7 /' to the positive imaginary axis. A"' has class number 2; its totally real

subfield F' = Q(\/7 ) has class number 1. (2) is totally ramified in A"'; the prime p2

above it is principal: v3 — vT ¡is a generator.

By direct computation, the subgroup of the unit group of A"^x contained in

(£ ° V)~\P) may be found to be

s0=cxxcxx(i + p2)x nv
Pt2

and an argument similar to the previous one, based on [13, Proposition A.7, p. 84]

gives

tt°r,r,(P)=NFx/Q(\)-S0.
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The variety is defined over the classfield to A"'x  (£° tj)~'(P), which can be

shown to be

k = K'Ul-fi+ 2^3-^7  );

it is a cyclic extension of K' of degree 4. The grössencharacters t|/,, ip2: kA -» C   are

/   x v(k'Y' ,   , v(k')

for x G k£ , where Nk/K,(x) = k'-s, with fc' G AT'X , 5 G (£ ° r¡)~x(P) as above.

C. The standard embeddings. For theoretical purposes, it may be useful to

know (a subgroup of) the projective group for a family of abelian varieties with

specified dimension and polarization type. Using different terminology, Shimura

[11, Theorem 1.1, p. 368] has determined such a subgroup for the families

®e,w(". z) = (6(wu,wz; y,0))yej

mentioned after Proposition 2 above; here e is the specified matrix of elementary

divisors, w > 3 is an integer, and % is a set of representatives for S_1Z"/Z", where

8 — we. We reformulate his result in the context of Theorem 3.

First, writing x G GA+ as x = (ac d), let

Se = {x G GA+1 xp G GL2n(Z,) V/»; {a2'b2} = {c2'd2} = 0 mod2M2(Z2)),

Ss={xGS9n(jJ      °i)s,(8Ql     °s)\ap-ÍGMn(Zp)íorMpy

Theorem 6. The projective group of®ew(u, z) contains the subgroup ofGA+

T      _ lw\     0\~'    lw\     0\

Proof. By general facts about conjugation of subgroups, it suffices to show that

Ss is contained in the projective group Ps of

@'eJu,z) = (6(u,z;j,0))m.

Now S8 is generated over any open subgroup by i(Zf ) and Ts = Ss n Sp(n, Z), and

i(Z? ) C Ps since the 9( u, z; j, 0) have rational Fourier coefficients, so it suffices to

show rs C P{.

Note that Te is stable under transposes. Writing y G Ts as

,a   b\J»f\    «M\   withK   Mer
\c    d)      \S-Xcx8-X    8-xdx8J \c,    rf,/

by equations (4) and (6) we have

9('(cz + dyiu,y(z);j,0)

= \ye(-$'ja'bj)áet(cz + d)x/2 e(\'u(cz + d)~xcu)e{u, z; 'o/Vty')

= X^H'(*y)ûi*i(*y))«(î/(fl - \)8'bx8j)àci{cz + ¿),/2

•e(^H(cz + i/)"1cM)ö(M,z;/,0).
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ep*\s.

The first exponential term is trivial since 8j E Z" and ax'bx is a symmetric matrix

with even diagonal; the second is trivial since a — I and 8'bx8 belong to 8Mn(Z).

This means that y lifts to an element of SA+ fixing all the 9(u, z; j, 0) for/ E %.    D

We remark that Tew need not be the full projective group even in the simplest

cases: for example, if n = 2, e = 1, and w = 4, then it is easily seen that

/ 1 0 16     8 '
0 1 8      16
0 0 10

\0 0 0      1 /

The conclusions of Theorem 1 remain valid with Tcw replacing the full projective

group, but the fields of definition produced may be larger than necessary.
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