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A GENERAL SUFFICIENCY THEOREM

FOR NONSMOOTH NONLINEAR PROGRAMMING

BY

R. W. CHANEY1

Abstract. Second-order conditions are given which are sufficient to guarantee that

a given point be a local minimizer for a real-valued locally Lipschitzian function over

a closed set in «-dimensional real Euclidean space. These conditions are expressed in

terms of the generalized gradients of Clarke. The conditions provide a very general

and unified framework into which many previous first- and second-order theorems

fit.

1. Introduction. Let S be a closed subset of «-dimensional space R" and let W be

an open set in R". Suppose that the point x* belongs to S D W and let / be a

real-valued locally Lipschitzian function on W. We consider here the problem

P: Minimize/(x), over x in S D W.

We shall present a general theorem which gives second-order conditions that are

sufficient to guarantee that x* be a local solution to problem P. This theorem both

unifies and extends separate earlier results presented for this problem by the author

[2]; specific remarks on this point are made below. The theorems in [2] have already

been shown to yield both the classical theorem for problems with a finite number of

functional constraints and Ioffe's theorem in finite dimensions; it can be shown that

they yield other results, such as the sufficiency theorem of Fletcher and Watson [8]

for certain nondifferentiable problems containing norms and a theorem proved by

the author [1] for a certain class of nonsmooth problems.

The second-order sufficiency conditions given here are formulated in terms of the

generalized gradients of Clarke. The generalized gradients of / at x are the members

of the Clarke subdifferential 3/(x) of /at x. The Clarke subdifferential reduces to

the subdifferential of convex analysis when / is convex and it contains only the

gradient vector V/(x) when/is C1 near x. We shall give below a brief summary of

those basic properties of generalized gradients which we shall use. For more

information about generalized gradients, one should examine such earlier papers of

Clarke as [4, 5, 6], the work by Rockafellar [23, 20, 21], or the forthcoming book by
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Clarke [7]. In this paper, we shall—with one brief exception—consider only locally

Lipschitzian functions. Of course, generalized gradients have been defined for more

general classes of functions (see, e.g., [5 and (especially) 21]).

The classical method of proof for second-order sufficiency theorems uses second-

order Taylor expansions. The method used here (and used first in [2 and 3]) is quite

different. It proceeds according to the following outline: First, we deny the desired

conclusion and from this initial step derive an infinite sequence of modified

problems which do have minimizers approaching x*. We then apply a first-order

necessity theorem to each of these modified problems. We obtain infinite sequences

of points and related "necessary conditions". From these sequences, a contradiction

is derived "in the limit". There are various first-order theorems which are suitable

for use in this proof. There are results proved by Clarke [4], Hiriart-Urruty [11], and

Rockafellar [20, 22]. Although it is the earliest of these results, the theorem of Clarke

[4, Theorem 1] will serve us well in this article.

We obtain some particular results here for the case in which the set S is

tangentially regular at x*. This occurs when the contingent cone K(S, x*) and the

Clarke tangent cone T(S, x*) coincide. The Clarke tangent cone T(S, x*) of S at x*

consists of all y in R" such that, whenever one has sequences {tk} decreasing to 0

and {xj.} converging to x* with each xk in S, then there exists a sequence {yk}

convergent to y such that xk + tkyk belongs to S for all k. The contingent cone

K(S, x*) of S at x* consists of all y in R" such that there exist sequences {tk} of

positive numbers and {x^} convergent to x* for which each xk belongs to S and

{(xj. — x*)/tk} converges to y. (Hestenes [9, 10] and others use the term "tangent

cone" for what we call the "contingent cone".) The two cones K(S, x*) and T(S, x*)

are both always closed but only T(S, x*) is necessarily convex (see [18, Theorem 1]).

Moreover, we always have T(S, x*) ÇI K(S, x*) (see [23, p. 17]).

Before we proceed further, we need to set some additional notation. If x and y

belong to R" and if 8 > 0, then | x | denotes the Euclidean norm of x, x -y the usual

inner product of x and y, and B(x, 8) the set {z £ R": \ z — x |*£ 8). If C is a closed

convex set in R" and if x belongs to C, we denote by N(C, x) the normal cone to C

at x [19, p. 15]. If C is merely a closed set, then the normal cone to C at x is given by

N(C,x) = N(T(C,x),0).

2. The main theorem and its corollaries.

2.1 Remark. We list here several of the basic facts (taken from [5]) about

generalized gradients which we shall use. We assume that / is locally Lipschitzian on

an open set Win R" and that x belongs to W.

(a) According to the theorem of Rademacher, / is differentiable a. e. on W. We

denote by v/(x) the gradient of/at x (when it exists). Let E be the set of all points

z in W for which / is differentiable at z. The (Clarke) subdifferential of / at x,

denoted by of(x), is the convex hull of the set of all limits of convergent sequences

{ Vf(xk)} where {xk}k>, is a sequence in E convergent to x.

Each member of the subdifferential is termed a generalized gradient of/at x. If K

is a Lipschitzian constant for/on a neighborhood of x, then | v \< K for every v in

of(x).
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(b) The generalized directional derivative of /at x in the direction d is defined by

0                             f(x + v + td) -/(x + ü)
/°(x; d) = hmsup —-j-*--.

u^0;U0 f

The function/°(x; ■) is convex and it is the support function of the convex (and

compact) set 3/(x); i.e., for all x in W and d in R", we have

/°(x; d) = max{u • d: v E 3/(x)}.

(c) The multifunction x -» 3/(x) is upper semicontinuous on W; thus, if {x^} and

{vk} converge, respectively, to x in W and v in R" and if vk is in af(xk) for each k,

then v belongs to 3/(x).

2.2 Definition. Let (x^} be a sequence in R" which converges to x and let d be a

unit vector in R". Then {x^.} converges to x in direction d in case the sequence

{(xk — x)/| xk — x |} converges to d.

2.3 Definition. Let x be in W and let d be a unit vector in R". We define adf(x)

to be the set of all v in R" for each of which there exist sequences {xk} in W and

{vk} in A" such that:

(a) {xk} converges to x in direction d;

(b) {vk} converges to v;

(c) vk belongs to of(xk) for each k.

(Observe that, in view of 2.1(c), we have adf(x) C 3/(x). One may think of odf(x)

as the set of those generalized gradients of /at x which "arise" from the direction d.)

2.4 Remarks. In the main theorem, which follows, an auxiliary function g is

introduced. One is free to choose g and one may choose it to be / itself or to be a

certain Lagrangian associated somehow with P. Or, one may simply choose g so as

to have a function whose subdifferential is simpler than that of /; a choice on these

grounds is made in the recovery of Ioffe's sufficiency theorem [12, Theorem 2] from

[2, Corollary 2.18] (see [2, Theorem 3.4]).

Next, we define L(f, x*) to be the set of all points td, where d E R", \d\= 1,
t > 0, and v0 ■ d «s 0 for some v0 in adf(x*). The set L(f, x*) is a closed cone.

2.5 Theorem. Let S, W, x* and f be as in the Introduction. Let g be a real-valued

locally Lipschitzian function on W for which g(x*) = f(x*) and g(x) < f(x) for every

x in S n W. Suppose that, to each unit vector d* in the set K(S, x*) D L(f, x*), there

corresponds a closed convex cone C(d*) for which d* E C(d*). Finally we suppose also

that:

(a) we have w-d>0 whenever d is any unit vector in C(d*) for some d* in

K(S, x*) Pi L(f, x*) and w is any generalized gradient in ddg(x*);

(b) there exists m* > 0 such that

lim sup wk- (xk — x*)/| xk — x* |2 > m*

whenever [xk] and {wk} are sequences and d* and d are unit vectors for which

(i) {x^} converges to x* in direction d,

(ü) d* E K(S, x*) n L(f, x*)andd E C(d*),

(iii) wk E ag(xk)for each k,
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(iv) {wk} converges to a point w in -N(C(d*) + x*, x*).

Then there exists 8 > 0 such that /(x) > /(x*) + (m*/2) | x — x* |2 whenever x

belongs to B(x*, 8) n S.

Proof. Suppose that the desired conclusion is false and select a sequence {8k} of

positive numbers decreasing to 0 with 8X < 1. Given k, there exists zk in B(x*, 8k) n

S such that/(zj - f(x*) < (m*/2) \ zk - x* \2. We put

h(x) ~ g(x) ~ (m*/2) | x — x* |2

and note that zk¥= z for each k. We have

h(zk) = g(zk)-(m*/2)\zk-x*\2

</(zJ - {m*/2)\zk - x* |2 </(x*) = h(x*).

Setting ek = (zk — x*)/\zk — x* | , we may assume that {ek} converges to a unit

vector d* in K(S, x*). By Lebourg's Mean Value Theorem [13, 14], we have

f(zk) -f(x*) = v*k-(zk - x*), where v* belongs to df(6kzk + (1 - 9k)x*) with

0 < 9k < 1. By 2.1 and 2.3, we may assume that {v*} converges to v in dd,f(x*) and

we clearly have v ■ d* — lim v* • ek < 0. Hence d* belongs to L(f, x*).

For each k, we define a linear transformation Tk from R" into itself by putting

Tk(x) = x + (x • d*)(ek — d*). With I as the identity transformation, we have

\\Tk — I\\ <| ek — d* | . We may assume \ek — d* \< 0.5 for all k and so it follows

from the Perturbation Lemma [17, p. 45] that Tk is invertible for all k and that the

sequence {7V1} is bounded. Set Ak = Tk(C(d*)) for all k. Then Ak is a closed convex

cone containing ek. We know that zk belongs to B(x*, 8k) H (Ak + {x*}) and so h

attains its minimal value on B(x*, 8k) n (Ak + {x*}) at some point xk which is

different from x*. By Clarke's theorem [4, Theorem 1] there exists vk in ah(xk) such

that -vk is normal to the convex set B(x*, 8k) D (Ak + {x*}) at xk. For each k, let

h =l xk ~ x* l> 0 and dk — (xk — x*)/tk. By [19, Corollary 23.8.1], there exist

ck> 0 and a vector uk normal to Ak + {x*} at xk such that vk + ckdk + uk=z 0 for

all k. According to 2.1(a), there exists wk in dg(xk) such that vk = wk — m*(xk — x*)

for all k and so

(1) wk-m*(xk-x*) + ckdk + uk = 0,       k>\.

Since xk belongs to Ak + {x*}, we know that dk is in Ak. It follows that xk ± tkdk

belong to Ak + {x*} and so uk-dk = 0. From(1), we obtain

(2) wk-dk + ck = m*tk,       k>\.

We may assume that {dk} converges to a unit vector d in R". By 2.1 and 2.3, we

may assume that {wk} converges to w in odg(x*) and so (2) implies that {ck}

converges to a nonnegative number c. Hence, in view of (1), {uk} converges to a

vector u.

We now wish to show that d belongs to C(d*). For each k, there exists d* in

C(d*) such that dk = Tk(df). Since | dk \— 1 for all k and the Tkx are uniformly

bounded, it follows {df} is bounded and so we may assume that it converges to d~
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in C(d*). Since | d*k - Tk(d*k) |<| ek - d* \ \ d*k \ , we have

d~- d=Km{dt-Tk(dt)) = 0.

Hence d belongs to C(d*).

We infer from hypothesis (a) that w ■ d > 0. From (2), we get w ■ d + c = 0 and so,

since c > 0, we must have c = w d = 0. From (1), we now obtain w + u = 0. To see

that w belongs to N(C(d*) + x*, x*), we let e belong to C(d*). Then, given k, Tk(e)

belongs to Ak and so (Tk(e) + x* — xk) •uk^0. Since {Tk(e)} converges to e, we

infer e ■ u < 0 and so « does belong to N(C(d*) + x*, x*). Since conditions (i)-(iv)

are all satisfied, we must have lim sup wk ■ dk/tk > m*. But, from (2), we have

wk • dk < m*tk for all k, and so we have reached a contradiction and the proof is

complete.

2.6 Remarks. To apply Theorem 2.5, one needs to make fruitful choices for the

cones C(d*). Various choices are possible and we shall now describe a few of them.

Notice first that we can choose C(d*) = Rn for each d* in K(S, x*) D L(f, x*).

This choice is a natural one to make in the unconstrained case (i.e., when S is a

neighborhood of x*); in the unconstrained case, Theorem 2.5 reduces to Corollary

2.2 of [2]. Next, we consider the case in which we choose C(d*) — {td*: t > 0} for

each d* in K(S, x*) n L(f, x*). In the unconstrained case, this choice of C(d*) in

Theorem 2.5 yields a slightly strengthened version of Corollary 2.18 of [2]. In the

constrained case, it yields a useful and (probably) more versatile variant of Theorem

2.14 of [2]; this variant implies the classical sufficiency theorem for C2 problems

having a finite number of constraints (cf. [2, 2.17]).

The two choices for C(d*) just discussed correspond to extreme cases in our

present framework, in the sense that they are, respectively, the largest and the

smallest possible choices for C(d*).

Now Theorem 2.5 does not—as stated—imply Theorem 2.1 of [2] (because of the

use of the auxiliary function M in Theorem 2.1 of [2]). However, the present

approach can be modified to yield a generalization of that earlier theorem. We shall

take up this matter briefly at the end of the paper.

If one checks [2, Theorem 3.4], one finds that Ioffe's sufficiency theorem [12,

Theorem 2] is derivable from Theorem 2.5 with the choice C(d*) = {td*: t > 0). As

we have just mentioned, the same choice for C(d*) is made when one derives the

classical result for C2 problems. We offer a brief heuristic explanation as to why this

choice of C(d*) is the proper one. Notice in Theorem 2.5 that, if C(d*) is enlarged,

the restrictions (b)(i) and (b)(ii) become more demanding while the restriction (b)(iv)

becomes less demanding. But, in a case in which 3g(x*) = (0), the point w of (b)(iv)

equals 0 and is always in -N(C(d*) + x*, x*) and so the restriction (b)(iv) is

completely insensitive to the choice of C(d*). Thus, when 3g(x*) = {0}, one should

choose C(d*) as small as possible in order to get the best result, since this choice

makes hypothesis (b) as undemanding as possible.

Now, we turn to two other possible choices for C(d*) which lead to new results.

2.7 Corollary. Let S, W, x* and f be as in the Introduction. Suppose that g is a

real-valued locally Lipschitzian function on W for which g(x*) = f(x*) andg(x) < f(x)
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for ail x in S D W. Suppose that S is tangentially regular at x*. Suppose also that:

(a) we have w ■ d s* 0 whenever d is any unit vector in K(S, x*) and w belongs to

3¿g(**);

(b) there exists m* > 0 such that lim sup wk ■ (xk — x*)/| xk — x* |2 > m*

whenever {xk} and {wk} are sequences such that {xk} converges to x* in direction d in

K(S, x*), wk E ag(xk)for each k, and {wk} converges to a point in -N(S, x*).

Then there exists 8 > 0 such that f(x) > f(x*) + (w*/2) | x — x* |2 whenever x

belongs to B(x*, 8) D S.

Proof. The cone K(S, x*) — T(S, x*) is convex and so we may choose C(d*) =

K(S, x*) for each d* in Theorem 2.5.

2.8 Remarks. If the closed cone K(S, x*) n L(f, x*) happens to be convex, it

provides another natural choice for each C(d*). We turn our attention now to a

special class of locally Lipschitzian functions for which this is true.

First, we must make several definitions. The real-valued locally Lipschitzian

function F on W is subdifferentiably regular at x in W in case the directional

derivative F'(x; d) exists for all d in R" and F°(x; d) = F'(x; d) for all d; actually,

Rockafellar [20, p. 336] gives the definition for a more general case and shows that it

is equivalent to the present one in the locally Lipschitzian case [20, p. 339]. The

function Fis said to be semismooth [16, Definition 1] at x in If in case the sequence

{vk-d} is always convergent whenever {xk} and {vk} are sequences such that {xk}

converges to x in unit direction d and vk belongs to aF(xk) for each k. Mifflin [16]

has shown that, if F is semismooth at x, then, for each unit vector d, it is true that

the directional derivative F'(x; d) exists and equals lim^-á, where {vk} is any

sequence chosen as in the definition just given. For more information about

semismoothness, see [16]. For more information about subdifferentiable regularity

(which Clarke terms "regularity"), see [6, 20 and 5, Theorem 2.1]. Also Spingarn has

shown [24, p. 82] that F is both semismooth and subdifferentiably regular at x if and

only if 3F(x) is "submonotone" at x.

Now suppose that / is semismooth and subdifferentiably regular at x*. Then,

L(f, x*) = {d £ R": /°(x; d) < 0}, according to [2, Theorem 2.16]; hence, in view

of 2.1(b), the cone L(f, x*) is convex. Therefore, if S is tangentially regular at x*, it

follows that the cone K(S, x*) n L(f, x*) is convex. This leads to the following

corollary.

2.9 Corollary. Suppose that f is semismooth and subdifferentiably regular at x*.

Suppose that all of the hypotheses of Corollary 2.7 hold, provided that in (a) and (b) we

replace K(S, x*) by K(S, x*) D L(f, x*) and in (b) we replace -N(S, x*) by

-N(K(S,x*)f)L(f,x*),0).

Then there exists 8 > 0 such that f(x) > f(x*) + (m*/2) \ x — x* |2 whenever x

belongs to B(x*, 8) n S.

(Moreover, if g is also semismooth and subdifferentiably regular at x*, then we can

replace hypothesis (a) by the assumption that the set 3g(x*) n -N(K(S, x*) D

L(f, x*), 0) is nonempty.)
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Proof. We choose C(d*) = K(S, x*) n L(f, x*) for each d*. With these choices,

we appeal to Theorem 2.5. It remains only to discuss the final parenthetical

statement. Thus, suppose that v* belongs to 3g(x*) n -N(K(S, x*) n L(f, x*),0).

We must prove that (a) holds. Thus, if d belongs to K(S, x*) n L(f, x*) and w

belongs to ddg(x*), we have, in view of 2.1(b),

w-d = g'(x*;d) = g°(x*;d)>v*-d>0.

2.10 Example. In Theorem 2.5, we can always choose C(d*) = {td*: t > 0} for

each d*. We wish to indicate how other choices can be possible, even when S is not

tangentially regular at x*.

Let S be the set of all points in R2 for which there exist polar coordinates (r, 0)

with -0.75 it < 9 < 0.75 m and 0 ^ r ^ \¡2 + 2 cos 9. Thus, S is the set bounded by

the outer loop of a certain "limaçon". With x* = (0,0), we have T(S, x*) = {(u, v)

£ R2: u >\ v |} while K(S, x*) = {(u, v) E R2: u > -\ v |}. Hence S is not tangen-

tially regular at x*. Given d* = (w*, v*) in K(S, x*), we may select C(d*) = {(«, v)

6Ä2: « > v] provided u* > v* and C(d*) = {(u, v) E R2: u + v > 0} otherwise.

With these choices, each normal cone N(C(d*) + x*, x*) consists of one ray only.

2.11 Example. We show that Theorem 2.5 is false if (b)(i) is replaced by "{xk}

converges to x* in direction d with xkE S for each k ".

Let S = {(x, y)ER2: -1 <x< 1 and x4 - x2 =£ y < 1}. Define/(x, y) = 3x2

+ (2y + l)2 and take g = /. Let x* = (0,0). Observe that K(S, x*) = {(c, d) E R2:

d > 0}. We choose each C(d*) to be K(S, x*). Since / is C\ we have 3/(x, y) =

{(6x,8v + 4)}. If d>0 then (c, d)(0,A) = Ad^ 0 and so (a) of Theorem 2.5

holds.

Now suppose that {(x¿, yk)} and {wk} are such that (i)-(iv) of (b) hold and

suppose each (xk, yk) belongs to S. Then, with zk = (xk, yk) and noting that

wk = (6x¿, %yk + 4), we have

H-* • W - x*)/\ zk~x*\2 = 6 + (2y2 + Ayk)/ (x2 + y2).

Sinceyk > x4 — x\, we have

hmsupw^- (zk- x*)/(x2kJry¡) >4.

However, x* = (0,0) does not provide a local minimum for/over 5. Indeed, take

(x, v) with x small and positive and y = x4 — x2. Then

f(x,y) = 3x2+ (2x4-2x2+ l)2

= 1 - x2{l - 8x2 + 8x4 - 4x6} < 1 =/(0,0),

if x is close enough to 0.

3. Problems with a finite number of constraints.

3.1 Remarks. We shall consider here problem P in the case in which S = Sx C\ S2,

where 52 is a given closed set and

m q

(3) S,= Pi {xE/T:g,(x)<0} n    f|    {x E Ä": g,(x) = 0} ;
1=1 i = m+\
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it is assumed here that each of the functions g, is locally Lipschitzian on W.

Necessary conditions for x* to be a local minimizer for this problem have been given

successively in [4, 11 and 22]. According to Rockafellar's result [22, Theorem 1], it is

true that if problem P is "calm" at x* (see [4, p. 172 or 22, Proposition 1]) then there

exist multipliersax,...,aq such that

(4) a¡>0   fori = l,...,m,

(5) a,g,(x*) = 0   for/= l,...,m,

(6) 0 E 3{/+ axgx + a2g2 +■■■ + aqgq + fc}(x*).

In (6), \p2 is the indicator function of the set S2; we have ^(x) = 0 if x E S2 and

\¡/2(x) = +00 otherwise. Notice that in (6) we are considering the subdifferential of a

function which is not locally Lipschitzian.

If multipliers a,,...,a satisfying (4)-(6) exist, we define the Lagrangian L by

L =/+ axgx + ••■ +aqgq and observe that we may take the auxiliary function g in

Theorem 2.5 to be L. We shall not write out in detail the special case of Theorem 2.5

which is produced by this choice for g. We shall, however, state a specific theorem

which we can obtain when the functions of the problem are both semismooth and

subdifferentiably regular at x*.

3.2 Theorem. Suppose that the functions f, gx,...,gm are both semismooth and

subdifferentiably regular at x* and that the functions gm+x,- ■ . ,gq are Cx near x*. Let I

be the set of all indices i for which 1 < / =£ m and g,(**) = 0. Suppose that 0 does not

belong to the convex hull of the union of the sets 3g,(x*) for i in I and the sets

3g,(x*) U -3g,(x*) for i = m+ 1,... ,q. Suppose that T(SX, x*) D int T(S2, x*) is

nonvoid or that int T(SX, x*) D T(S2, x*) is nonvoid. Suppose also that S2 is tangen-

tially regular at x*.

Next, suppose that there exist multipliers ax,...,aq satisfying (4)-(6) and put

L = f + axgx + ••• +a g . Suppose finally that m* > 0 exists such that it is true that

lim sup wk ■ (xk — x*)/\ xk — x* \2 > m*

whenever {xk} and {wk} are sequences such that:

(v) (Xfc) converges to x* in direction d in T(S, x*) for which g,'(x*; d) — 0 for all i

in I such that a, > 0;

(vi) wk belongs to oL(xk)for each k;

(vii) {wk} converges to a point in -N(L(f, x*) D T(S, x*),0).

Then there exists 8 > 0 such that f(x) >f(x*) + (m*/2) | x — x* |2 for every x in

B(x*,8)n S.

Proof. We derive this theorem from Theorem 2.5. Notice first that/(x*) = L(x*)

and that L < / on S n W. It follows from [2, Proposition 2.9] that L is both

semismooth and subdifferentiably regular at x*. As noted above in 2.8, the set

L(f, x*) is a closed convex cone. It follows from [20, Corollary 2 to Theorem 5] that

5, is tangentially regular at x* and hence from [20, Corollary 4 to Theorem 2] that S

is tangentially regular at x*. Hence the closed cone K(S, x*) D L(f, x*) is convex;

for each d* in K(S, x*) n L(f, x*), we put C(d*) = K(S, x*) n L(f, x*).
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To verify that (a) holds in Theorem 2.5, take d in K(S, x*) D L(f, x*) and w in

adL(x*). From [20, Corollary 2 to Theorem 2 and 20, equation (2.10)], we infer that

(6) implies the existence of v* in 3L(x*) such that -v* belongs to N(S2, x*). Since L

is both semismooth and subdifferentiably regular at x*, we have

(7) w-d= L'(x*; d) = L°(x*; d) > v* ■ d > 0.

It remains only to check that (b) of Theorem 2.5 holds in the present situation. So,

suppose that {x^} and {wk} satisfy (i)-(iv) of Theorem 2.5 with g taken to be L.

Then (vi) and (vii) of the present theorem obviously hold. As in (7), we have

w-d= L'(x*;d) s= 0 and so

(8) /'(**; d) + axg[{x*; d) + • • ■ + aqg'q(x*; d) > 0.

Since d belongs to L(f, x*), we have/'(x*; d) < 0 and, since d belongs to K(S, x*),

we have g,'(x*; d) = 0 for /' > m and g,'(x*; d) < 0 for / in I. Hence, we infer from

(8) that g,'(x*; d) = 0 for all i in I for which a¡ > 0. It follows that {xk} and d

satisfy (v). Therefore, from (v)-(vii) we infer

lim sup wk- (xk — x*)/| xk - x* |2 > m*

and so (b) must hold.

3.3 Remarks. The requirement in Theorem 3.2 that 0 not be in the convex hull of

the union of certain subdifferentials is a constraint qualification. It is a generali-

zation of the Mangasarian-Fromovitz constraint qualification (see [15 or 23, p. 15]).

Of course, the classical sufficiency theorem for C2 functions requires no such

qualification and so cannot be a special case of Theorem 3.2. However, as we have

remarked above, the proper way to recover the classical theorem is to choose

C(d*) = {td*: t ï* 0} for each d*.

3.4 Remarks. It is possible to construct variants of Theorem 2.5 by use of certain

additional auxiliary functions. We shall discuss here one such example. We continue

to work with the problem of this section, where S = Sx n S2, with Sx given by (3).

Let us suppose that positive numbers r and m* are given. Let x* belong to S C\ W

as before. We define a function M on W by letting M(x) be the largest of the

numbers g,(x),... ,gm(x), and

fix) -f{x*) - (m*/2) | x - x* |2 + r\gm+x(x) | + • • • +r\gq(x) | .

Notice that M(x*) — 0, since x* belongs to S. The use of the function M is

motivated by this observation: If x* minimizes M on B(x*, 8) D S2 then we have

f(x) 3= f(x*) + (m*/2) | x — x* |2 for every x in B(x*, 8) n S. The theorem which

follows provides a generalization of Theorems 2.1 and 2.14 of [2] in the same way

that Theorem 2.5 provides a generalization of Corollaries 2.2 and 2.18 of [2].

3.5 Theorem. Let W, f and x* be as in the Introduction and let S = Sx D S2 as

above. Let g be a real-valued locally Lipschitzian function on W for which g(x*) —

M(x*) = 0 and g(x) < M(x) for every x in S D W. Suppose that, to each unit vector

d* in K(S, x*) n L(f, x*), there corresponds a closed convex cone C(d*) for which
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d* E C(d*). We suppose also that:

(a) we have wd>0 whenever d is any unit vector in C(d*) for some d* in

K(S, x*) n L(f, x*) andw is any generalized gradient in ddg(x*);

(b) we have lim sup wk ■ (xk — x*)/\ xk — x* \2 > 0 whenever {xk} and {wk} are

sequences and d* and d are unit vectors for which

(i) {xk} converges to x* in direction d,

(ü) d* E K(S, x*) n L(f, x*) anddE C(d*),

(iii) wk £ dg(xk)for each k,

(iv) {wk} converges to a point w in -N(C(d*) + x*, x*).

Then there exists 8 > 0 such that f(x) > f(x*) + (m*/2) | x — x* |2 whenever x

belongs to B(x*, 8) n S.

Proof. Suppose that the desired conclusion is false and pick a sequence {8k} of

positive numbers decreasing to 0 with 8X < 1. Given k, there exists zk in B(x*, 8k) n

S such that f(zk) - f(x*) < (m*/2) \ zk - x* \2. Put h = g and note that zk ¥= x*

for each k. We have h(zk) = g(zk) < M(zk) ^ 0 = M(x*) = h(x*) for each k.

The rest of the proof can be taken directly from the proof of Theorem 2.5

provided minor changes are made. In equations (1) and (2), for example, the

summands involving m* are replaced by 0; these modifications are typical of the

necessary minor changes.
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