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APPLICATIONS OF VARIATIONAL INEQUALITIES

TO THE EXISTENCE THEOREM ON QUADRATURE DOMAINS

BY

MAKOTO SAKAI

Abstract. In this paper we shall study quadrature domains for the class of

subharmonic functions. By using the theory of variational inequalities, we shall give

a new proof of the existence and uniqueness theorem. As an application, we deal

with Hele-Shaw flows with a free boundary and show that their two weak solutions,

one of which was defined by the author using quadrature domains and the other was

defined by Gustafsson [3] using variational inequalities, are identical with each

other.

Introduction. In a previous paper [7], the author has defined the quadrature

domains of positive measures for the class of subharmonic functions and studied

their applications to complex function theory.

Let cbea finite positive measure on the two-dimensional Euclidean space R2. Let

SL'(ß) be the class of subharmonic functions in an open set ß which are integrable

with respect to the two-dimensional Lebesgue measure m. A nonempty open set ß is

called a quadrature domain of v for class SV if

(Qi) v is concentrated in ß, namely, v(Slc) = 0, where ßc denotes the complement

ofß,

(Qii) fas+ dv < oo and jQsdv < Jasdm for every s G SX'(ß), where s+ =

max{i,0}.

(Qui) w(ß) < oo.

Let us denote by Q(v, SLl) the class of all quadrature domains of v for class SL\

The class Q(v, SÜ) may be empty. Let Wbe an open set with finite area and let/be

a nonnegative bounded integrable function in R2 satisfying / = 0 a.e. in Wc. If

sup^/< 1, then Q(fm, SL{) = 0. The class Q(xww> SL1) consists of all open sets

ß satisfying Xw = Xa ae-in R2> where \wdenotes the characteristic function of W,

namely, Xw(x) = 1 for jc G W^ and Xw(x) = 0 for x Í F.

On the contrary, the author has already proved the following theorem (cf.

[7, Theorem 3.7]):

Theorem 1. Let f be a bounded integrable function in R2 such that /> 1 a.e. in a

connected open set W with finite area, /= 0 a.e. in Wc and jfdm > m(W), then

Q(fm, SLl) ¥= 0 and there exists a minimum domain W in Q(fm, SV), namely,

ß G Q(fm, SV) if and only ifWCti and m(Q \W) = 0.
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The main purpose of this paper is to give this theorem a new proof by using

variational inequalities.

Recently, Gustafsson [3] has used variational inequalities to solve a moving

boundary problem for Hele-Shaw flows. As a corollary, he has proved the existence

of quadrature domains of a finite sum of positive point masses for the class of all

complex-valued analytic integrable functions [3, Corollary 16.1].

To obtain the result, Gustafsson has used the fact that the boundaries of the

above quadrature domains are algebraic curves, so this is a very special case in the

theory of quadrature domains. In this paper, we shall deal with a general case stated

as in the theorem.

1. Variational inequalities. In this section, we shall show our theorem for a special

function / by using variationial inequalities. We assume that W is a bounded open

set R2 and / is a bounded integrable function with / > 1 a.e. in W and f—0 a.e. in

Wc. The proof will be divided into four steps. Each step is given as a proposition.

For a real-valued bounded integrable function g in R2 with compact support, we

define the logarithmic potential Vs of g by

U'(y) = /(-log |* - y\)g(x)dm(x),

where | x — y | = (22=,(xy — Jy)2)l/2, x — (x,, x2) and v = ( v,, y2). It is known that

Ug is of class C1 in R2 and Ai/g = -2 irg in the sense of distributions. First we shall

show the following lemma:

Lemma l.Le/ße Q(fm, SLX). Then ß is bounded.

Proof. Let/, be a nonnegative integrable function in R2 such that/, > 1 a.e. in an

open set Wx and/, = 0 a.e. in W{. Let ß, satisfy /w(ß,) < oo and

(1) f sftdm< f s dm
•V, •'a,

for every 5 G SLx(Wl U ß,), where SLx(Wl U ß,) denotes the class of all bounded

subharmonic functions in Wi U ß,.

First we show that if ß, is a bounded open set with smooth boundary, then Wx is

contained in the bounded open set G whose boundary is the outer boundary of ß,.

Assume Wx \G =£ 0. Then {?>WX)\G ̂  0. _

Choose a point x0 G (9W^,) \ G and r > 0 so that Cap(W\ C\ B(x0; r)) > 0 and

G nß(x0; r) = 0, where B(x0; r) = {x G R2 11 x — x0\<r). Let \i be the equi-

librium distribution of E = W{ n B(x0; r) and let u be the conductor potential of

E, namely,

u(y) = f(-log\x-y\)dn(x).
JE

Then u is bounded from above and harmonic in Ec. Set a = sup<~ u and s =

max{«, a] — a. Then í G SL°°(Wi U ß,), fw sf{ dm > 0 and ja s dm — 0. This con-

tradicts (1) and hence Wx C G.
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Since W is bounded, we can choose a ball B centered at the origin and M > 1 so

that/< MxB a.e. in R2. Set/, = Xa + MxB ~/and Wx = ß U B. Let ß, be a ball

centered at the origin such that m(ß,) = Mm(B). We shall show that ß, satisfies (1).

Then, by the above argument, we see that Wt = ß U B is contained in G = ß,,

namely, ß is bounded.

To show that ß, satisfies (1), let s G SL°°(W, U ß,). Let s* be a function in

SLx(Wl U ß,) which is harmonic in ß, and satisfies s < s* in ß and s = s* a.e. in

ß, \ ß; note here that Wx U ß, = ß U ß,. Then

js*(xa + MxB- f)àm = js*MxBdm^ J s*dm.

Subtracting ¡(s* — s)xana, dm fr°m both sides, we obtain

/ sf}dm < f{s*XasQ, + ¿Xana, + **(A*Xb ~/)} dm < f s dm.
Jw, J Ja,

This completes the proof.

Proposition 1. Let ß G Q(fm, SL1) and set u = -l/(2ir)UXo~f.Then u and ß

satisfy

(i) u > 0 in R2,

(ii) u = 0 in ßf,

(iii) Am = Xß — f in the sense of distributions.

Proof. Since W and ß are both bounded, Xß — /has a compact support. Hence u

is well defined and (iii) is evident.

For every v G R2, log | x — v | G SL}(Ü) and so

U**-f(y) =  f (log | x - v \)fdm{x) - / log | x - v | J/«(x) < 0.
•'»' •'a

Hence u s= 0 in R2. If v ^ ß, then both log | x — v | and -log | x — y \ belong to

SL'(ß). Hence u(y) = -i/(2n)UXa~f(y) = 0.

Let B be a large open ball centered at the origin such that W C B, and let

8b(x> y) De tne Green function in Ä of the Laplacian relative to the first boundary

condition with pole at v.

Set

Hy) = ~2¿ J8b(x> y)U'- Xb)(x) dm(x).
<B

Then ^ G C'(5) and »// can be extended onto a neighborhood of B so that the

extension, we also write it by \p, is of class C1 in the neighborhood. It is easy to show

that i// = 0 on dB and A>^ = / — Xb in ^ in the sense of distributions.

Let us denote by H\B) the Sobolev space Hi2(B) with the norm

II »II *«(«=      2     WDau\\L,(B)
0«|a|«l

and denote by H¿(B) the closure of C™(B) in the above norm. According to

Poincaré's inequality, it is well known that IIV« II Li(B) is a norm equivalent to the
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above norm for Hq(B). In what follows, we shall understand that H¿(B) is the

Hubert space with the norm Hull = II Vm||L2(B) (see, e.g. Kinderlehrer and Stampac-

chia [5, Chapter II, §4]). We note here that \f> G H¿(B).

Let us consider the following variational problem: Minimize ||h|| in the closed

convex set K = [h G Hq(B) \ h > i¡> a.e. in B). The extremal function v(\p) exists

and is determined uniquely. It is easy to show that v = v(ip) can be characterized by

(Vi) vEK,

(Vii) fB V(« - o)vi) dm > 0 for every h G K.

Proposition 2. Ifu G H^{B) andan open subset tiofB satisfy

(i)' u > 0 a.e. ¿n 5,

(ii)' u = 0 a.e. in ß \ ß,

(iii)' Aw = Xa~ f in B in the sense of distributions,

then v = u + \p satisfies (Vi) and (Vii).

Proof. It is evident that (Vi) follows from (i)'. Since Aü = Au + A\p = Xß — xB

G L2(B), we have

/ v(« — v)vv dm = - I (h — v)Av dm = I    (h — v) dm
JB JB JB\Ü

for every h G Hq(B). The condition (Vii) follows from the following equalities:

[   (h-v)dm= (    {{h - xp) - u} dm = (   (h-xp)dm.
JB\£i JB& JB\£i

Proposition 3. Ifv G Hq(B) satisfies (Vi) and (Vii), i/iew « = v - t// G C'(5) and

u = 0 on dB. The function u and ß = {x G B \ u(x) > 0} satisfy (i)' to (iii)' in

Proposition 2.

Proof. The condition (i)' follows from (Vi).

Since $ G H¿(B) and A<|/ =/- xB g ¿°°(£), 4> ̂  #2i(.B) for every s with

1 < í < oo (see, e.g. Kinderlehrer and Stampacchia [5, Chapter II, Theorem 4.10]).

Hence v G H2s(B) n C1X(5) for every s with 2 < s < oo, where A = 1 - 2/s (cf.

e.g. [5, Chapter IV,Theorem 2.3]). Hence u = v - ^ G C\B) and u = 0 on dB. Set

ß = (x GJ3|m(x)>0}. Then (ii)' is satisfied evidently.

Let p be a function of class C¿° with 0 < p < 1 in B. Since v ± pu G K and

Au G L2(B), by (Vii), we have

/ p«Aü dm =  / v(-p«) Vu am = 0

for every p. Hence «Au = 0 a.e. in B and so Au + A*¡/ = Au = 0 a.e. in ß. This

implies that Am = 1 — /a.e. in ß.

On I = B\&, by definition, u — 0 and so Am = 0 a.e. (see, e.g. [5,Chapter

II, Appendix A, Lemma A4]). By (Vii), we have

- fpAv dm>0

for every p G Hq(B) with p > 0. Hence At; < 0 a.e. in 5 and so/ — xr — A^ = Au

<0 a.e. on /. This imphes that m(W\ti) = 0 since /> 1 a.e. in W. Hence

Am = 0 = -/a.e. on /. Combining this with Am = 1 —/a.e. in ß, we obtain (iii)'.
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Lemma 2. Let ß be an open set stated as in Proposition 3. Then we can choose a

large open ball B so that ß C B.

Proof. Take a ball B0 and M > 1 so that/< MxB ■ Then it is easily verified that

Q(MxB m, SÜ) consists of the ball B{ which satisfies m{Bx) = Mm(B0) and has

the same center as B0 (see [7, §1]). Choose a ball B so that B{ C B and fix it.

As before Proposition 2, let us consider the obstacle problem and write 4> = *P( f )>

K — K{f) and u = u(/). For the corresponding function and the open set stated as

in Proposition 3, we write u = u(f) and ß = ß(/), respectively. Then, by Proposi-

tions 1 and 2, ß(MxB ) = Bv Hence it is sufficient to show that if /</,, then

"(/)<«(/,).
First we show that if h G K(f) and A« < 0 a.e. in B, then v(f)^h a.e. in B. Set

w = « — u(/). Then, as we have seen in the proof of Proposition 3, Au(/) = 0 a.e.

in ß. Hence Aw = Ah =£ 0 a.e. in ß and so w is superharmonic in ß. Since

w = h — <K/) > 0 a.e. in 5 \ß and w G H¿(B), we have w > 0 a.e. in B, namely,

t>(/)<Aa.e. iaB.

Now we shall show that if /</„ then m(/) < «(/,). Let « = m(/,) + >//(/). Then

« G #(/) and An = Am(/,) + A^(/) < Am(/,) + Ai//(/,) = Au(/,) < 0 a.e. in B.

Hence, by the above argument, we see that u(f) + \¡/(f) = v(f)<h = u(fl) +

i//(/). Therefore m(/) < m(/,). This completes the proof.

Proposition 4. // m G Hq(B) and an open set ß with ÖC5 satisfy (i)' to (iii)' /'n

Proposition 2, then u G C\B), and W = {x G 5 | m(x) > 0} ¿s ?ne minimum open set

inQ{fm,SÜ).

Proof. The function m(x) + \/{2ir)jBgB{y, x)(xfi — f){y)dm{ v) belongs to

Hq(B) and is harmonic to 5. This implies that it is identically equal to zero and so

m(x) = -\/(2-n)IBgB(y, x)(Xß -/)(y)dm( v). Since J^Uß C B, by (iii)',

Hg/7(.y.*)-log|i, _    ■ [(Xß -f)(y) dm{y)
jb{ i y   x i j

= - ( v]gB(>>, x) - log, , [vm(v) am( v).
jb   [ \y   x\}

The above is equal to

AJgÄ( v, *) - log L(y) <foi( v),
b i i.y   •* i j

because m G H¿(B). Since g^y, x) — log(l/|y — x |) is harmonic, the above in-

tegral is equal to zero. Hence u = -l/(2w)UXa~f, u G C\B) and u > 0 in B.

Set IF = {x G jB | m(x) > 0}. Then, by (i)' and (ii)', we have Xw* Xa ae- in #•

Since Am = 0 a.e. in B \ W (see, e.g. Kinderlehrer and Stampacchia [5, Chapter II,

Appendix A, Lemma A4]) and / > 1 a.e. in W, by (iii)', we see that x Wuq * X w ae-

in B. HenceXw= %a ae- in B.

Next let us show W G Q(fm, SV). In what follows, for the sake of simplicity, set

g = Xw ~ /• Let y E & x ̂ - Then m( v) = 0. Since m is of class C1 and u attains its

minimum at v, 3m/3x7( v) = 0, / = 1,2. Hence U8 = -2wm = 0 and 3(7g/3x.,. =

-2w3M/3xy. = 0in5\IP.

/.'



272 MAKOTO SAKAI

Let {w„}^=, be a sequence of C°°-functions in W such that 0 =£ «„ < 1, u>„ = 0 in

a neighborhood of dW, w„ = 1 outside a neighborhood of dW, limn^M wn(x) = 1 for

all x = (x,, x2) G W, and

i

iDX(*)i<^-'s(*rH(iog^)

for all x G W and all multi-indices a, where Aa denotes a constant depending only

on a, and S(x) denotes the minimum of e"2 and the distance from x to dW. For the

existence of the above sequence {to,}, see Hedberg [4, p. 13, Lemma 4].

It follows that

92 Ins    \ - 82f/g     4- i W* du» j. m9'"«

dx]K      "       dx]    "        3^  9xj dx]'

32

AUg= Y —-U*= -2-ng'-'  >» ,2 °

i »*>

in the sense of distributions. Since

dx

,g dUg I 1        \

for every pair of points x and v with | x — y |< e 2,

1
l/*(x) = o(<52(x)logg(

f^) = o(^)log^), 7=1,2,

in a neighborhood of each boundary point of W. Hence

(2) I sgdm=   lim   / sgundm = ~—   lim   / sA(Ugu„) dm
■¡W n — oo  Jw ^■'n   n->oo  •>w

for every s G V(W). If í is subharmonic in W, then As 3= 0 in the sense of

distributions. Let <p be a nonnegative C¿°-function of | x | in R2 such that /<p dm = 1

and set st(x) = js(x — ey)<p(y)dm(y) for e > 0. Then se is a subharmonic C°°-

function on a given compact subset of W for every sufficiently small e > 0, and sels

as e 10 on the compact set. Since Ug = -2ttu < 0, by letting e tend to 0, we see that

f s g dm > 0

for every j G SL'(lf'). Hence W G £>(/w, SX1). Let ß G £>(/w, S/J). Then, by

Proposition 1 and the above argument, we see that Xa = Xw ae- in R2. If y & ß,

then -log I x - y IG SL\íl) and so

0<f(-\og\x-y\)(Xa-f)(x)dm(x) = -2«u(y)-

Hence u(y) — 0, namely, y G W. Therefore W C ß for every ß G Q(fm, SLl). The

proof is now complete.
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Thus we have proved our theorem for the function / given at the beginning of this

section. From (2), we have an additional result which is also true for the function / as

in Theorem 2.

Corollary. Let ß G Q(fm, SLl)ands G SL\Q). Then

I sfdm =  / s dm
}w Ja

if and only if s is harmonic in W.

2. Proof of the theorem. In this section, we assume that W is an open set in R2

with finite area and / is a bounded integrable function with / > 1 a.e. in W, f = 0

a.e. in Wc and f0fdm > m(O) for every connected component O of W. We shall

show the following as our main theorem:

Theorem 2. Let f and W be as above. Then Q(fm, SLl) ¥= 0 and there exists a

minimum domain W in Q(fm, SÜ).

First we show the following two lemmas:

Lemma 3. Let f, i = 1,2, be bounded integrable functions in R2 such that f > 1 a.e.

in open sets W¡ and/ = 0 a.e. in Wf, and let ß, G Q(fm, SV), i = 1,2. ///, *zf2

a.e. in R2, then xß, < Xß2 a.e. in R2.

Proof. Assume that ß, \ ß2 =£ 0. Take a pointy G ß, \ ß2 and set

,   v      ¡ga,(x,y)    inß,,
six) — {

v   '      [0 inß2\ß,,

where ga(x, y) denotes the Green function in ß, with pole at y. Then s 3» 0 in

ß2 U S„ -s | ß, G SL\SLX) and s | ß2 = s* a.e. in ß2 for some s* G 5L'(ß2), be-

cause m(ß,) < m(ß2) < oo. Hence

/ s dm < \sfxdm^ I sf2dm^ I s dm

and so

1      s dm < /      5 dm = 0.

This implies that m(ß, \ß2) = 0, namely, Xß < Xß a.e. in R2.

Corollary. Let f be a bounded integrable function in R2 such that /s= 1 a.e. in an

open set Wandf = 0 a.e. in Wc. Let ß, G Q(fm, SLl), i = 1,2. Then xa, = Xa, ae-

in R2.

Lemma 4. Let g be a bounded nonnegative integrable function in R2 with compact

support which is contained in a connected open set W. Let fg dm > 0 and K be a

compact subset of W. Then there are a bounded nonnegative integrable function f K in

R2 and a bounded connected open set Wg K such that fgtK>0 in W K, fgK = 0 in

Wg K, K U suppg C WgK C Wg K C W and fsgdm < fsfg Kdm for every s G

SL\W).
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Proof. We may assume that inf;cSL g(x) > 0 for a compact subset L of W with

m{L) > 0. Let 5 be a number such that 0 < 8 < d(L, dW)/2, where d{L, dW)

denotes the distance between L and dW, and define a bounded nonnegative

integrable function g, in R2 by

gM = /       g(y)xÁy) dm(y)/m(B(x; 8)).

Then g, is continuous, supp g, is compact and fsgdm < /j(gx¿c + gi) dm for every

s G SL'( W7). Take a ball 5, and a number a, > 0 so that Bx C W and g, > a, in Bx.

For every x G (K U supp g U supp g,), we can find balls Bj, j = 2,3,... ,n, with

centers /?■ such that p„ = x, Bj C W and />, G BJ_l for every _/. Let vx = axxB¡-

Assume that there are a bounded nonnegative integrable function Vj_x in R2 and a

number a._,>0 such that suppy-_,C U/~j B¡, i^l, > a,_, in UJi~¡Bj and

jsVj_xdm > Jsvx dm for every s G 5L'(If ). Take a ball 5 with center /?, such that

B CBj_x n Ä^.Then

Jsvj_xdm = /■K»',.-, - «y-iXfl) ¿™ + otj-ijsdm

< /*(",-1 - «,-iXb) <*» + a7-i ■^TÍT f íí/m

for every s G SL\W). Set ^ = ry_, - a;_,x„ + (aj_lm(B)/m(BJ))xBj and ay =

0Lj__xm{B)/m{Bj). The function p. and a number ay satisfy the above conditions for

/. Thus, by induction, we can construct vn and an > 0 such that supp j»n C U"=1 S,-,

vn > an in U"= xBj and /ji»b dm > jsvx dm for every s G SLX(W).

Let us write vx and 1^ for j>n and U"=, Bjt respectively. Since K U supp g U supp g,

is compact, we can find a finite number of open sets VX,...,VX such that

(K U supp g U suppg,) C Ukj=lVx/ Set

,     k k

fg.K = ZXu + ft - «iXr, + X 2 V       Wg.jc = U F;,.
7=1 7=1

These satisfy the required condition.

Proof of Theorem 2. At first, let us construct an open set G G Q{fm, SX1). For

every connected component 0, of W, let L¡ be a compact subset of 0, such that

/(/ — l)x¿, ^w > 0- Let g, = (/ — l)x¿, and let {0¡j) be an exhaustion of 0, such

that 0,■ ■ is compact for every/. By using Lemma 4, we can find f¡ ¡ = fg,v~o~ and

*îj = ^,/2^,ö- such that/,,. > 0 in W^,/„. = 0 in WfJt 0~U L,' C »¿ C^ C

W and /sg,/2' dm < fsfUjdm for every í G SL\W). Set

00

/o=/_2ft.     fn=foXw„+    2 2       /ij.       n = .l,2,...,

where W„ = U,</<n UI<y<B_i+iI^>y. Then/, is a bounded integrable function in R2

with/, > 1 in a bounded open set W„ and/, = 0 in W„c.

From the argument given in §1, we can construct the minimum open set

WnE Q(f„m, SU) for every n. Since /„</„+,, from the proof of Lemma 2, we
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obtain «(/„)<«(/„+,) (for the notation, see the proof of Lemma 2).  Hence

W„ C Wn+,. Set G = U Wn. By the proof of Proposition 3, we have m{W„\W„) = 0.

Hence it follows that m(W\ G) - 0.

Next let us show

/ sf dm < / s dm

for every 5 G SL\G). For every e > 0, we can take a number n so that

/ s dm + e 3= /   s dm
JG Jw„

and

fsfdm-e<jslf0xw„+    2 2       g,/2J) dm.

Since

(4foXw„ +    2 2       g,/v\dm<js(f0xwn+    2 2       fij)dm
l*íi*ín !</<«—i+1 ' v ]<i<« l=S/«n-;'+l

/   s/, dm < /   í dm,

we have

for every e > 0. Hence

for every s G SLl{G).

Fot s — 1, we have

/ sf dm < / s dm + 2e

jsfdm < I sdm

ffdm=   lim   f(foXw„+     2 2       g,/2j)dm
J "~°° J v i<;<« i</«»-f+i '

=   hm   ffndm=   lira m(Wn) — m(G).
n—*cc%' «-> oo

Hence m(G) < oo. Thus we have proved that G G Q(fm, SL{).

From the corollary to Lemma 3, Xq = Xc a-e- f°r every ß G Q(fm, SX1). Since

Xa — / has not necessarily compact support, take two distinct points f, and f2 in

(Uß)c, where Uß denotes the union of all ß G Q(fm, SX1), consider the gener-

alized logarithmic potential UXa~f(x; f,, f2) (see [8, §3]) and set

The function m is determined independently of the choice of ß G Q(fm, SLl). Let

#= {x G R2 | m(x) > 0}. If ß G 0(/m, SL1) and x g ß, then m(x) = 0 and so
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x&W. Therefore W C ß for every ß G Q(fm, SL[). Since m(x) = 0 in Wc, Au = 0

a.e. on Wc. Hence 0 = Am = Xß — / a.e. in Wc and so Xa^Xw a.e. in R2. This

implies that W C ß and m(ß \ W) = 0 for every ß G <2(/m, SÜ).

Finally, the fact that W G Q(fm, SLl) follows from the similar argument given in

the proof of Proposition 4. In contrast with the proof of Proposition 4, the open set

W is not necessarily bounded. For the generalized logarithmic potential and the

similar argument given in the proof of Proposition 4, see [8, §3].

3. The case of higher dimensions. Our theorem is also valid for the case of higher

dimensions. In the case of dimension d > 3, let us write by Sd the surface area of the

(d — 1 )-dimensional unit hypersphere, namely, Sd = 2ird/2/T(d/2). We replace

-log | x — y | by | x — y \2~d and consider the Newton potential

t/s(y) = /|x-y|2-dg(x)dm(x)

instead of the logarithmic potential which we have used in the case of dimension 2.

In the above definition, g is a real-valued bounded integrable function defined in VF1

and m denotes the d-dimensional Lebesgue measure.

It is known that

(1) [/«is of class C1,

(2) dUg(x)/dXj - dUg(y)/dxj = 0(| x - y | log(l/| x - y |)), j = 1,2,... ,d, for

every pair of points x and y with | x — y | < e"2.

(3) AUg = -(d — 2)Sdg in the sense of distributions.

Therefore our arguments are also valid if we replace -\/{2ir) and -log | x — y | by

-l/((d - 2)Sd) and | x - y \2~d, respectively.

Let us give here a remark on the generalized logarithmic potential used in the

proof of Theorem 2. It is unnecessary to consider "generalized" in the case of

dimension d s* 3. Because we can define the Newton potential Ug of a bounded

integrable function g which has not necessarily a compact support.

4. Hele-Shaw flows with a free boundary. As an application of the new proof of

our theorem, we deal with Hele-Shaw flows with a free boundary produced by the

injection of fluid into the narrow gap between two parallel planes (for the mathe-

matical formulation, see Richardson [6] and Sakai [7]).

In [7], the author has defined a weak solution of a free boundary problem of

Hele-Shaw flows with the initial connected open set ß(0). It is a family {ß(i)}rJ>0 of

quadrature domains ß(/) such that ß(f) is the minimum domain in Q(xu(0)m +

t8c, SL1 ) for every t > 0, where 8C denotes the Dirac measure at the injection point

c G ß(0) of the fluid.

Recently, Gustafsson [3] has defined another weak solution of Hele-Shaw flows by

using variational inequalities (for the case having the container wall, see Elliott and

Janovsky [2]).

Let /, = Xß(0) + i(l/ffi(ß(c; r)))xB(c;r) (in [3], Gustafsson has used 2irt and

B(Q; r) for t and B(c; r), respectively), where ß(0) denotes a bounded connected

open set and B(c; r) satisfies B(c; r) C ß(0), and consider the variational problem

given before Proposition 2 for large ball Bt (which depends on /) and for a function
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t//, = ^(Z). Then Gustafsson's weak solution {ß(/)},>0 is, in our notation given in

the proof of Lemma 2, a family of domains ß(/) = ß(0) U ß( /) for every / > 0.

In this section, we shall note first that ß(/) = ß(/,), namely, ß(0) C ß(/) (this

result is also given by Gustafsson [3, Lemma 14(iv)]) and next show that the above

two weak solutions are identical with each other.

The first assertion follows immediately from the following lemma:

Lemma 5. Let f,W and W be as in Theorem 2. Then W C W.

Proof. Since f> 1 a.e. in W, Au — Xw ~ /** 0 ae- in W- Hence m is a nonnega-

tive superharmonic function in W. If m(x) = 0 for some x G W, then u = 0 in the

connected component of W containing x. This contradicts m(W\W) = 0 and so

m(x) > 0 in W, namely, W CW.

The next corollary guarantees that ß(/) is connected.

Corollary. // W is connected, then W is also connected.

Proof. Assume that W is disconnected. Since W C W and W is connected, we

can find a connected component 0 of If' such that W n 0 = 0. For every

s G SL\W\ O), let s be a function defined by s(x) = s(x) in W\ 0 and s(x) = 0 in

0. Then s G SL\W) and

1 sfdm =  Í sf dm < / s dm —  I     s dm.
JW JW Jyy JW\0

Hence W\0 G Q(fm, SLl). This contradicts the fact that W is the minimum

domain in Q(fm, SLl).

To show the second assertion, by the argument given in §1, it is sufficient to show

that Ö(Xß(0)m + *$.> SV) = Q(f,m, SL1) for every / > 0. This follows immediately

from the proposition below.

For the sake of simplicity, we assume that If is a connected open set. Let /t be a

positive finite measure with compact support contained in W. For a number a with

0 < a < d(supp/i, dW)/2, where d(supp/i, dW) denotes the distance between supppi

and dW, let us define a bounded function Mafi by

t ^  m \ - m(-s(*;«))
m(B(x; a))

The support of Ma¡i is contained in W.

Lemma 6. Q(Xw™ + f*> SL{) = Q((XiV + Mali)m, SV).

Proof. We may assume that n ¥= 0. If ß G QÜXw + MaVí)m^ SÜ), then, by

Lemma 5, W C ß. Since

jsdfi< f s(Man) dm

for every s G SL\W), ß G Q(xwm + jn, SL]).
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Conversely, assume that ß G Q(Xwm + /*> SL*)- Set 0 = (x G W| (Maju)(x) >

0}. Then, since Majn is lower semicontinuous, G is an open set containing supp p. We

shall show Get!. If yG0\ß, then n(B(y; /?)) > 0 for ß with a<ß<

d(supp!it,3H/)/2. Set

s(x) = max{log(l/|x -^|),log(l/i8)} - log(l/j8).

Then s | ß G SL\Q). Since m(W\ ß) = 0,

/s(Xwdm + dp) > I s dm =  I s dm.
J Jw Ja

This contradicts ß G Q(Xwm + M» SX1). Hence G C ß.

Let s G SL\ü), and let s* G SL\íl) be harmonic in G and satisfy s* — s a.e. in

ß \ G. Since

/ s*(Xw + Man) dm = f s*(xwdm + dp) < j s* dm
Jw Jw Jn

and í < s* in G, we have

f s(Xw + Kl*) <*" < ( ^*(X(y + Map) ¿™ + f (s- s*) dm

f s* dm + j (s — s*) dm =  l s dm.

Therefore ß G Q((xw + Ma^)m, SLl).

Proposition 5. Let p,, ; = 1,2, be positive finite measures with compact support

contained in a connected open set W. If there is an open subset G of W such that

G D supp p., U supp ju2 and fh dp-, = jh dp2 for every harmonic function in G, then

Q(Xwm + P-i, SÜ) = Q(Xwm + Pi* SL])-

Proof. By Lemma 6, it is sufficient to show that Q{{xw + Manx)m, SLX) =

Q((Xw + Maii2)m, SLl) for small a > 0. We obtain this equality by using Lemma 5

and the argument as in the proof of Lemma 6.

5. Quadrature domains for harmonic and analytic functions. In [7], quadrature

domains for harmonic and analytic functions are introduced. Let v be a positive

finite measure in R2 and let HL\Q) (resp. AL\&)) be the class of all real-valued

(resp. complex-valued) harmonic (resp. analytic) integrable functions in ß. A non-

empty open set ß is called a quadrature domain of class tVL1 (resp. AÜ), if ß

satisfies (Qi), (Qiii) and

(Qii)' (\h\dv<oo    and     fhdv-fhdm

for every h G HL\Q) (resp. n G AL\Q)). We denote by Q(v, HÜ) (resp. Q{v, AÜ ))

the class of all quadrature domains of v for class HÜ (resp. AÜ).
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By using the generalized logarithmic potential, we obtain the following proposi-

tion:

Proposition 6. Let f and W be as in Theorem 2. Let ß be an open set with finite

area, let f, andl2 be two distinct points in ßc and set m(x) = -\/{2m)UXa~f(x; f,, f2).

77ien

(1) ß G ô(/m, StL1) if and only ifu = 0 in ßc andu>0 in ß,

(2) ß G Ô(/m, HÜ) if and only ifu = 0 and 3m/3x; = 0,/ = 1,2, in ßc,

(3) ß G ß(/m, AÜ) if and only ifdu/dxj = 0,j= 1,2, in ßc.

Proof. The assertions (1) and (2) are proved from the argument similar to the

proof of Proposition 4. Let (xn — /)" be the generalized Cauchy transform of Xß — /

(for the definition, see [8]). Then (Xa- f)'= (d/dxx - id/dx2)Ux^f. Hence

du/dxj = 0,j = 1,2, in ßc implies that (Xß — /)"= 0 in ßc. Let z = x, + ix2. Since

the subclass of AÜ{Ü) which consists of all linear combinations of l/(z — Çk) with

$k G ßc is dense in ^L'(ß) (see Bers [1]), the assertion (3) follows.
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