APPLICATIONS OF VARIATIONAL INEQUALITIES TO THE EXISTENCE THEOREM ON QUADRATURE DOMAINS

BY

MAKOTO SAKAI

Abstract

In this paper we shall study quadrature domains for the class of subharmonic functions. By using the theory of variational inequalities, we shall give a new proof of the existence and uniqueness theorem. As an application, we deal with Hele-Shaw flows with a free boundary and show that their two weak solutions, one of which was defined by the author using quadrature domains and the other was defined by Gustafsson [3] using variational inequalities, are identical with each other.

Introduction. In a previous paper [7], the author has defined the quadrature domains of positive measures for the class of subharmonic functions and studied their applications to complex function theory.

Let $\boldsymbol{\nu}$ be a finite positive measure on the two-dimensional Euclidean space \mathbf{R}^{2}. Let $S L^{1}(\Omega)$ be the class of subharmonic functions in an open set Ω which are integrable with respect to the two-dimensional Lebesgue measure m. A nonempty open set Ω is called a quadrature domain of ν for class $S L^{1}$ if
(Qi) ν is concentrated in Ω, namely, $\nu\left(\Omega^{c}\right)=0$, where Ω^{c} denotes the complement of Ω,
(Qii) $\int_{\Omega} s^{+} d \nu<\infty$ and $\int_{\Omega} s d \nu \leqslant \int_{\Omega} s d m$ for every $s \in S L^{1}(\Omega)$, where $s^{+}=$ $\max \{s, 0\}$.
(Qiii) $m(\Omega)<\infty$.
Let us denote by $Q\left(\nu, S L^{1}\right)$ the class of all quadrature domains of ν for class $S L^{1}$. The class $Q\left(\nu, S L^{1}\right)$ may be empty. Let W be an open set with finite area and let f be a nonnegative bounded integrable function in \mathbf{R}^{2} satisfying $f=0$ a.e. in W^{c}. If $\sup _{W} f<1$, then $Q\left(f m, S L^{1}\right)=\varnothing$. The class $Q\left(\chi_{W} m, S L^{1}\right)$ consists of all open sets Ω satisfying $\chi_{W}=\chi_{\Omega}$ a.e. in \mathbf{R}^{2}, where χ_{W} denotes the characteristic function of W, namely, $\chi_{W}(x)=1$ for $x \in W$ and $\chi_{W}(x)=0$ for $x \notin W$.

On the contrary, the author has already proved the following theorem (cf. [7, Theorem 3.7]):

Theorem 1. Let f be a bounded integrable function in \mathbf{R}^{2} such that $f \geqslant 1$ a.e. in a connected open set W with finite area, $f=0$ a.e. in W^{c} and $\int f d m>m(W)$, then $Q\left(f m, S L^{1}\right) \neq \varnothing$ and there exists a minimum domain \tilde{W} in $Q\left(f m, S L^{1}\right)$, namely, $\Omega \in Q\left(f m, S L^{1}\right)$ if and only if $\tilde{W} \subset \Omega$ and $m(\Omega \backslash \tilde{W})=0$.

Received by the editors October 5, 1981 and, in revised form, February 23, 1982.
1980 Mathematics Subject Classification. Primary 31A05, 31B05; Secondary 35A15.
Key words and phrases. Quadrature domains, variational inequalities, subharmonic functions, potentials.

The main purpose of this paper is to give this theorem a new proof by using variational inequalities.

Recently, Gustafsson [3] has used variational inequalities to solve a moving boundary problem for Hele-Shaw flows. As a corollary, he has proved the existence of quadrature domains of a finite sum of positive point masses for the class of all complex-valued analytic integrable functions [3, Corollary 16.1].

To obtain the result, Gustafsson has used the fact that the boundaries of the above quadrature domains are algebraic curves, so this is a very special case in the theory of quadrature domains. In this paper, we shall deal with a general case stated as in the theorem.

1. Variational inequalities. In this section, we shall show our theorem for a special function f by using variationial inequalities. We assume that W is a bounded open set \mathbf{R}^{2} and f is a bounded integrable function with $f>1$ a.e. in W and $f=0$ a.e. in W^{c}. The proof will be divided into four steps. Each step is given as a proposition.

For a real-valued bounded integrable function g in \mathbf{R}^{2} with compact support, we define the logarithmic potential U^{g} of g by

$$
U^{g}(y)=\int(-\log |x-y|) g(x) d m(x)
$$

where $|x-y|=\left(\sum_{j=1}^{2}\left(x_{j}-y_{j}\right)^{2}\right)^{1 / 2}, x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$. It is known that U^{g} is of class C^{1} in \mathbf{R}^{2} and $\Delta U^{g}=-2 \pi g$ in the sense of distributions. First we shall show the following lemma:

Lemma 1. Let $\Omega \in Q\left(f m, S L^{1}\right)$. Then Ω is bounded.
Proof. Let f_{1} be a nonnegative integrable function in \mathbf{R}^{2} such that $f_{1} \geqslant 1$ a.e. in an open set W_{1} and $f_{1}=0$ a.e. in W_{1}^{c}. Let Ω_{1} satisfy $m\left(\Omega_{1}\right)<\infty$ and

$$
\begin{equation*}
\int_{W_{1}} s f_{1} d m \leqslant \int_{\Omega_{1}} s d m \tag{1}
\end{equation*}
$$

for every $s \in S L^{\infty}\left(W_{1} \cup \Omega_{1}\right)$, where $S L^{\infty}\left(W_{1} \cup \Omega_{1}\right)$ denotes the class of all bounded subharmonic functions in $W_{1} \cup \Omega_{1}$.

First we show that if Ω_{1} is a bounded open set with smooth boundary, then W_{1} is contained in the bounded open set G whose boundary is the outer boundary of Ω_{1}. Assume $W_{1} \backslash G \neq \varnothing$. Then $\left(\partial W_{1}\right) \backslash \overline{\mathbf{G}} \neq \varnothing$.

Choose a point $x_{0} \in\left(\partial W_{1}\right) \backslash \bar{G}$ and $r>0$ so that $\operatorname{Cap}\left(W_{1}^{c} \cap \overline{B\left(x_{0} ; r\right)}\right)>0$ and $\bar{G} \cap \overline{B\left(x_{0} ; r\right)}=\varnothing$, where $B\left(x_{0} ; r\right)=\left\{x \in \mathbf{R}^{2}| | x-x_{0} \mid<r\right\}$. Let μ be the equilibrium distribution of $E=W_{1}^{c} \cap \overline{B\left(x_{0} ; r\right)}$ and let u be the conductor potential of E, namely,

$$
u(y)=\int_{E}(-\log |x-y|) d \mu(x)
$$

Then u is bounded from above and harmonic in E^{c}. Set $\alpha=\sup _{\bar{G}} u$ and $s=$ $\max \{u, \alpha\}-\alpha$. Then $s \in S L^{\infty}\left(W_{1} \cup \Omega_{1}\right), \int_{W_{1}} s f_{1} d m>0$ and $\int_{\Omega_{1}} s d m=0$. This contradicts (1) and hence $W_{1} \subset G$.

Since W is bounded, we can choose a ball B centered at the origin and $M>1$ so that $f \leqslant M \chi_{B}$ a.e. in \mathbf{R}^{2}. Set $f_{1}=\chi_{\Omega}+M \chi_{B}-f$ and $W_{1}=\Omega \cup B$. Let Ω_{1} be a ball centered at the origin such that $m\left(\Omega_{1}\right)=M m(B)$. We shall show that Ω_{1} satisfies (1). Then, by the above argument, we see that $W_{1}=\Omega \cup B$ is contained in $G=\Omega_{1}$, namely, Ω is bounded.

To show that Ω_{1} satisfies (1), let $s \in S L^{\infty}\left(W_{1} \cup \Omega_{1}\right)$. Let s^{*} be a function in $S L^{\infty}\left(W_{1} \cup \Omega_{1}\right)$ which is harmonic in Ω, and satisfies $s \leqslant s^{*}$ in Ω and $s=s^{*}$ a.e. in $\Omega_{1} \backslash \Omega$; note here that $W_{1} \cup \Omega_{1}=\Omega \cup \Omega_{1}$. Then

$$
\int s^{*}\left(\chi_{\Omega}+M \chi_{B}-f\right) d m=\int s^{*} M \chi_{B} d m \leqslant \int_{\Omega_{1}} s^{*} d m
$$

Subtracting $\int\left(s^{*}-s\right) \chi_{\Omega_{\cap} \Omega_{1}} d m$ from both sides, we obtain

$$
\int_{W_{1}} s f_{1} d m \leqslant \int\left\{s^{*} \chi_{\Omega, \Omega_{1}}+s \chi_{\Omega \cap \Omega_{1}}+s^{*}\left(M \chi_{B}-f\right)\right\} d m \leqslant \int_{\Omega_{1}} s d m .
$$

This completes the proof.
Proposition 1. Let $\Omega \in Q\left(f m, S L^{1}\right)$ and set $u=-1 /(2 \pi) U^{x_{\Omega}-f}$.Then u and Ω satisfy
(i) $u \geqslant 0$ in \mathbf{R}^{2},
(ii) $u=0$ in Ω^{c},
(iii) $\Delta u=\chi_{\Omega}-f$ in the sense of distributions.

Proof. Since W and Ω are both bounded, $\chi_{\Omega}-f$ has a compact support. Hence u is well defined and (iii) is evident.

For every $y \in \mathbf{R}^{2}, \log |x-y| \in S L^{1}(\Omega)$ and so

$$
U^{x_{\Omega}-f}(y)=\int_{W}(\log |x-y|) f d m(x)-\int_{\Omega} \log |x-y| d m(x) \leqslant 0 .
$$

Hence $u \geqslant 0$ in \mathbf{R}^{2}. If $y \notin \Omega$, then both $\log |x-y|$ and $-\log |x-y|$ belong to $S L^{1}(\Omega)$. Hence $u(y)=-1 /(2 \pi) U^{\chi_{\Omega}-f}(y)=0$.

Let B be a large open ball centered at the origin such that $\bar{W} \subset B$, and let $g_{B}(x, y)$ be the Green function in B of the Laplacian relative to the first boundary condition with pole at y.

Set

$$
\psi(y)=-\frac{1}{2 \pi} \int_{B} g_{B}(x, y)\left(f-\chi_{B}\right)(x) d m(x) .
$$

Then $\psi \in C^{1}(B)$ and ψ can be extended onto a neighborhood of \bar{B} so that the extension, we also write it by ψ, is of class C^{1} in the neighborhood. It is easy to show that $\psi=0$ on ∂B and $\Delta \psi=f-\chi_{B}$ in B in the sense of distributions.

Let us denote by $H^{1}(B)$ the Sobolev space $H^{1,2}(B)$ with the norm

$$
\|u\|_{H^{1,2}(B)}=\sum_{0 \leqslant|\alpha| \leqslant 1}\left\|D^{\alpha} u\right\|_{L^{2}(B)}
$$

and denote by $H_{0}^{1}(B)$ the closure of $C_{0}^{\infty}(B)$ in the above norm. According to Poincare's inequality, it is well known that $\|\nabla u\|_{L^{2}(B)}$ is a norm equivalent to the
above norm for $H_{0}^{1}(B)$. In what follows, we shall understand that $H_{0}^{1}(B)$ is the Hilbert space with the norm $\|u\|=\|\nabla u\|_{L^{2}(B)}$ (see, e.g. Kinderlehrer and Stampacchia [5, Chapter II, §4]). We note here that $\psi \in H_{0}^{1}(B)$.

Let us consider the following variational problem: Minimize $\|\mathrm{h}\|$ in the closed convex set $K=\left\{h \in H_{0}^{1}(B) \mid h \geqslant \psi\right.$ a.e. in $\left.B\right\}$. The extremal function $v(\psi)$ exists and is determined uniquely. It is easy to show that $v=v(\psi)$ can be characterized by
(Vi) $v \in K$,
(Vii) $\int_{B} \nabla(h-v) \nabla v d m \geqslant 0$ for every $h \in K$.

Proposition 2. If $u \in H_{0}^{1}(B)$ and an open subset Ω of B satisfy
(i)' $u \geqslant 0$ a.e. in B,
(ii)' $u=0$ a.e. in $B \backslash \Omega$,
(iii) $\Delta u=\chi_{\Omega}-f$ in B in the sense of distributions,
then $v=u+\psi$ satisfies (Vi) and (Vii).
Proof. It is evident that (Vi) follows from (i)'. Since $\Delta v=\Delta u+\Delta \psi=\chi_{\Omega}-\chi_{B}$ $\in L^{2}(B)$, we have

$$
\int_{B} \nabla(h-v) \nabla v d m=-\int_{B}(h-v) \Delta v d m=\int_{B \Omega}(h-v) d m
$$

for every $h \in H_{0}^{1}(B)$. The condition (Vii) follows from the following equalities:

$$
\int_{B \Omega \Omega}(h-v) d m=\int_{B \checkmark \Omega}\{(h-\psi)-u\} d m=\int_{B \Omega \Omega}(h-\psi) d m
$$

Proposition 3. If $v \in H_{0}^{1}(B)$ satisfies $(V i)$ and $(V i i)$, then $u=v-\psi \in C^{1}(\bar{B})$ and $u=0$ on ∂B. The function u and $\Omega=\{x \in B \mid u(x)>0\}$ satisfy (i)' to (iii)' in Proposition 2.

Proof. The condition (i)' follows from (Vi).
Since $\psi \in H_{0}^{1}(B)$ and $\Delta \psi=f-\chi_{B} \in L^{\infty}(B), \psi \in H^{2, s}(B)$ for every s with $1<s<\infty$ (see, e.g. Kinderlehrer and Stampacchia [5, Chapter II, Theorem 4.10]). Hence $v \in H^{2, s}(B) \cap C^{1, \lambda}(\bar{B})$ for every s with $2<s<\infty$, where $\lambda=1-2 / s$ (cf. e.g. [5, Chapter IV, Theorem 2.3]). Hence $u=v-\psi \in C^{1}(\bar{B})$ and $u=0$ on ∂B. Set $\Omega=\{x \in B \mid u(x)>0\}$. Then (ii)' is satisfied evidently.

Let ρ be a function of class C_{0}^{∞} with $0 \leqslant \rho \leqslant 1$ in B. Since $v \pm \rho u \in K$ and $\Delta v \in L^{2}(B)$, by (Vii), we have

$$
\int_{B} \rho u \Delta v d m=\int_{B} \nabla(-\rho u) \nabla v d m=0
$$

for every ρ. Hence $u \Delta v=0$ a.e. in B and so $\Delta u+\Delta \psi=\Delta v=0$ a.e. in Ω. This implies that $\Delta u=1-f$ a.e. in Ω.

On $I=B \backslash \Omega$, by definition, $u=0$ and so $\Delta u=0$ a.e. (see, e.g. [5, Chapter II, Appendix A, Lemma A4]). By (Vii), we have

$$
-\int \rho \Delta v d m \geqslant 0
$$

for every $\rho \in H_{0}^{1}(B)$ with $\rho \geqslant 0$. Hence $\Delta v \leqslant 0$ a.e. in B and so $f-\chi_{B}=\Delta \psi=\Delta v$ $\leqslant 0$ a.e. on I. This implies that $m(W \backslash \Omega)=0$ since $f>1$ a.e. in W. Hence $\Delta u=0=-f$ a.e. on I. Combining this with $\Delta u=1-f$ a.e. in Ω, we obtain (iii)'.

Lemma 2. Let Ω be an open set stated as in Proposition 3. Then we can choose a large open ball B so that $\bar{\Omega} \subset B$.

Proof. Take a ball B_{0} and $M>1$ so that $f \leqslant M \chi_{B_{0}}$. Then it is easily verified that $Q\left(M \chi_{B_{0}} m, S L^{1}\right)$ consists of the ball B_{1} which satisfies $m\left(B_{1}\right)=M m\left(B_{0}\right)$ and has the same center as B_{0} (see $\left.[7, \S 1]\right)$. Choose a ball B so that $\bar{B}_{1} \subset B$ and fix it.

As before Proposition 2, let us consider the obstacle problem and write $\psi=\psi(f)$, $K=K(f)$ and $v=v(f)$. For the corresponding function and the open set stated as in Proposition 3, we write $u=u(f)$ and $\Omega=\Omega(f)$, respectively. Then, by Propositions 1 and $2, \Omega\left(M \chi_{B_{0}}\right)=B_{1}$. Hence it is sufficient to show that if $f \leqslant f_{1}$, then $u(f) \leqslant u\left(f_{1}\right)$.

First we show that if $h \in K(f)$ and $\Delta h \leqslant 0$ a.e. in B, then $v(f) \leqslant h$ a.e. in B. Set $w=h-v(f)$. Then, as we have seen in the proof of Proposition $3, \Delta v(f)=0$ a.e. in Ω. Hence $\Delta w=\Delta h \leqslant 0$ a.e. in Ω and so w is superharmonic in Ω. Since $w=h-\psi(f) \geqslant 0$ a.e. in $B \backslash \Omega$ and $w \in H_{0}^{1}(B)$, we have $w \geqslant 0$ a.e. in B, namely, $v(f) \leqslant h$ a.e. in B.

Now we shall show that if $f \leqslant f_{1}$, then $u(f) \leqslant u\left(f_{1}\right)$. Let $h=u\left(f_{1}\right)+\psi(f)$. Then $h \in K(f)$ and $\Delta h=\Delta u\left(f_{1}\right)+\Delta \psi(f) \leqslant \Delta u\left(f_{1}\right)+\Delta \psi\left(f_{1}\right)=\Delta v\left(f_{1}\right) \leqslant 0$ a.e. in B. Hence, by the above argument, we see that $u(f)+\psi(f)=v(f) \leqslant h=u\left(f_{1}\right)+$ $\psi(f)$. Therefore $u(f) \leqslant u\left(f_{1}\right)$. This completes the proof.

Proposition 4. If $u \in H_{0}^{1}(B)$ and an open set Ω with $\bar{\Omega} \subset B$ satisfy (i)' to (iii)' in Proposition 2, then $u \in C^{1}(\bar{B})$, and $\tilde{W}=\{x \in B \mid u(x)>0\}$ is the minimum open set in $Q\left(f m, S L^{1}\right)$.

Proof. The function $u(x)+1 /(2 \pi) \int_{B} g_{B}(y, x)\left(\chi_{\Omega}-f\right)(y) d m(y)$ belongs to $H_{0}^{1}(B)$ and is harmonic to B. This implies that it is identically equal to zero and so $u(x)=-1 /(2 \pi) f_{B} g_{B}(y, x)\left(\chi_{\Omega}-f\right)(y) d m(y)$. Since $\bar{W} \cup \bar{\Omega} \subset B$, by (iii) ${ }^{\prime}$,

$$
\begin{aligned}
\int_{B}\left\{g_{B}(y, x)\right. & \left.-\log \frac{1}{|y-x|}\right\}\left(\chi_{\Omega}-f\right)(y) d m(y) \\
& =-\int_{B} \nabla\left\{g_{B}(y, x)-\log \frac{1}{|y-x|}\right\} \nabla u(y) d m(y)
\end{aligned}
$$

The above is equal to

$$
\int_{B} \Delta\left\{g_{B}(y, x)-\log \frac{1}{|y-x|}\right\} u(y) d m(y)
$$

because $u \in H_{0}^{1}(B)$. Since $g_{B}(y, x)-\log (1 /|y-x|)$ is harmonic, the above integral is equal to zero. Hence $u=-1 /(2 \pi) U^{\chi_{\Omega}-f}, u \in C^{1}(\bar{B})$ and $u \geqslant 0$ in B.

Set $\tilde{W}=\{x \in B \mid u(x)>0\}$. Then, by (i)' and (ii)', we have $\chi_{\tilde{W}} \leqslant \chi_{\Omega}$ a.e. in B. Since $\Delta u=0$ a.e. in $B \backslash \tilde{W}$ (see, e.g. Kinderlehrer and Stampacchia [5, Chapter II, Appendix A, Lemma A4]) and $f>1$ a.e. in W, by (iii)', we see that $\chi_{W \cup \Omega} \leqslant \chi_{\tilde{W}}$ a.e. in B. Hence $\chi_{\tilde{W}}=X_{\Omega}$ a.e. in B.

Next let us show $\tilde{W} \in Q\left(f m, S L^{1}\right)$. In what follows, for the sake of simplicity, set $g=\chi_{\tilde{W}}-f$. Let $y \in B \backslash \tilde{W}$. Then $u(y)=0$. Since u is of class C^{1} and u attains its minimum at $y, \partial u / \partial x_{j}(y)=0, j=1,2$. Hence $U^{g}=-2 \pi u=0$ and $\partial U^{g} / \partial x_{j}=$ $-2 \pi \partial u / \partial x_{j}=0$ in $B \backslash \tilde{W}$.

Let $\left\{\omega_{n}\right\}_{n=1}^{\infty}$ be a sequence of C^{∞}-functions in \tilde{W} such that $0 \leqslant \omega_{n} \leqslant 1, \omega_{n}=0$ in a neighborhood of $\partial \tilde{W}, \omega_{n}=1$ outside a neighborhood of $\partial \tilde{W}, \lim _{n \rightarrow \infty} \omega_{n}(x)=1$ for all $x=\left(x_{1}, x_{2}\right) \in \tilde{W}$, and

$$
\left|D^{\alpha} \omega_{n}(x)\right| \leqslant A_{\alpha} n^{-1} \delta(x)^{-|\alpha|}\left(\log \frac{1}{\delta(x)}\right)^{-1}
$$

for all $x \in \tilde{W}$ and all multi-indices α, where A_{α} denotes a constant depending only on α, and $\delta(x)$ denotes the minimum of e^{-2} and the distance from x to $\partial \tilde{W}$. For the existence of the above sequence $\left\{\omega_{n}\right\}$, see Hedberg [4, p. 13, Lemma 4].

It follows that

$$
\begin{gathered}
\frac{\partial^{2}}{\partial x_{j}^{2}}\left(U^{g} \omega_{n}\right)=\frac{\partial^{2} U^{g}}{\partial x_{j}^{2}} \omega_{n}+2 \frac{\partial U^{g}}{\partial x_{j}} \frac{\partial \omega_{n}}{\partial x_{j}}+U^{g} \frac{\partial^{2} \omega_{n}}{\partial x_{j}^{2}}, \\
\Delta U^{g}=\sum_{j} \frac{\partial^{2}}{\partial x_{j}^{2}} U^{g}=-2 \pi g
\end{gathered}
$$

in the sense of distributions. Since

$$
\frac{\partial U^{g}}{\partial x_{j}}(x)-\frac{\partial U^{g}}{\partial x_{j}}(y)=O\left(|x-y| \log \frac{1}{|x-y|}\right), \quad j=1,2,
$$

for every pair of points x and y with $|x-y|<e^{-2}$,

$$
\begin{aligned}
U^{g}(x) & =O\left(\delta^{2}(x) \log \frac{1}{\delta(x)}\right), \\
\frac{\partial U^{g}}{\partial x_{j}}(x) & =O\left(\delta(x) \log \frac{1}{\delta(x)}\right), \quad j=1,2
\end{aligned}
$$

in a neighborhood of each boundary point of \tilde{W}. Hence

$$
\begin{equation*}
\int_{\dot{W}} \operatorname{sg} d m=\lim _{n \rightarrow \infty} \int_{\tilde{W}} \operatorname{sg} \omega_{n} d m=-\frac{1}{2 \pi} \lim _{n \rightarrow \infty} \int_{\dot{W}} s \Delta\left(U^{g} \omega_{n}\right) d m \tag{2}
\end{equation*}
$$

for every $s \in L^{1}(\tilde{W})$. If s is subharmonic in \tilde{W}, then $\Delta s \geqslant 0$ in the sense of distributions. Let φ be a nonnegative C_{0}^{∞}-function of $|x|$ in \mathbf{R}^{2} such that $\int \varphi d m=1$ and set $s_{\varepsilon}(x)=\int s(x-\varepsilon y) \varphi(y) d m(y)$ for $\varepsilon>0$. Then s_{ε} is a subharmonic $C^{\infty}-$ function on a given compact subset of \tilde{W} for every sufficiently small $\varepsilon>0$, and $s_{\varepsilon} \downarrow s$ as $\varepsilon \downarrow 0$ on the compact set. Since $U^{g}=-2 \pi u \leqslant 0$, by letting ε tend to 0 , we see that

$$
\int_{\tilde{W}} s g d m \geqslant 0
$$

for every $s \in S L^{1}(\tilde{W})$. Hence $\tilde{W} \in Q\left(f m, S L^{1}\right)$. Let $\Omega \in Q\left(f m, S L^{1}\right)$. Then, by Proposition 1 and the above argument, we see that $\chi_{\Omega}=\chi_{\tilde{w}}$ a.e. in \mathbf{R}^{2}. If $y \notin \Omega$, then $-\log |x-y| \in S L^{\prime}(\Omega)$ and so

$$
0 \leqslant \int(-\log |x-y|)\left(\chi_{\Omega}-f\right)(x) d m(x)=-2 \pi u(y)
$$

Hence $u(y)=0$, namely, $y \notin \tilde{W}$. Therefore $\tilde{W} \subset \Omega$ for every $\Omega \in Q\left(f m, S L^{1}\right)$. The proof is now complete.

Thus we have proved our theorem for the function f given at the beginning of this section. From (2), we have an additional result which is also true for the function f as in Theorem 2.

Corollary. Let $\Omega \in Q\left(f m, S L^{1}\right)$ and $s \in S L^{1}(\Omega)$. Then

$$
\int_{W} s f d m=\int_{\Omega} s d m
$$

if and only if s is harmonic in \tilde{W}.
2. Proof of the theorem. In this section, we assume that W is an open set in \mathbf{R}^{2} with finite area and f is a bounded integrable function with $f \geqslant 1$ a.e. in $W, f=0$ a.e. in W^{c} and $\int_{O} f d m>m(O)$ for every connected component O of W. We shall show the following as our main theorem:

Theorem 2. Let f and W be as above. Then $Q\left(f m, S L^{1}\right) \neq \varnothing$ and there exists a minimum domain \tilde{W} in $Q\left(f m, S L^{1}\right)$.

First we show the following two lemmas:
Lemma 3. Let $f_{i}, i=1,2$, be bounded integrable functions in \mathbf{R}^{2} such that $f_{i} \geqslant 1$ a.e. in open sets W_{i} and $f_{i}=0$ a.e. in W_{i}^{c}, and let $\Omega_{i} \in Q\left(f_{i} m, S L^{1}\right), i=1,2$. If $f_{1} \leqslant f_{2}$ a.e. in \mathbf{R}^{2}, then $\chi_{\Omega_{1}} \leqslant \chi_{\Omega_{2}}$ a.e. in \mathbf{R}^{2}.

Proof. Assume that $\Omega_{1} \backslash \Omega_{2} \neq \varnothing$. Take a point $y \in \Omega_{1} \backslash \Omega_{2}$ and set

$$
s(x)= \begin{cases}g_{\Omega_{1}}(x, y) & \text { in } \Omega_{1} \\ 0 & \text { in } \Omega_{2} \backslash \Omega_{1}\end{cases}
$$

where $g_{\Omega_{1}}(x, y)$ denotes the Green function in Ω_{1} with pole at y. Then $s \geqslant 0$ in $\Omega_{2} \cup \Omega_{1},-s \mid \Omega_{1} \in S L^{1}\left(\Omega_{1}\right)$ and $s \mid \Omega_{2}=s^{*}$ a.e. in Ω_{2} for some $s^{*} \in S L^{1}\left(\Omega_{2}\right)$, because $m\left(\Omega_{1}\right) \leqslant m\left(\Omega_{2}\right)<\infty$. Hence

$$
\int_{\Omega_{1}} s d m \leqslant \int s f_{1} d m \leqslant \int s f_{2} d m \leqslant \int_{\Omega_{2}} s d m
$$

and so

$$
\int_{\Omega_{1}, \Omega_{2}} s d m \leqslant \int_{\Omega_{2} \Omega \Omega_{1}} s d m=0 .
$$

This implies that $m\left(\Omega_{1} \backslash \Omega_{2}\right)=0$, namely, $\chi_{\Omega_{1}} \leqslant \chi_{\Omega_{2}}$ a.e. in \mathbf{R}^{2}.
COROLLARy. Let f be a bounded integrable function in \mathbf{R}^{2} such that $f \geqslant 1$ a.e. in an open set W and $f=0$ a.e. in W^{c}. Let $\Omega_{i} \in Q\left(f m, S L^{1}\right), i=1,2$. Then $\chi_{\Omega_{1}}=\chi_{\Omega_{2}}$ a.e. in \mathbf{R}^{2}.

Lemma 4. Let g be a bounded nonnegative integrable function in \mathbf{R}^{2} with compact support which is contained in a connected open set W. Let $\int g d m>0$ and K be a compact subset of W. Then there are a bounded nonnegative integrable function $f_{g, K}$ in \mathbf{R}^{2} and a bounded connected open set $W_{g, K}$ such that $f_{g, K}>0$ in $W_{g, K}, f_{g, K}=0$ in $W_{g, K}^{c}, K \cup \operatorname{supp} g \subset W_{g, K} \subset \bar{W}_{g, K} \subset W$ and $\int s g d m \leqslant \int s f_{g, K} d m$ for every $s \in$ $S L^{1}(W)$.

Proof. We may assume that $\inf _{x \in L} g(x)>0$ for a compact subset L of W with $m(L)>0$. Let δ be a number such that $0<\delta<d(L, \partial W) / 2$, where $d(L, \partial W)$ denotes the distance between L and ∂W, and define a bounded nonnegative integrable function g_{1} in \mathbf{R}^{2} by

$$
g_{1}(x)=\int_{B(x ; \delta)} g(y) \chi_{L}(y) d m(y) / m(B(x ; \delta))
$$

Then g_{1} is continuous, supp g_{1} is compact and $\int s g d m \leqslant \int s\left(g \chi_{L^{c}}+g_{1}\right) d m$ for every $s \in S L^{1}(W)$. Take a ball B_{1} and a number $\alpha_{1}>0$ so that $\overline{B_{1}} \subset W$ and $g_{1} \geqslant \alpha_{1}$ in B_{1}. For every $x \in\left(K \cup \operatorname{supp} g \cup \operatorname{supp} g_{1}\right)$, we can find balls $B_{j}, j=2,3, \ldots, n$, with centers p_{j} such that $p_{n}=x, \bar{B}_{j} \subset W$ and $p_{j} \in B_{j-1}$ for every j. Let $\nu_{1}=\alpha_{1} \chi_{B_{1}}$. Assume that there are a bounded nonnegative integrable function ν_{j-1} in \mathbf{R}^{2} and a number $\alpha_{j-1}>0$ such that $\operatorname{supp} \nu_{j-1} \subset \cup_{i=1}^{j-1} \bar{B}_{i}, \nu_{j-1} \geqslant \alpha_{j-1}$ in $\cup_{i=1}^{j-1} B_{i}$ and $\int s \nu_{j-1} d m \geqslant \int s \nu_{1} d m$ for every $s \in S L^{1}(W)$. Take a ball B with center p_{j} such that $B \subset B_{j-1} \cap B_{j}$. Then

$$
\begin{aligned}
\int s \nu_{j-1} d m & =\int s\left(\nu_{j-1}-\alpha_{j-1} \chi_{B}\right) d m+\alpha_{j-1} \int_{B} s d m \\
& \leqslant \int s\left(\nu_{j-1}-\alpha_{j-1} \chi_{B}\right) d m+\alpha_{j-1} \frac{m(B)}{m\left(B_{j}\right)} \int_{B_{j}} s d m
\end{aligned}
$$

for every $s \in S L^{1}(W)$. Set $\nu_{j}=\nu_{j-1}-\alpha_{j-1} \chi_{B}+\left(\alpha_{j-1} m(B) / m\left(B_{j}\right)\right) \chi_{B_{j}}$ and $\alpha_{j}=$ $\alpha_{j-1} m(B) / m\left(B_{j}\right)$. The function ν_{j} and a number α_{j} satisfy the above conditions for j. Thus, by induction, we can construct ν_{n} and $\alpha_{n}>0$ such that supp $\nu_{n} \subset \cup_{j=1}^{n} \bar{B}_{j}$, $\nu_{n} \geqslant \alpha_{n}$ in $\bigcup_{j=1}^{n} B_{j}$ and $\int s \nu_{n} d m \geqslant \int s \nu_{1} d m$ for every $s \in S L^{1}(W)$.

Let us write ν_{x} and V_{x} for ν_{n} and $\cup_{j=1}^{n} B_{j}$, respectively. Since $K \cup \operatorname{supp} g \cup \operatorname{supp} g_{1}$ is compact, we can find a finite number of open sets $V_{x_{1}}, \ldots, V_{x_{k}}$ such that $\left(K \cup \operatorname{supp} g \cup \operatorname{supp} g_{1}\right) \subset \cup_{j=1}^{k} V_{x_{j}}$. Set

$$
f_{g, K}=g \chi_{L^{c}}+g_{1}-\alpha_{1} \chi_{B_{1}}+\frac{1}{k} \sum_{j=1}^{k} \nu_{x_{j}}, \quad W_{g, K}=\bigcup_{j=1}^{k} V_{x_{j}}
$$

These satisfy the required condition.
Proof of Theorem 2. At first, let us construct an open set $G \in Q\left(f m, S L^{1}\right)$. For every connected component O_{i} of W, let L_{i} be a compact subset of O_{i} such that $\int(f-1) \chi_{L_{i}} d m>0$. Let $g_{i}=(f-1) \chi_{L_{i}}$ and let $\left\{O_{i, j}\right\}$ be an exhaustion of O_{i} such that $\overline{O_{i, j}}$ is compact for every j. By using Lemma 4, we can find $f_{i, j}=f_{g_{i} / 2^{j}, \overline{O_{i, j}}}$ and $W_{i, j}=W_{g_{i} / 2^{j}, \overline{O_{i, j}}}$ such that $f_{i, j}>0$ in $W_{i, j}, f_{i, j}=0$ in $W_{i, j}^{c}, \overline{O_{i, j}} \cup L_{i} \subset W_{i, j} \subset \overline{W_{i, j}} \subset$ W and $\int s g_{i} / 2^{j} d m \leqslant \int s f_{i, j} d m$ for every $s \in S L^{1}(W)$. Set

$$
f_{0}=f-\sum_{i=1}^{\infty} g_{i}, \quad f_{n}=f_{0} \chi_{W_{n}}+\sum_{1 \leqslant i \leqslant n} \sum_{1 \leqslant j \leqslant n-i+1} f_{i, j}, \quad n=1,2, \ldots,
$$

where $W_{n}=\bigcup_{1<i<n} \cup_{1<j<n-i+1} W_{i, j}$. Then f_{n} is a bounded integrable function in \mathbf{R}^{2} with $f_{n}>1$ in a bounded open set W_{n} and $f_{n}=0$ in W_{n}^{c}.

From the argument given in $\S 1$, we can construct the minimum open set $\tilde{W}_{n} \in Q\left(f_{n} m, S L^{1}\right)$ for every n. Since $f_{n} \leqslant f_{n+1}$, from the proof of Lemma 2, we
obtain $u\left(f_{n}\right) \leqslant u\left(f_{n+1}\right)$ (for the notation, see the proof of Lemma 2). Hence $\tilde{W}_{n} \subset \tilde{W}_{n+1}$. Set $G=\cup \tilde{W}_{n}$. By the proof of Proposition 3, we have $m\left(W_{n} \backslash \tilde{W}_{n}\right)=0$. Hence it follows that $m(W \backslash G)=0$.

Next let us show

$$
\int s f d m \leqslant \int_{G} s d m
$$

for every $s \in S L^{1}(G)$. For every $\varepsilon>0$, we can take a number n so that

$$
\int_{G} s d m+\varepsilon \geqslant \int_{\tilde{W}_{n}} s d m
$$

and

$$
\int s f d m-\varepsilon \leqslant \int s\left(f_{0} \chi_{W_{n}}+\sum_{1 \leqslant i \leqslant n} \sum_{1 \leqslant j \leqslant n-i+1} g_{i} / 2^{j}\right) d m
$$

Since

$$
\begin{aligned}
\int s\left(f_{0} \chi_{W_{n}}+\sum_{1 \leqslant i \leqslant n} \sum_{1 \leqslant j \leqslant n-i+1} g_{i} / 2^{j}\right) d m & \leqslant \int s\left(f_{0} \chi_{W_{n}}+\sum_{1 \leqslant i \leqslant n} \sum_{1 \leqslant j \leqslant n-i+1} f_{i, j}\right) d m \\
& \leqslant \int_{W_{n}} s f_{n} d m \leqslant \int_{\tilde{W}_{n}} s d m
\end{aligned}
$$

we have

$$
\int s f d m \leqslant \int_{G} s d m+2 \varepsilon
$$

for every $\varepsilon>0$. Hence

$$
\int s f d m \leqslant \int_{G} s d m
$$

for every $s \in S L^{1}(G)$.
For $s=1$, we have

$$
\begin{aligned}
\int f d m & =\lim _{n \rightarrow \infty} \int\left(f_{0} \chi_{W_{n}}+\sum_{1 \leqslant i \leqslant n} \sum_{1 \leqslant j \leqslant n-i+1} g_{i} / 2^{j}\right) d m \\
& =\lim _{n \rightarrow \infty} \int f_{n} d m=\lim _{n \rightarrow \infty} m\left(\tilde{W}_{n}\right)=m(G)
\end{aligned}
$$

Hence $m(G)<\infty$. Thus we have proved that $G \in Q\left(f m, S L^{1}\right)$.
From the corollary to Lemma $3, \chi_{\Omega}=\chi_{G}$ a.e. for every $\Omega \in Q\left(f m, S L^{1}\right)$. Since $\chi_{\Omega}-f$ has not necessarily compact support, take two distinct points ζ_{1} and ζ_{2} in $(\cup \Omega)^{c}$, where $\cup \Omega$ denotes the union of all $\Omega \in Q\left(f m, S L^{1}\right)$, consider the generalized logarithmic potential $U^{\chi_{\Omega}-f}\left(x ; \zeta_{1}, \zeta_{2}\right)($ see $[8, \S 3])$ and set

$$
u(x)=-\frac{1}{2 \pi} U^{x_{a}-f}\left(x ; \zeta_{1}, \zeta_{2}\right)
$$

The function u is determined independently of the choice of $\Omega \in Q\left(f m, S L^{1}\right)$. Let $\tilde{W}=\left\{x \in \mathbf{R}^{2} \mid u(x)>0\right\}$. If $\Omega \in Q\left(f m, S L^{1}\right)$ and $x \notin \Omega$, then $u(x)=0$ and so
$x \notin \tilde{W}$. Therefore $\tilde{W} \subset \Omega$ for every $\Omega \in Q\left(f m, S L^{1}\right)$. Since $u(x)=0$ in $\tilde{W}^{c}, \Delta u=0$ a.e. on \tilde{W}^{c}. Hence $0=\Delta u=\chi_{\Omega}-f$ a.e. in \tilde{W}^{c} and so $\chi_{\Omega} \leqslant \chi_{\tilde{W}}$ a.e. in \mathbf{R}^{2}. This implies that $\tilde{W} \subset \Omega$ and $m(\Omega \backslash \tilde{W})=0$ for every $\Omega \in Q\left(f m, S L^{1}\right)$.

Finally, the fact that $\tilde{W} \in Q\left(f m, S L^{1}\right)$ follows from the similar argument given in the proof of Proposition 4. In contrast with the proof of Proposition 4, the open set \tilde{W} is not necessarily bounded. For the generalized logarithmic potential and the similar argument given in the proof of Proposition 4, see [8, §3].
3. The case of higher dimensions. Our theorem is also valid for the case of higher dimensions. In the case of dimension $d \geqslant 3$, let us write by S_{d} the surface area of the ($d-1$)-dimensional unit hypersphere, namely, $S_{d}=2 \pi^{d / 2} / \Gamma(d / 2)$. We replace $-\log |x-y|$ by $|x-y|^{2-d}$ and consider the Newton potential

$$
U^{g}(y)=\int|x-y|^{2-d} g(x) d m(x)
$$

instead of the logarithmic potential which we have used in the case of dimension 2. In the above definition, g is a real-valued bounded integrable function defined in \mathbf{R}^{d} and m denotes the d-dimensional Lebesgue measure.

It is known that
(1) U^{g} is of class C^{1},
(2) $\partial U^{g}(x) / \partial x_{j}-\partial U^{g}(y) / \partial x_{j}=O(|x-y| \log (1 /|x-y|)), j=1,2, \ldots, d$, for every pair of points x and y with $|x-y|<e^{-2}$.
(3) $\Delta U^{g}=-(d-2) S_{d} g$ in the sense of distributions.

Therefore our arguments are also valid if we replace $-1 /(2 \pi)$ and $-\log |x-y|$ by $-1 /\left((d-2) S_{d}\right)$ and $|x-y|^{2-d}$, respectively.

Let us give here a remark on the generalized logarithmic potential used in the proof of Theorem 2. It is unnecessary to consider "generalized" in the case of dimension $d \geqslant 3$. Because we can define the Newton potential U^{g} of a bounded integrable function g which has not necessarily a compact support.
4. Hele-Shaw flows with a free boundary. As an application of the new proof of our theorem, we deal with Hele-Shaw flows with a free boundary produced by the injection of fluid into the narrow gap between two parallel planes (for the mathematical formulation, see Richardson [6] and Sakai [7]).

In [7], the author has defined a weak solution of a free boundary problem of Hele-Shaw flows with the initial connected open set $\Omega(0)$. It is a family $\{\Omega(t)\}_{t \geqslant 0}$ of quadrature domains $\Omega(t)$ such that $\Omega(t)$ is the minimum domain in $Q\left(\chi_{\Omega(0)} m+\right.$ $t \delta_{c}, S L^{1}$) for every $t>0$, where δ_{c} denotes the Dirac measure at the injection point $c \in \Omega(0)$ of the fluid.

Recently, Gustafsson [3] has defined another weak solution of Hele-Shaw flows by using variational inequalities (for the case having the container wall, see Elliott and Janovský [2]).

Let $f_{t}=\chi_{\Omega(0)}+t(1 / m(B(c ; r))) \chi_{B(c ; r)}$ (in [3], Gustafsson has used $2 \pi t$ and $B(0 ; r)$ for t and $B(c ; r)$, respectively), where $\Omega(0)$ denotes a bounded connected open set and $B(c ; r)$ satisfies $\overline{B(c ; r)} \subset \Omega(0)$, and consider the variational problem given before Proposition 2 for large ball B_{t} (which depends on t) and for a function
$\psi_{t}=\psi\left(f_{t}\right)$. Then Gustafsson's weak solution $\{\Omega(t)\}_{t \geqslant 0}$ is, in our notation given in the proof of Lemma 2, a family of domains $\Omega(t)=\Omega(0) \cup \Omega\left(f_{t}\right)$ for every $t>0$.

In this section, we shall note first that $\Omega(t)=\Omega\left(f_{t}\right)$, namely, $\Omega(0) \subset \Omega\left(f_{t}\right)$ (this result is also given by Gustafsson [3, Lemma 14(iv)]) and next show that the above two weak solutions are identical with each other.

The first assertion follows immediately from the following lemma:

Lemma 5. Let f, W and \tilde{W} be as in Theorem 2. Then $W \subset \tilde{W}$.

Proof. Since $f \geqslant 1$ a.e. in $W, \Delta u=\chi_{\tilde{W}}-f \leqslant 0$ a.e. in W. Hence u is a nonnegative superharmonic function in W. If $u(x)=0$ for some $x \in W$, then $u \equiv 0$ in the connected component of W containing x. This contradicts $m(W \backslash \tilde{W})=0$ and so $u(x)>0$ in W, namely, $W \subset \tilde{W}$.

The next corollary guarantees that $\Omega\left(f_{t}\right)$ is connected.
Corollary. If W is connected, then \tilde{W} is also connected.
Proof. Assume that \tilde{W} is disconnected. Since $W \subset \tilde{W}$ and W is connected, we can find a connected component O of \tilde{W} such that $W \cap O=\varnothing$. For every $s \in S L^{1}(\tilde{W} \backslash O)$, let \tilde{s} be a function defined by $\tilde{s}(x)=s(x)$ in $\tilde{W} \backslash O$ and $\tilde{s}(x)=0$ in O. Then $\tilde{s} \in S L^{1}(\tilde{W})$ and

$$
\int_{W} s f d m=\int_{W} \tilde{s} d m \leqslant \int_{\tilde{W}} \tilde{s} d m=\int_{\tilde{W} O} s d m .
$$

Hence $\tilde{W} \backslash O \in Q\left(f m, S L^{1}\right)$. This contradicts the fact that \tilde{W} is the minimum domain in $Q\left(f m, S L^{1}\right)$.

To show the second assertion, by the argument given in $\S 1$, it is sufficient to show that $Q\left(\chi_{\Omega(0)} m+t \delta_{c}, S L^{1}\right)=Q\left(f_{t} m, S L^{1}\right)$ for every $t>0$. This follows immediately from the proposition below.

For the sake of simplicity, we assume that W is a connected open set. Let μ be a positive finite measure with compact support contained in W. For a number α with $0<\alpha<d(\operatorname{supp} \mu, \partial W) / 2$, where $d(\operatorname{supp} \mu, \partial W)$ denotes the distance between supp μ and ∂W, let us define a bounded function $M_{\alpha} \mu$ by

$$
\left(M_{\alpha} \mu\right)(x)=\frac{\mu(B(x ; \alpha))}{m(B(x ; \alpha))} .
$$

The support of $M_{\alpha} \mu$ is contained in W.
Lemma 6. $Q\left(\chi_{W} m+\mu, S L^{1}\right)=Q\left(\left(\chi_{W}+M_{\alpha} \mu\right) m, S L^{1}\right)$.
Proof. We may assume that $\mu \neq 0$. If $\Omega \in Q\left(\left(\chi_{W}+M_{\alpha} \mu\right) m, S L^{1}\right)$, then, by Lemma 5, $W \subset \Omega$. Since

$$
\int s d \mu \leqslant \int s\left(M_{\alpha} \mu\right) d m
$$

for every $s \in S L^{1}(W), \Omega \in Q\left(\chi_{W} m+\mu, S L^{1}\right)$.

Conversely, assume that $\Omega \in Q\left(\chi_{W} m+\mu, S L^{1}\right)$. Set $G=\left\{x \in W \mid\left(M_{\alpha} \mu\right)(x)>\right.$ $0\}$. Then, since $M_{\alpha} \mu$ is lower semicontinuous, G is an open set containing supp μ. We shall show $\bar{G} \subset \Omega$. If $y \in \bar{G} \backslash \Omega$, then $\mu(B(y ; \beta))>0$ for β with $\alpha<\beta<$ $d(\operatorname{supp} \mu, \partial W) / 2$. Set

$$
s(x)=\max \{\log (1 /|x-y|), \log (1 / \beta)\}-\log (1 / \beta)
$$

Then $s \mid \Omega \in S L^{1}(\Omega)$. Since $m(W \backslash \Omega)=0$,

$$
\int s\left(\chi_{W} d m+d \mu\right)>\int_{W} s d m=\int_{\Omega} s d m
$$

This contradicts $\Omega \in Q\left(\chi_{W} m+\mu, S L^{1}\right)$. Hence $\bar{G} \subset \Omega$.
Let $s \in S L^{1}(\Omega)$, and let $s^{*} \in S L^{1}(\Omega)$ be harmonic in G and satisfy $s^{*}=s$ a.e. in $\Omega \backslash G$. Since

$$
\int_{W} s^{*}\left(\chi_{W}+M_{\alpha} \mu\right) d m=\int_{W} s^{*}\left(\chi_{W} d m+d \mu\right) \leqslant \int_{\Omega} s^{*} d m
$$

and $s \leqslant s^{*}$ in G, we have

$$
\begin{aligned}
\int_{W} s\left(\chi_{W}+M_{\alpha} \mu\right) d m & \leqslant \int_{W} s^{*}\left(\chi_{W}+M_{\alpha} \mu\right) d m+\int_{G}\left(s-s^{*}\right) d m \\
& \leqslant \int_{\Omega} s^{*} d m+\int_{G}\left(s-s^{*}\right) d m=\int_{\Omega} s d m
\end{aligned}
$$

Therefore $\Omega \in Q\left(\left(\chi_{W}+M_{\alpha} \mu\right) m, S L^{1}\right)$.
Proposition 5. Let $\mu_{i}, i=1,2$, be positive finite measures with compact support contained in a connected open set W. If there is an open subset G of W such that $G \supset \operatorname{supp} \mu_{1} \cup \operatorname{supp} \mu_{2}$ and $\int h d \mu_{1}=\int h d \mu_{2}$ for every harmonic function in G, then $Q\left(\chi_{W} m+\mu_{1}, S L^{1}\right)=Q\left(\chi_{W} m+\mu_{2}, S L^{1}\right)$.

Proof. By Lemma 6, it is sufficient to show that $Q\left(\left(\chi_{W}+M_{\alpha} \mu_{1}\right) m, S L^{1}\right)=$ $Q\left(\left(\chi_{W}+M_{\alpha} \mu_{2}\right) m, S L^{1}\right)$ for small $\alpha>0$. We obtain this equality by using Lemma 5 and the argument as in the proof of Lemma 6.
5. Quadrature domains for harmonic and analytic functions. In [7], quadrature domains for harmonic and analytic functions are introduced. Let ν be a positive finite measure in \mathbf{R}^{2} and let $H L^{1}(\Omega)$ (resp. $A L^{1}(\Omega)$) be the class of all real-valued (resp. complex-valued) harmonic (resp. analytic) integrable functions in Ω. A nonempty open set Ω is called a quadrature domain of class $H L^{1}$ (resp. $A L^{1}$), if Ω satisfies (Qi), (Qiii) and

$$
\begin{equation*}
\int_{\Omega}|h| d \nu<\infty \quad \text { and } \quad \int_{\Omega} h d \nu=\int_{\Omega} h d m \tag{ii}
\end{equation*}
$$

for every $h \in H L^{1}(\Omega)$ (resp. $h \in A L^{1}(\Omega)$). We denote by $Q\left(\nu, H L^{1}\right)$ (resp. $Q\left(\nu, A L^{1}\right)$) the class of all quadrature domains of ν for class $H L^{1}$ (resp. $A L^{1}$).

By using the generalized logarithmic potential, we obtain the following proposition:

Proposition 6. Let f and W be as in Theorem 2. Let Ω be an open set with finite area, let ζ_{1} and ζ_{2} be two distinct points in Ω^{c} and set $u(x)=-1 /(2 \pi) U^{x_{\Omega}-f}\left(x ; \zeta_{1}, \zeta_{2}\right)$. Then
(1) $\Omega \in Q\left(f m, S L^{1}\right)$ if and only if $u=0$ in Ω^{c} and $u \geqslant 0$ in Ω,
(2) $\Omega \in Q\left(f m, H L^{1}\right)$ if and only if $u=0$ and $\partial u / \partial x_{j}=0, j=1,2$, in Ω^{c},
(3) $\Omega \in Q\left(f m, A L^{1}\right)$ if and only if $\partial u / \partial x_{j}=0, j=1,2$, in Ω^{c}.

Proof. The assertions (1) and (2) are proved from the argument similar to the proof of Proposition 4. Let $\left(\chi_{\Omega}-f\right)^{\wedge}$ be the generalized Cauchy transform of $\chi_{\Omega}-f$ (for the definition, see [8]). Then $\left(\chi_{\Omega}-f\right)^{\wedge}=\left(\partial / \partial x_{1}-i \partial / \partial x_{2}\right) U^{\chi_{\Omega}-f}$. Hence $\partial u / \partial x_{j}=0, j=1,2$, in Ω^{c} implies that $\left(\chi_{\Omega}-f\right)^{\hat{n}}=0$ in Ω^{c}. Let $z=x_{1}+i x_{2}$. Since the subclass of $A L^{1}(\Omega)$ which consists of all linear combinations of $1 /\left(z-\zeta_{k}\right)$ with $\zeta_{k} \in \Omega^{c}$ is dense in $A L^{1}(\Omega)$ (see Bers [1]), the assertion (3) follows.

References

1. L. Bers, An approximation theorem, J. Analyse Math. 14 (1965), 1-4.
2. C. M. Elliott and V. Janovský, A variational inequality approach to Hele-Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburgh Sect. A 88 (1981), 93-107.
3. B. Gustafsson, Applications of variational inequalities to a moving boundary problem for Hele Shaw flows, TRITA-MAT-1981-9, Mathematics, Roy. Inst. Tech., Stockholm, p. 84.
4. L. I. Hedberg, Approximation in the mean by solutions of elliptic equations, Duke Math. J. 40 (1973), 9-16.
5. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York, 1980.
6. S. Richardson, Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fluid Mech. 56 (1972), 609-618.
7. M. Sakai, Quadrature domains, Lecture Notes in Math., vol. 934, Springer-Verlag, Berlin, 1982.
8. \qquad , Null quadrature domains, J. Analyse Math. 40 (1981), 144-154.

Department of Mathematics, Faculty of Science, Tokyo Metropolitan University, Fukazawa, Setagaya-Ku, Tokyo, Japan

