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A NECESSARY AND SUFFICIENT CONDITION

FOR THE ASYMPTOTIC VERSION OF

AHLFORS' DISTORTION PROPERTY1

BY

BURTON RODIN AND S. E. WARSCHAWSKI

Abstract. Let/be a conformai map offi = {»> = u + i'd eC| <Po(") < f < <Pi(u)}

onto S = {z = x + i>GC|0<v< 1} where the <p, G C°(-oo,oo) and Re/(»v) -<

±oo as Re w -» ± oo. There are well-known results giving conditions on R sufficient

for the distortion property Re/(« + iv) = /0u(<Pi — <Po) ' ¿u + const.+ o(l), where

o(l) -* 0 as « -» + oo. In this paper the authors give a condition on R which is both

necessary and sufficient for / to have this property.

Let R C C be a region of the form R = {w = u + iv | <p0(m) < v < <p,(m)} where

<p0 and qp, are extended real valued functions defined for -oo < m < + oo. For the

sake of simplicity we shall require <p0 and <p, to be continuous. Let 8(u) = <px(u) —

<Po(")-
Let S C C be the parallel strip S = {z = x + iy 10 <y < 1). Let w = F(z) be a

one-to-one conformai map of 5 onto R such that Re X(z) -> ± oo as Rez -» ± oo,

respectively. Let z = /( w) be the inverse mapping.

Inequalities of the form

ru  du
(a) m<Re/(w) - 1   —— < M       (w = u + iv)

Jo 0(u)

were first investigated in Ahlfors [1] (the left hand inequality corresponds to his

Distortion Theorem; the right hand inequality to his Second Fundamental Inequality).

That work stimulated efforts to find other properties of R which imply the validity

of (a).

The problem takes a simpler form when Eke's theorem [2, Theorem 2] is applied

(cf. also [8, Theorem 3]). This theorem shows that (a) holds for 0 < m < oo if and

only if the center term actually tends to a limit

ru  du
(A) Re f{w) =/—— + const. + o(l)        (w = u + iv),

Jo 0(u)

where o(l) -» 0 as Re w -> + oo.

Ahlfors' original results, as strengthened by Jenkins-Oikawa [4], show that (A)

holds if R contains the real axis and its boundary curves <p0,<px are of bounded
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variation and bounded away from zero. A number of other geometric properties of

R which imply (A) have been discovered. Examples of such sufficient conditions are

the bounded 2/3-variation condition of Jenkins-Oikawa [5], the convergence of the

integral /o°<py'2(l + | <py' |)_1 dM for j = 0,1 (Lelong-Ferrand [3], Rodin-Warschawski

[10]), and the convergence of f¿°(tp'02 + <PÍ2)0~' dH (Warschawski [11], Rodin-

Warschawski [8]). None of these sufficient conditions is also necessary.

In Theorem 1 below we give a complete solution to the problem of finding

geometric conditions on R which are both necessary and sufficient for property (A).

Remark. The sufficient condition of [11] referred to above can be derived directly

from Theorem 1 by taking a(u, t) = t<px(u) + (1 — ?)%(")■ It is not evident if the

other sufficient conditions can be derived from Theorem 1 in a direct manner.

1. A class C1 real valued function cx(u, t) defined for -oo < m < + oo, 0 < r < 1

will be called a stratification of R if u + ia(u, t) G R for all (m, t) in the domain of

a. For simplicity we shall also require a, > 0.

Theorem 1. A necessary and sufficient condition for R to have property (A) is that R

admit a stratification a(u,t) such that the integrals

i /•«"/     1
dudt

(1) il\0(u)      a,(u,t)

and

f\  ru" a2(u, t)   ,     ,
(2) / /    ";   [dudt

remain bounded above and below as u', u" -» + oo.

Proof. Necessity. Since the angle of inclination of any chord of a boundary

component of R is less than w/2 in magnitude, it follows that | Arg F'(z)\< m/2; a

detailed proof is given in Lemma 2 of §2. Hence for each fixed ( G (0,1) the stream

line {wG/?|Im/(w) = i} is the graph of a function. Denote this function by

u\-> <x(u,t). We shall show that this a is a stratification of R which satisfies the

boundedness conditions of the theorem.

By the definition of a we have

(3) v(x,t) = a(u(x,t),t)

where F(x + it) — u(x, t) + iv(x, t). Take partial derivatives with respect to x, t in

(3) to obtain

/-\        /      \        Im/'(w) ,      . 1 , .      ..
(4) a«("'') = -r^?V)'  a'("'0 = ^e7(HÖ     (" = " + <«("'')).
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The integral (2) for this a can be estimated as follows, where u' < u":

■■/-""«L..^- /•'/•»'Im2/'rr^dudt=rr^dudt
J0 Ju,   a, J0 Ju.   Re/

(\ fx(u", a(u", 0) Im2 /' , v .      .
/  / -¿TF (™s Arg F') \ F'\dx dt

J0 Jx(u'', a(u', t))

r\ rx(u", a(u", r)) .  2
= 1   I smz Arg F dxdí

•'O •'xíu', <»(«',/))

/■i r-1"00      -,
*£ /   /      Arg2 F'dxdt

0    x0

for suitable x0. By Theorem 5 of Rodin-Warschawski [9] (see Lemma 1 in §2 for a

selfcontained proof of this fact in the present, less general, context) the last integral

is finite under our hypothesis that R satisfies property (A).

The integral (1) for this a can be transformed as follows:

fYllh-^dHdt^rrl-^-ReAdudt
J0JU' \6(u)     at(u,t)l J0J„- \0(u) J

fu"   du [\ fx(u",a(u",t)) lEvij    j„
= /    7TT~/   / Re/'• cos Arg/'■ | F | dxdi

•V    V(U)       ->0 Jx(u',a(u',t))

- f" -¿7—;- f f* cos2 Arg F' dxdt
■V   0(u)     Jo Jx'

= f""du_ _ /■• f*"dxd  + /•■ f*'sin2 Arg F>dxdt
JU'  0(u)     Jjx' 'o-V

where x' = x(m', ä(m', r)) and x" = x(u", a(u", t)). As already noted, this last

integral is bounded under the assumption that property (A) holds. The remaining

term

f»"du   _ p rx"dx dy = ,u"du   _ cr ^

Ju'    0{U)       J0Jx' V    0(U)       JJf(R(u',u"))

where R(u', u") = {w G R \ u' < Re w < u"), is also bounded. Indeed, note that

property (A) implies that the horizontal oscillation

co(m) = sup{Re/(w2) — Re/(w,) | w,, w2 G R and Re wx = Re w2 = u)

tends to zero as u -» +oo. Let x" — x' = Re/(M" + ¿u") — Ref(u' + iv') where

m' + iv' G Ä, m" + iv" G Ä, and m' < m". Then the assertion of boundedness fol-

lows from

x"-x'- w(ii')- «(«")< if dxdv<x"-x' + u(u') + u(u"),
JJf(R(u',u"))

the consequence of property (A),

*''-*'=f#T+0(l)>

and the fact w(m) = o(l) mentioned above.
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Sufficiency. We now assume that a(u, t) is a stratification of R such that the

integrals (1) and (2) are bounded. For given 0 =£ u' < u" consider the curve family

{y,}0<r<i defined by u t-> y,(u) = u + ia(u, t) for u' < u < u". By well-known

properties of extremal length we have

ru"   du
/J^<x*v«,«''HM{t,}o<,<,),

where r\R(u', u") is the extremal distance between the vertical sides in {w G R \ u' <

Rew < u"). We shall show that A({y,}0<,<i) « ffe~\u)du + 0(1) where 0(1) is

bounded for all 0 < u' < u". It will then follow that property (A) holds (see

Theorem 3 of Rodin-Warschawski [8]; cf. also Eke [2, Theorem 2]).

Since {y,}0<«i *s a 1-parameter curve family one can calculate its extremal length

exactly (see, for example, Theorem 14 of [6]). Define a map of {0 < u < + oo,0 < /

< 1} into R, denoted u + it i-> c(u, t) — u + iv, by letting v = a(u, t). Then

|3c(M,r) "

1      0
«„     a,

a,.

= i+«2,
3m

One has

= rr"±dudt+nu'^dudt.
J0 K'    "r J0 V    «,

Our hypothesis on the boundedness of integrals (1) and (2) means that the sum of

these last two integrals is equal to /JÍ '#"' du plus bounded terms. Hence A({y,}) <

fuu"6-idu + 0(1) as desired.

2. We now prove the two lemmas referred to in the necessity part of the proof of

Theorem 1.

Lemma 1. Suppose /: R -» S satisifies property (A). Then the inverse function F:

S -* R satisfies

(f Arg2 F'(z)dxdy< oo.
J ^0<x<x

0<y<\
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Proof. Let R(a, b) = R D {w \ a < Re w < b). Let l(u) be the length of /(0J,

where 6U = {w | Re w = u, <p0(m) < Imw < q>x(u)}. We have

0«// R(0, u)

»  du

8(u)
l/V) dudv

-r^-lf^du+ff        \f'(w)\2dudv
J0 6(u)       J0 8{u) JJr(o,U)    V   "

¡f   \f(w) \2dudv - r-¿L\ - 2 r'^^du.
JJr(0,u) n Jo 9{u)\        Jo     0(u)

We have already seen that the term in braces is uniformly bounded for 0 < u < oo

(see the last paragraph of the Necessity part of the proof of Theorem 1). The last

integral above is nonnegative since l(u) > 1. Hence

(5)

(6)

//.
1

-!/'(") I
r(o, u)[6(u)

"l(u) - 1

dMdo = 0(l),

/
du = 0(1).

^o     0(u)

(Remark. With more work one can show that f0u(l2(u) - l)/6(u)du = 0(1); see

Theorem 1 of [9].)

For 0 < i < 1 let y, be the part of the stream line {w|Im/(w) = r} which lies in

R(0, u). y, is a connected set since | Arg F\z) |< w/2. We have

/•»  dM        r \dw\ _ r     |F'(z)[dx

h 0(u)^Jyi0(u)~Jf(yi)   6(u(z))

After integrating for t G (0,1) we obtain

\F'\ ff
-dxdy= //jCf«j[71T1*=///f(R(0.u)) 6 Ä(0, u) 9

dudv.

The last integral can be rewritten as foul(u)0 \u) du which, in view of (6), is equal to

/0" e~\u) du + 0(1). We conclude that

r\ r I dw\ — du . .
/   I      al   \     dt = 0{\).J0   Jy, 0(U)

Replace du by | dw \ cos Arg /'(w) and transform the above integral to

//J0 Jy,

Thus

(7)

l r 1 — cos Arg/'(w)

e dw\dt =
F'\

dt=ff (\-cos Arg f'(w(z)))l-^-dxdy.

Si,f(R(0,u))

Jf(R(0,u))

IF I
(1 -cos Arg F'(z))L-r1dxdy = 0(1).

u
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A change of variables in (5) leads to

(8) // (C-l)2dxdv = 0(l).
JJf(R(0, u))V   " /

It follows from (7) and (8) that

(9) ff (1 -cos Arg F'{w))dxdy = 0(1);

indeed, (8) shows that the set Ex — (z 11 F'(z) |/0(m(z)) < ^} has finite area and

hence

/ /  (1 — cosArgF(z)) dxdy < oo.
JJEX

On the complementary set E2 = {z\\F'(z) |/0(m(z)) > 5} equation (7) shows that

ff (1 - cosArgF'(z)) dxdy < 00.

Therefore

(10) ff (1 - cosArgF'(z)) dxdy < 00.

0<v<l

The estimate 1 — cos/? > (4/ir2)ß2 is valid in the range | ß \< tt/2. When this is

applied to (10) we obtain //Arg2 F'(z) dx dy < 00 as asserted. This completes the

proof of Lemma 1.

Lemma 2. The map F: S -> R satisfies | Arg F'(z) \ < ir/2 for all z G S.

Proof. The proof is modeled in part after the argument in [7, pp. 102-104]. Let

Ra — R D {w = u + iv I Re u > a] for some fixed a and let G map the half-strip

Sx = {0<x<oo,0<y<l} conformally and one-to-one onto Ra such that 0 and i

correspond to w = a + iq>0(a) and w = a + i<px(a), respectively, and

Um   ReG(z) = +00.
X-* +00

We show first that

l ¿.raa'lr\ Is:(11) \ArgG'(z)\<~    forzGS,.

For b > a we consider the quadrilateral

Q = {a < m < b, <p0(m) < v < <p,(w)}.

Then there exists a unique ß > 0 and a one-to-one conformai map g of the rectangle

r={0<x<ß,0<v<l} onto Q such that the vertices 0, ß, iß and 1 of T

correspond to the vertices a + iq>0(a), b + /<p0(¿), b + i<px(b), a + i<px(a), respec-

tively. We reflect T in the line x = ß and obtain a symmetrical rectangle T and an

analytic extension of g which maps T onto a quadrangle 0/ symmetrical to Q with

respect to the line u = b. For fixed h> 0(h < /3)we define now

(12) P(z, h) = P(z, h; g) = arg g(z + h\ ~ g{z) ,
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where the branch of the argument is determined to coincide with the principal

branch at z = 0. The geometry of the situation shows that | P(0, h)\< ir/2 and that

P(z, h) extends continuously to Cl T. As z describes the boundary of T, \P(z, h)\

remains bounded by ir/2. Since P is harmonic in T and continuous in Cl T,

| P(z, h) \< ir/2 for all z G T. Thus the continuous argument function in (12) is

actually the principal branch everywhere.

We choose now a sequence {bn} with ¿>n/ + oo as n -* oo and determine a

corresponding sequence {/?„} such that the rectangle Tn — {0 < x < ßn, 0 < y < 1}

is mapped conformally onto the quadrilateral Qn = {a < u < bn, <p0(«) < « < <Pi(")}

with vertices of Tn corresponding to those of Qn as indicated above. If gn denotes the

mapping function, it follows as in [7, p. 303] that hm„^00 g„(z) = G(z), uniformly in

any compact subset of S,. Hence, uniformly in any compact subset of Sx

P(z, h; gn) -> P(z, h; G) = Arg °{z + h\ ~ °{z)    asn-oo,

and then

\P(z, h;G)\<tr/2   forzGS,.

Letting h -* 0 we obtain (11).

Next we observe that /, the inverse of F, maps Ra onto a subregion f(Ra) C S

(pictured in the f = £ + i-q plane). If 6a denotes a crosscut {u = a, %(a) < v <

<p,(a)} of R which determines Ra, then/(Äa) is bounded by the arc y — f(0a) and

the two half-lines on r\ = 0 and tj = 1 which extend from the endpoints of y to + oo.

Let yp- S\ -*f(Ra) De tne one-to-one conformai map of 5, onto/(.Ra) such that

z = 0 and z = i correspond to the endpoints of y and lim^-,.,» Re \}/(z) = +oo.

Then G(z) = F(^(z)) and thus G'(z) = F(^(z))-i//'(2). It is an elementary fact

that hmk_>oa4''(z) exists for unrestricted approach in Sx and is positive. Hence given

any e > 0 there exists an x0 = x0(e) such that (by (11))

| Arg F(4>(z)) \<\ Arg G'(z) \ +e < tt/2 + e

forRez3=x0,0 < v< 1.

Returning to f(Ra) in the f-plane we can, given e, determine a £0 = |0(z) suca

that

(13) |ArgF(0|< V2 + E   for|>|0(e)and0<i)< 1.

In an analogous manner—by choosing Ra as the subregion of R determined by 6a

to the left of 0a—we can establish that for every e > 0 there exists a £, = £,(e) such

that

(14) |ArgF(f)|< tt/2 + e   for| < £,(<■) and 0 < i¡ < 1.

To complete the proof we consider the rectangle

(15) {f = ¿ + iv | li(e) < Í < t0(e), 0 <y < 1}

for fixed h > 0
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Again, we see from the geometry that for f on the horizontal sides of (15) we have by

choosing the principal view

\P(S,h;F)\<v/2.

We can continue i>(f ) as a harmonic function into S. Since for f G S

arg *U + M-*tO = argF(f + ah)i     o < « < i,

where the same determination of the argument is taken on both sides, we see from

(13) and (14) that the continuation of P along the two vertical sides of (15) remain

the principal value and that

\P(t,h;F)\<w/2 + t.

Hence we have on the boundary and therefore in the interior of the rectangle

F(S + h)-F(S)
Arg ir/2 +

Letting /i^Owe obtain | Arg F(f ) | < w/2 + e for f in (15). Since £ is arbitrary we

obtain | Arg F'(s) \< ir/2 for f G S. By the maximum principal the strict inequality

holds.
References

1. L. V. Ahlfors, Untersuchungen zur Theorie der konformen-Abbildungen und der ganzen Funktionen,

Ann. Acad. Sei. Fenn. Ser. AI Math. 9 (1930), 1-40.

2. B. G. Eke, Remarks on Ahlfors' distortion theorem, J. Analyse Math. 19 (1967), 97-134.

3. J. Lelong-Ferrand, Representation conforme et transformations à intégrale de Dirichlet bornée,

Gauthier-Villars, Paris, 1955.

4. J. A. Jenkins and K. Oikawa, On results of Ahlfors and Hayman, Minois J. Math. 15 (1971),

664-671.
5._, On Ahlfors' " second fundamental inequality", Proa Amer. Math. Soc. 62 (1977), 266-270.
6. B. Rodin, The method of extremal length, Bull. Amer. Math. Soc. 80 (1974), 587-606.

7. B. Rodin and S. E. Warschawski, On conformai mapping of L-strips, J. London Math. Soc. (2) 11

(1975), 301-307.
8. _, Extremal length and the boundary behavior of conformai mappings, Ann. Acad. Sei. Fenn.

Ser. AI Math. 2 (1976), 467-500.
9. _, Extremal length and univalent functions III. Consequences of the Ahlfors distortion property,

Bull. Inst. Math. Acad. Sinica 6 (1978), 583-597.
10. _, Extremal length and univalent functions II. Integral estimates of strip mappings, J. Math.

Soc. Japan 31 (1979), 87-99.
11. S. E. Warschawski, On conformai mapping of infinite strips, Trans. Amer. Math. Soc. 51 (1942),

280-335.

Department of Mathematics, University of California-San Diego, La Jolla, California

92093


