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A NECESSARY AND SUFFICIENT CONDITION
FOR THE ASYMPTOTIC VERSION OF
AHLFORS’ DISTORTION PROPERTY'

BY
BURTON RODIN AND S. E. WARSCHAWSKI

ABSTRACT. Let fbe a conformal map of R = {w = u + iv € C| pp(u) < v < ¢,(u)}
onto § = {z=x + iy € C|0 <y < |} where the ¢; € C°(~00, ) and Re f(w) —
=+ 00 as Re w — =+ 0o. There are well-known results giving conditions on R sufficient
for the distortion property Re f(u + iv) = [#(®, — ,)' du + const.+o(1), where
o(1) = 0 as u — +o00. In this paper the authors give a condition on R which is both
necessary and sufficient for f to have this property.

Let R C C be a region of the form R = {w = u + iv | py(u) < v < ¢(u)} where
¢, and ¢, are extended real valued functions defined for —oo < u < + co. For the
sake of simplicity we shall require ¢, and ¢, to be continuous. Let 8(u) = ¢,(u) —
Po(u).

Let S C C be the parallel strip S = {z=x +iy|0 <y <1}. Let w= F(z) be a
one-to-one conformal map of S onto R such that Re F(z) > + o0 as Rez —» + o0,
respectively. Let z = f(w) be the inverse mapping.

Inequalities of the form

(a) mSRef(w)—j;u%SM (w=u+iv)

were first investigated in Ahlfors [1] (the left hand inequality corresponds to his
Distortion Theorem; the right hand inequality to his Second Fundamental Inequality).
That work stimulated efforts to find other properties of R which imply the validity
of (a).

The problem takes a simpler form when Eke’s theorem [2, Theorem 2] is applied
(cf. also [8, Theorem 3]). This theorem shows that (a) holds for 0 < u < oo if and
only if the center term actually tends to a limit

(A) Ref(w):jo“%ﬂonstero(n) (w=u+iv),

where o(1) - 0 as Rew — + 0.
Ahlfors’ original results, as strengthened by Jenkins-Oikawa [4], show that (A)
holds if R contains the real axis and its boundary curves @,, ¢, are of bounded
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variation and bounded away from zero. A number of other geometric properties of
R which imply (A) have been discovered. Examples of such sufficient conditions are
the bounded 2 /3-variation condition of Jenkins-Oikawa [S], the convergence of the
integral [°@/*(1 + | @] |)™" du for j = 0,1 (Lelong-Ferrand [3], Rodin-Warschawski
[10]), and the convergence of [{*(@f + ¢72)07'du (Warschawski [11], Rodin-
Warschawski [8]). None of these sufficient conditions is also necessary.

In Theorem 1 below we give a complete solution to the problem of finding
geometric conditions on R which are both necessary and sufficient for property (A).

REMARK. The sufficient condition of [11] referred to above can be derived directly
from Theorem 1 by taking a(u, t) = t¢,(u) + (1 — #)@y(u). It is not evident if the
other sufficient conditions can be derived from Theorem 1 in a direct manner.

1. A class C' real valued function a(u, t) defined for —c0 <u < +o00, 0 <1 <1
will be called a stratification of R if u + ia(u, t) € R for all (u, t) in the domain of
a. For simplicity we shall also require a, > 0.

THEOREM 1. A necessary and sufficient condition for R to have property (A) is that R
admit a stratification a(u, t) such that the integrals

7 1 1
m 1L (5t~ a2
and
@) fo ' fu ——‘;TE: t’; du di

remain bounded above and below as u’, u” — + 0.

PROOF. Necessity. Since the angle of inclination of any chord of a boundary
component of R is less than 7 /2 in magnitude, it follows that | Arg F'(z) |<7/2; a
detailed proof is given in Lemma 2 of §2. Hence for each fixed ¢ € (0, 1) the stream
line {w € R|Im f(w) =t} is the graph of a function. Denote this function by
u> a(u,t). We shall show that this « is a stratification of R which satisfies the
boundedness conditions of the theorem.

By the definition of a we have

(3) o(x,t) = a(u(x,1),1)

where F(x + it) = u(x, t) + iv(x, t). Take partial derivatives with respect to x, ¢ in
(3) to obtain

@ aun) =L = L

Re /() a, (w=wu+ia(u,t)).
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The integral (2) for this a can be estimated as follows, where u’ < u"’:

/f“ ““d dr = ff Il‘;‘ej’: du dt

—ffx(u a0 It f ,(cosArgF’)|F'|dxdt
x(u', a(u’, t)) Re f

_ffx(“ et inzArgF’dxdt

x(u', a(u’, 1))

s/;/;o Arg? F'dx dt

for suitable x,. By Theorem 5 of Rodin-Warschawski [9] (see Lemma 1 in §2 for a
selfcontained proof of this fact in the present, less general, context) the last integral
is finite under our hypothesis that R satisfies property (A).

The integral (1) for this a can be transformed as follows:

DL =L e

_ 1 fx(u”,a(u”, 1)) - - ,
f 0(u) ff Re f'-cosArg f' - | F'| dx dt

x(u', a(u’, 1))

:f“ -éﬁ—/o]j:"coszArgF’dxdt

—f 0(u) j{;l/:”dx dy +f()‘jx’f"sin2Arg F dx dt

where x’ = x(v’, a(u’, t)) and x"” = x(u”, a(u”, t)). As already noted, this last
integral is bounded under the assumption that property (A) holds. The remaining

term
u" du
[ a1

u x’

dxdy = dx dy,

f 0(“) f/f(R(u oy
where R(u’, u”) = {w € R|u’ <Rew <"}, is also bounded. Indeed, note that
property (A) implies that the horizontal oscillation

w(u) = sup{Re f(w,) — Re f(w,)|w,, w, € R and Rew, = Re w, = u}

tends to zero as u — +oo. Let x” — x’ = Re f(u” + iv”) — Re f(u’ + iv’) where
u +iv' €ER, u” + iv” €R, and v’ <u”. Then the assertion of boundedness fol-
lows from

—x' —w(w) — w(u’) <//;(R( »dx dy<x” —x' + w(w)+ w(u”),
u u’

the consequence of property (A),
g du
= —— + 0(1),
[ 56 00

and the fact w(«) = o(1) mentioned above.
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Sufficiency. We now assume that a(u, t) is a stratification of R such that the
integrals (1) and (2) are bounded. For given 0 < u’ < u” consider the curve family
{¥,Jo<i<1 defined by u> y(u) =u + ia(u,t) for v’ <u<u”. By well-known
properties of extremal length we have

[ 5 =Ml ) < M(1docrc).
where A i(u’, u”’) is the extremal distance between the vertical sides in {w € R|u’ <
Rew < u”}. We shall show that A({Y,}o<,<1) < [4 07" (u) du + O(1) where O(1) is
bounded for all 0 <u’ <u”. It will then follow that property (A) holds (see
Theorem 3 of Rodin-Warschawski [8]; cf. also Eke [2, Theorem 2]).

Since (¥, }o<.<1 15 a 1-parameter curve family one can calculate its extremal length
exactly (see, for example, Theorem 14 of [6]). Define a map of {0 <u < + 00,0 <t
< 1} into R, denoted u + it > c(u, t) = u + iv, by letting v = a(u, ¢). Then

_d(u,0) |1 0]_
J(u,t) a(u,t)._ a, « %>
2
ac(auu, N _ ey
_qu|dc/oult . w1t al
(1) =ful —5 du—j;, o du.

One has

M = [ < [ an= [ [ awa

= O'f',‘”;l:dudt +f0'fu'j”%—3dudt.

u t

Our hypothesis on the boundedness of integrals (1) and (2) means that the sum of
these last two integrals is equal to [ 6~' du plus bounded terms. Hence A({y,}) <
[4°07"du + O(1) as desired.

2. We now prove the two lemmas referred to in the necessity part of the proof of
Theorem 1.

LEMMA 1. Suppose f: R — S satisifies property (A). Then the inverse function F:
S — R satisfies

fj; Arg? F'(z)dxdy < 0.
<x<o0

o<y<li



AHLFORS’ DISTORTION PROPERTY 285

PrROOF. Let R(a, b)) = RN {w|a <Rew <b}. Let I(u) be the length of f(d,),
where §, = {w|Rew = u, py(u) < Imw < ¢,(u)}. We have

1 y 2
0= g a7 ] e
ul(u ,
= [ ot 2 oy S g OO
(o) P dido - JOR
/[, oo das /M} o[y,

We have already seen that the term in braces is uniformly bounded for 0 < u < o0
(see the last paragraph of the Necessity part of the proof of Theorem 1). The last
integral above is nonnegative since /() = 1. Hence

(5) /], M[ﬁ = 1£(w) I] dudo = O(1),

(6) foul(;z—u_)ldu = 0(1).

(REMARK. With more work one can show that [g(/*(u) — 1)/0(u) du = O(1); see
Theorem 1 of [9}.)

For 0 <t <1 let y, be the part of the stream line {w | Im f(w) = ¢} which lies in
R(0, u). v, is a connected set since | Arg F'(z) |< m/2. We have

/ f|dW|:f | F'(z) | dx
0(u) N, 0(u) Jnyy 0(u(z2))
After integrating for ¢ € (0, 1) we obtain

ud law| |f]
0—“\ff d—ff(k(ou»add—ffk(ou)odudv

The last integral can be rewritten as [“/(u)8~'(u«) du which, in view of (6), is equal to
¢ 67\ (u) du + O(1). We conclude that

[ = o,

Replace du by | dw | cos Arg f’(w) and transform the above integral to
1 01— cosArg f'(w) | F |
| dw|dt = (1 — cosArg f'(w(z))) ——dx dy.
fo fv 0 =] /f(R(o,u» 0

Thus

(7) [ o (1~ cose F) L axay = 000,
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A change of variables in (5) leads to

Fr 2
8) (—— 1) dx dy = 0(1).
f ffu«o, AR
It follows from (7) and (8) that
(9) /f (1 — cos Arg F'(w)) dx dy = O(1);
AR, u)

indeed, (8) shows that the set E, = {z | | F'(z)|/0(u(z)) <3} has finite area and
hence

f/;l(l — cosArg F'(z)) dx dy < oo.

On the complementary set E, = {z | | F'(2)|/6(u(z)) > %} equation (7) shows that
fj;gz(l — cosArg F'(z)) dx dy < oo.

Therefore

(10) [f (1 — cosArg F'(z)) dx dy < oo.

0<x<o0

o<y<l
The estimate 1 — cos 8 = (4/m2)B? is valid in the range | B|< m/2. When this is
applied to (10) we obtain [[ Arg? F'(z) dxdy < oo as asserted. This completes the
proof of Lemma 1.

LEMMA 2. The map F: S — R satisfies | Arg F'(z) |<m/2 for all z € S.

PrOOF. The proof is modeled in part after the argument in [7, pp. 102-104]. Let
R,=RN{w=u+iv|Reu>a} for some fixed a and let G map the half-strip
S, = {0 < x < 00,0 <y < 1} conformally and one-to-one onto R, such that 0 and i
correspond to w = a + igy(a) and w = a + ip,(a), respectively, and

lim ReG(z) = +oo.

x—+o00

We show first that
(11) |ArgG'(z)|<% forz € S,.

For b > a we consider the quadrilateral
Q= {a<u<b,qu) <v<e(u)}
Then there exists a unique 8 > 0 and a one-to-one conformal map g of the rectangle
T={0<x<PB,0<y<1} onto Q such that the vertices 0, 8,i8 and i of T
correspond to the vertices a + i@y(a), b + ipy(db), b + ip\(b), a + ip,(a), respec-
tively. We reflect T in the line x = 8 and obtain a symmetrical rectangle 7’ and an
analytic extension of g which maps 7" onto a quadrangle Q’ symmetrical to Q with
respect to the line u = b. For fixed A > 0 (h < B) we define now

(12) P(z, ) = P(z, h; g) = arg g(”"z‘g(z),
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where the branch of the argument is determined to coincide with the principal
branch at z = 0. The geometry of the situation shows that | P(0, &) |< 7 /2 and that
P(z, h) extends continuously to C1T. As z describes the boundary of T, | P(z, h) |
remains bounded by #/2. Since P is harmonic in T and continuous in Cl7,
| P(z, h)|<m/2 for all z € T. Thus the continuous argument function in (12) is
actually the principal branch everywhere.

We choose now a sequence {b,} with b, 7+o00 as n - oo and determine a
corresponding sequence {8,} such that the rectangle 7, = {0 <x <B,, 0 <y <1}
is mapped conformally onto the quadrilateral O, = {a < u < b,, p(u) < v < ¢,(u)}
with vertices of T, corresponding to those of Q,, as indicated above. If g, denotes the
mapping function, it follows as in [7, p. 303] that lim,_, ., g,(z) = G(z), uniformly in
any compact subset of S,. Hence, uniformly in any compact subset of S,

g G(z+ h;), - G(z2)

P(z,h;g,) > P(z,h;G) = A asn - o0,

and then
|P(z, h;G)|<w/2 forz€ES,.

Letting A — 0 we obtain (11).

Next we observe that f, the inverse of F, maps R, onto a subregion f(R,) C S
(pictured in the { = £ + in plane). If 6, denotes a crosscut {u = a, @y (a) <v <
¢,(a)} of R which determines R, then f(R,) is bounded by the arc y = f(6,) and
the two half-lines on n = 0 and n = 1 which extend from the endpoints of y to + oo.
Let y: S, - f(R,) be the one-to-one conformal map of S, onto f(R,) such that
z=0 and z =i correspond to the endpoints of y and lim _ ., Rey(z) = +oo.
Then G(z) = F(y(z)) and thus G'(z) = F'(Y(z))-¢'(z). It is an elementary fact
that lim, _,  ¥'(2) exists for unrestricted approach in S, and is positive. Hence given
any € > 0 there exists an x, = x,(¢) such that (by (11))

|Arg F'(¢(2)) |<|ArgG'(z) | te<m/2 + ¢

forRez=x,, 0 <y <1
Returning to f(R,) in the {-plane we can, given &, determine a §, = £,(z) such
that

(13) |Arg F'($)|<m/2+e foré=¢(e)and0 <y <]1.
In an analogous manner—by choosing R, as the subregion of R determined by 4,

to the left of §,—we can establish that for every ¢ > 0 there exists a §; = £,(¢&) such
that

(14) |Arg F'(§)|<m/2+e foré<§(e)and0 <y <.
To complete the proof we consider the rectangle
(15) {§=¢+in|&(e) <E<§(e),0<y<1}

for fixed h >0

P(¢, h; F) = arg F§ + hz — F) .
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Again, we see from the geometry that for { on the horizontal sides of (15) we have by
choosing the principal view

|P($, h; F)|<m/2.

We can continue P({) as a harmonic function into S. Since for { € S

argF(§+h’)l_F(§):argF'({-I—ah), O<a<1,

where the same determination of the argument is taken on both sides, we see from
(13) and (14) that the continuation of P along the two vertical sides of (15) remain
the principal value and that

|P($, h; F)|<m/2 te.
Hence we have on the boundary and therefore in the interior of the rectangle

Arg 1) = FE)

<w/2+e.

Letting & — 0 we obtain | Arg F'({)|< 7/2 + ¢ for { in (15). Since ¢ is arbitrary we
obtain | Arg F'(s)|< m/2 for { € S. By the maximum principal the strict inequality
holds.
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