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THE APPROXIMATION PROPERTY

FOR SOME 5-DIMENSIONAL HENSELIAN RINGS

BY

JOSEPH BECKER, J. DENEF AND L. LIPSHITZ1

Abstract. Let k be a field of characteristic 0, k\[Xx, X2]] the ring of formal power

series and R = k[[Xx, Ar2]][X"3, XA, A"5] the algebraic closure of

k[[Xx, X2]][X-i, X4, X¡] in k[[Xx,...,X¡]]. It is shown that R has the Approximation

Property.

1. Introduction. Let R be a local ring and R its completion. We say that R has the

Approximation Property if every system of polynomial equations over R, which has a

solution in R, also has a solution in R. Let m be the maximal ideal of R, and let

A" = (A",,...,A„) be variables. We denote the Henselization of R[XX,.. . ,A"J(m X) by

R[Xx,...,Xn]. For example, if k is a field, then k[Xx,...,Xn] is the ring of the

formal power series over k which are algebraic over k[Xx,...,Xn\. Let C{Xx,...,Xn)

be the ring of the formal power series over C (in the variables Xx,...,Xn) which

converge in some neighborhood of the origin. M. Artin proved [A, Al] that

C{Xx,...,Xn] and R[Xx,...,Xn] have the Approximation Property if R is a field or

an excellent discrete valuation ring and he conjectured [A2]:

1.1. Conjecture. If R is an excellent (see [EGA, IV, 7.8.2]) Henselian local ring,

then R has the Approximation Property.

A special case of Conjecture 1.1 is

1.2. Conjecture. Let A: be a field, then /c[[Ar1,...,Ar]][Ar+1,...,Anf has the

Approximation Property.

It is well known (see Remark 1.5) that Conjecture 1.2 (for particular r, n, with

r < n ) implies

1.2'. Conjecture. Let k be a field. If a system of polynomial equations over

k[Xx,...,XJ has a solution^ = (yx,...,ym) E k[[Xx,.. .,Xn]], satisfying

yx,...,ys¡Ek[[Xx]],

(1) ySi+x,...,yS2Ek[[xx,x2]],

£,_, + !»• ..,£rG*[[*„.;.,Jr,]], 0<Í,<Í2<  •■•<ír<777,

then it also has a solution v = (y,,...,ym) E k[Xx,...,Xn]   which satisfies the

conditions (1).
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Gabriélov [Ga] proved that Conjecture 1.2' for r — 2, n = 3 becomes false if one

replaces k[Xx,... ,XJ by C{XX,.. .,X„}. J. Becker [B] proved that Conjecture 1.2'

becomes false if one allows disjoint subrings k[[Xx]\, k[[X2]\ in (1), instead of nested

subrings k[[Xx]] C k[[Xx, X2]] E

Conjecture 1.2 (and hence also 1.2'), for r = 1 and all n, follows from [Al].

Moreover Conjecture 1.2', for r = 1 and all n, remains true if one replaces

k[Xx,... ,Xj by C{A"„... ,X„) (see [DL, §5]). Recently G. Pfister and D. Popescu

[PP] proved Conjecture 1.2 when r — 2, n — 3, and Cnar(k) = 0. In this paper we

prove Conjecture 1.2 (and hence also 1.2') when r = 2, n = 3, 4 or 5, and Char(/c) =

0.

1.3. Theorem. Let k be afield of characteristic zero. Then k[[Xx, A^]]^, X4, X5]

has the Approximation Property.

The proof of Theorem 1.3 has two parts. The first part (§2) consists of a global

form of Néron /7-desingularization and is the same as in [PP]. However, for the sake

of completeness, we have included proofs. The second part (§3) is different from the

method in [PP] and consists of Lemma 3.1.

In [BDLV] (in the remark following Theorem 4.3) we proved that Conjecture 1.2',

for particular r, n, implies the corresponding

Strong Approximation Theorem. Let k be afield and let f(Y) = 0 be a system

of polynomial equations over k[X], where Y = (7,,..., Ym) and X = (Xx,...,Xn).

There is a function ß: N -» N (depending on f) such that for any a E IS, if there is a

y = (yx,...,ym) E k[X], satisfying conditions (1) of Conjecture 1.2' and f(y) =

0mod(Ay<a), then there is a solution y = (yx,...,ym) Ek[X] of f(Y) = 0 also

satisfying conditions (1) and y = ymod(X)a.

We conclude this Introduction with a well-known lemma which we need in §3, but

for which we could not find a good reference.

1.4. Lemma. Let Rbe a local Noetherian ring which has the Approximation Property.

Let T = (Tx,...,Tn) be variables. Then every system of polynomial equations over

R[T], which has a solution in R[T], also has a solution in R[T].

Proof. We give a proof using the ultraproduct construction (see e.g. [CK or

BDLV, §1]), although a classical proof would be as easy. Since R has the Approxi-

mation Property, for every subring 5 of R which is finitely generated over R, there

exists an Ä-algebra homomorphism (j>s: S -» R.

Let 7 be the set of all subrings of R which are finitely generated over R. Choose an

ultrafilter D on 7 such that for every 50 G 7 we have {S El: S0 E S) E D. The

maps $s induce an Ä-algebra homomorphism

(f>*:   [I S/D^R* =  TJ F./D.
se/ set

Consider the map

6: R -» II S/D: a^(as)seJ   mod D
Se/



APPROXIMATION FOR 5-DIMENSIONAL HENSELIAN RINGS 303

where

as = a,    if a G S,

as = 0,    if a G S.

It is easy to verify that 6 is an 7\-algebra homomorphism. Thus we have an Ä-algebra

homomorphism \p = <f>* <> 6: R -> R*. The ultraproduct R* is a local ring (not

Noetherian), and \p is a local homomorphism (because the maximal ideal of R is

generated by the maximal ideal m of R, and \¡/ is an Ä-algebra map).

There is a canonical map

R*^(R[T]~)* = II (R[T]~)/D.
sei

Thus \p: R -* R* extends to a local Ä[T]-algebra homomorphism

M[rW,-(A[rD*.

But (7\[T] )* is a local Henselian ring (see [BDLV, §1]), thus, by the universal

property of Henselization [EGA, IV, 18.6.6], \p extends to an Ä[r]-algebra (and in

fact an R[T] -algebra) homomorphism

4¡:R[Tj->ÍR[Tfi*.

Thus every system of polynomial equations over R[T], which has a solution in

R[T]~, has a solution in (R[T])*, and hence also in R[T].   Q.E.D.

1.5. Remark. Observe that it follows from the above proof that if in Lemma 1.4

some of the coordinates of the solution are in the subrings R[TX,..., T¡], i■> 0, then

the new solution can be chosen so that the corresponding coordinates are in the

corresponding subrings R[TX,...,T¡]. Conjecture 1.2' can be derived from Conjec-

ture 1.2 as follows: Assume the hypothesis of 1.2'. Use 1.2 to get a solution in

k[[Xx,...,Xr]][Xr+x,... ,Xn] satisfying (1), by fixing yx,... ,y . Now use the above-

mentioned strengthened version of Lemma 1.4 r times in succession to get down to a

solution in k[Xx,...,Xn] satisfying (1). (In the y'th use of 1.4 take R =

k[[Xx,...,Xr^]lXr^j+x\ and T= (Xr„j+2,.. .,Xn), and iixyx,...,ySj. These rings

R have the Approximation Property by 1.2.)

2. Global Néron /7-desingularization. Let B be a finitely generated A algebra and 9

a prime ideal of B. We say that B is smooth over A at 9 if Spec B is smooth over

Spec ,4 at <3> G Spec B (see e.g. [A3, pp. 80-81]).

2.1. Theorem (Néron /7-desingularization). Let A C A' be discrete valuation

rings, and let p be a local parameter of A. Suppose that A' is unramified over A (i.e. p

is also a local parameter of A') and suppose that the residue field of A' is separable over

the residue field of A. Let B be a subring of A' which is finitely generated over A, such

that Frac(7?) is separable over Frac(A). (Frac denotes the fraction field.) Then there

exists a subring C of A', containing B, such that C is finitely generated over A and

smooth over A at the prime ideal C D pA', and such that C E S~ XB, where S = {pe:

eEW).
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This is an immediate consequence of Néron's /?-desingularization [N] (see [Al,

§4]).
The next theorem is a global version of Néron's /7-desingularization and is due to

Pf ister and Popescu [PP].

2.2. Theorem (Global Néron /7-desingularization). Let A E A' be Noetherian

Unique Factorisation Domains. Suppose for every prime element p of A, that p remains

prime in A' and that A n pA' = pA. Suppose that Frac(v4') is separable over Frac(^l)

and that Frac(A'/qA') is separable over Frac(A/A n qA'), for every prime element a

of A'. Suppose that there exists an infinite set of units of A' which are algebraically

independent over A. Let B be a subring of A' which is finitely generated over A. Then

there exists a subring C of A', containing B, such that C is finitely generated over A and

smooth over A at C D qA' for every prime element a of A'.

Proof. It follows from separability that B is smooth over A at the prime ideal (0).

Hence there are only a finite number of prime ideals of the form qA', such that B is

not smooth over A at B D qA'. Hence, by the transitivity of smoothness, it is

sufficient to prove that for every subring B of A', which is finitely generated over A,

and for every prime element a of A', there exists a subring C of A', containing B,

such that (i) C is finitely generated over A, (ii) C is smooth over A at C PI qA', and

(iii) C is smooth over B at C D q'A' for every prime element a' of A' with

q'A' ^ qA'. Let a be a fixed prime element of A'. There are two cases:

Case 1. A C\ qA' ¥= (0). Then there exists a prime element p of A such that

p E qA'. Since p remains prime in A', we have pA' = qA'. Thus we may as well

suppose that a G A, and q is a prime element in both A and A'. Moreover we have

A n qA' = qA and AqA C A'qA. are discrete valuation rings. Let U — A\qA. The

conditions of Theorem 2.1 are satisfied for A = AqA C U~XB C A' = A'qA,. Thus

there exists a subring D of A'qA,, containing U~ lB, such that D is finitely generated

over A A and smooth over AqA at D n qA'qA,, and such that D C S~lU~lB, where

S = {qe: e E N}. Letyx,...,ys be generators for D over AqA. Then there are e G N

and m G Usuch that qeuyi E B, for i = l,...,s. Since qeuy¡ E Ä and M}', G /l'^., we

have My, G A'. Let C — B[uyx,. . .,uys] C A'. We have C C 5~'B, thus C is smooth

over B at C n a'^' for every prime element a' of A' with aVi' ^ qA'. Moreover

U~XC = D is smooth over ÍTU = ^ at 7> n a/l'?/1,. Hence [EGA, IV, 17.7.1], C is

smooth over A at C D (D n #/4'9/r) = Cf1 aX. This completes the treatment of

Case 1.

Case 2. A D a^' = (0). We may suppose that a is transcendental over B. (Other-

wise multiply a with a unit which is transcendental over B.) Then A[q] is a

Noetherian UFD, and A[q]qA[q] is a discrete valuation ring. We have A[q] D a^4' =

a^4[aj. Indeed if x E A[q] and x E qA', then x — a E qA[q] for some a E A, hence

a G av4'; thus a — 0 (since we are in Case 2) and x E qA[q]. Thus we have

A = A\.q\qA[q\ E A' = A'qA.. Let U = ^[a]\a^l[a]. The conditions of Theorem 2.1

are satisfied for A C U~lB[q] E A'. By the same argument as in Case 1 we obtain a

subring C of A', containing B[q], such that (i) C is finitely generated over A[q], (ii) C

is smooth over A[q] at C D a^4', and (iii) C is smooth over ¿?[a] at C n a'^1', for
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every prime element a' of A' with q'A' ¥= qA'. Since a is transcendental over B, we

have that B[q] is smooth over B and A[q] is smooth over A. The theorem now

follows by the transitivity of smoothness.   Q.E.D.

2.3. Corollary. Let

A0 = k[[Xx,...,Xr]][Xr+x,...,Xn],

A=k[[Xx,...,Xr]][Xr+x,...,Xn]~   and   Â = k[[Xx,...,Xn]],

where k is a field of characteristic zero. Let B be a subring of A which is finitely

generated over A0. Then there exists a subring C of A, containing B, such that C is

finitely generated over A0 and smooth over AQat C (~) qA,for every prime element a of

Â.

Proof. The pair A E A satisfies the hypothesis of Theorem 2.2 (see [EGA, IV,

18.7.6 and 18.9.2]). Moreover, it follows easily from the definition of Henselization

[EGA, IV, 18.6.5] that every subring D of A, which is finitely generated over A0, is

contained in a subring Ax of A such that A is flat over Ax, and Ax is finitely

generated over A0 and étale over A0 at Ax D (Xx,...,Xn)A. (Indeed, notice that the

maps ^A in [EGA, IV, 18.6.5] are faithfully flat, and hence injective.) Let B =

^ot^i'---'^]' and let C" = ^tvi>--->ye>- --^ms be a subring of Â such that C is

smooth over A at every C n qÂ (cf. Theorem 2.2). Let /,,... ,fr E A[YX,..., Ym] be

generators for the ideal {/ G A[YX,..., Ym\. f(yx,... ,ym) — 0}. Let Ax be as above

and containing the coefficients of/,,...,/r. Let C = Ax[yx,...,ym]; then C =

C®AlA. From [EGA, IV, 17.7.1] it follows that C is smooth over Ax at every

C n qÂ. The corollary now follows from the transitivity of smoothness.   Q.E.D.

3. Proof of Theorem 1.3. Let k be a field of characteristic zero,

A0 = k[[Xx,X2]][X3,X4,X5],

A = k[[Xx, X2]][X3, X4, X5]~   and   Â = k[[Xx, X2, X3, X4, Xs]].

We use the following notation: XX2 — (Xx, X2), X345 = (A"3, X4, X5), XX234~

(Xx, X2, X3, X4), etc_We have to prove that every system of polynomial equa-

tions over A, which has a solution in A, also has a solution in A. Since A is algebraic

over A0, we may suppose that the equations have coefficients in A0 by introducing

more equations and congruences if necessary. Thus we have to prove that for every

subring B of A, which is finitely generated over A0, there exists an ^40-algebra

homomorphism B -> A. It follows from Corollary 2.3 that we may suppose that B is

smooth over A0 at B D qA, for every prime element a of A. Let B = A0[yx,... ,yN],

with yx,...,yNE Â. Let /,(7),... ,fm(Y) G A0[Y] be generators for the ideal {/(7)

G A0[Y): f(y) = 0), where 7 = (7„..., YN) and y = (yx,... ,yN). Thus f(y) = 0

for i = l,...,77i. We have to prove that there exists v = (y\,---,yN) E A, such that

f(y) = 0 for i — I,... ,777. But by Lemma 1.4 and induction, it is sufficient to prove

that there exists y — (yx,...,yN) E k[[Xx234]][X5], such that f(y) = 0 for i —

1,... ,ni. Choose 5,(7),... ,SS(Y) E A0[Y] such that (i) for every prime ideal <? of B,

B is smooth over A0 at 9 if and only if there is an i such that 8¡(y) G <3\ and (ii) the
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ideal HB = (5,(7),... ,8S(Y))A0[Y] satisfies the condition in [E, 0.2, p. 555]. Since B

is smooth over A0 at B D qÂ, we have that (5,(y),.. .,8s(y))Â j£ qÂ for every prime

element a of Â. Thus the height of the ideal (8x(y),.. .,8s(y))A is not smaller than

two. Thus we have

J(8x(y),...,8s(y))Â = <3>, n • • • n%

where <$x,...,($t are prime ideals in A with height not smaller than two. Hence if

9j C ( A",, X2)Â, then "3?. = ( A",, X2)Â. Hence there exist g G Â, with g G (Xx, X2)Â,

and r G N, such that

(1) XxrgE(8x(y),...,8s(y))Â,       X¡g G {8x(y),...,8s(y))Â.

After a linear change of coordinates among X3, X4 and X5, we may suppose that g is

regular in A"5 (as a formal power series; see e.g. [ZS, p. 145]), because g G (Xx, X2)Â.

Let w G /c[[A"1234]][A"5] be the distinguished pseudopolynomial associated with g (see

e.g. [ZS, p. 146]). Let Ax = k[[XX234]][X5]~ and % = w.(X[, Xr2)Ax. Applying Elkik's

theorem [E, Théorème 2, p. 560] to the Henselian pair (Ax, \), we see that it is

sufficient to prove that there exists v G Af such that

(2) ftiy)ew!iXr,X?)Au       i=l,...,m,

and

(3) wX{,wX¡E(8x(y),...,8s(y))Ax,

where e E N is big enough.

We are going to use the

3.1. Congruence Lemma. Let k be a field of characteristic zero. Let w G

A:[[ A",234]][A"5] be a distinguished pseudopolynomial (with respect to X5) and l G N.

Every system of polynomial equations over k[[XX234]][X5] which has a solution in

/c[[ AT,2345]] also has a solution in /c[[A',234]][Ar5]/w>.(A',', X2).

We prove Lemma 3.1 later, and proceed first with the proof of Theorem 1.3.

Define

G(Z,Y)= ¿Z,.o,(7)G,40[7,Z],       Z = (ZX,...,ZS).
i=i

It follows from (1) that there exist z, G As, z2 E Âs such that

wX[=G(lx,y),       wX^G{ï2,y).

From Lemma 3.1 it follows that there exist v G Af, zx E A\, z2 E A\, such that

ftiy)=Ax0,       wAY =^,G(z„ y),       wXi=AlGiz2,y)   modwe.{X[e, X?),

where =Al denotes congruence in Ax.

Thus (2) holds and we prove now that (3) is also satisfied. It follows from the last

two congruences that there exist vx,v2,v3,v4 E Ax such that

wX{ = G(zx, v) + vxweXxre + v2weXr2e,

wXr2 = G(z2, y) + v3weX[e + v4weXr2e.
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This can be written as

(1 - vlW'-%^-^)iwX{) - {v2w^X^-V){wX[) = G(zx, y),

-v3we-*X[(e-x\wXrx) + (l - v4we'^X¡(e-^)(wX¡) = G(z2, y).

We consider this as a system of two linear equations with two unknowns wX[ and

wX2. The determinant of this system is congruent to 1 mod(A",, A"2) (we may

suppose r > 0, e > 1) and hence a unit in Ax.

Solving for wXx, wX2, we obtain wXx, wX2 E (G(zx, y), G(z2, y))AX. From the

definition of G(Z,Y) we have that

(G(zx, y),G(z2, y))Ax E (8x(y),...,8n(y))Ax.

This proves (3) and the proof of Theorem 1.3 is completed if we prove Lemma 3.1.

Proof of Congruence Lemma 3.1. Let^i = /c[[A",2345]] and Ax = k[[XX234]][X5],

as before. Let ht(Y) E k[[XX234)][X5][Y], i = 1,... ,m, Y = (7„..., YN).

Suppose there exists y E ÂN such that h¡(y) — 0 for i = l,..., m. We have to

prove that there exists v G Ax such that

hi(y)=Al0   modw.(x'x, X'2),       i=l,...,m,

where =a{ denotes congruence in the ring Ax.

By the Weierstrass Preparation Theorem we can write

y=y0 + wq    with>;0G/c[[A,234]][A-5]N    and    q E ÂN.

Moreover we can write

q=yx+X[qx+X!lq1    with yx E k[[ X345]][ XX2]N    and     qx,q2EÂN.

Define

(4) y=yQ + Wyl,

Thus we have

(5) y=y + wX[qx + wXl2q2.

Let B = Ä:[[A"345]] ■ k[[ A",234]] be the compositum of the two rings &[[A345]] and

M[A"i234l] ini. We have j) G B. From h,(y) = 0 and (5), follows

(6) ht(y)=A0    modw.(A",', A"^),    lor i = l,...,m,

where =Â denotes congruence in the ring A.

We are going to prove that

(6') Ki9)=s0    modw.(X'x,Xi),

where =b denotes congruence in the ring B.

From (4) we have that

(7) ^,0)=b",(>'o)   modw,

and from (7) and (6) that

",0o) -Â0   modw.
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Now h¡(y0) and w are in /c[[A,234]][A"5], and w is a distinguished pseudopolynomial.

Hence by [ZS, p. 146] we have that

ni(yo)—c0   modw,

where C — k[[XX234]][X5]. Combining this with (7) we obtain

h¡(y) =b0   modw.

Thus there exist a¡ E B with h¡(y) = wat. It follows from (6) that a, =Â Omod

( A",', X2). This implies a¡ =s0mod (X[, X2) and (6') follows. Indeed, suppose a E B

and a =Â0mod (A",', A"2), we will prove that a =ß0mod (A",', X2). Every element in

&[[A"I234]] is congruent in B to an element of A:[[A34]][A',2]mod(A'l/, A"2). Thus there

exists c E k[[X345]][Xx2] with a =b cmod (X[, Xl2). Hence c =Â 0. Thus cG

(X'x, X/,)k[[X345]][XX2}. Hence a =B0. This finishes the proof of (6').

Congruence Lemma 3.1 now follows at once from (6'), and the following:

Claim. Every system of polynomial equations over /i[[Ar1234]][A5], which has a

solution in B, also has a solution in Ax.

Proof of the Claim. Let F(Z) E Ar[[A",234]][ A5][Z]m, Z = (Z„... ,ZN). Suppose

there exists z G BN with F(z) = 0. We have to prove that there exists z E A\* with

F(z) = 0. Now, zEBN can be written as z = E(ü), with E(U) E k[[Xx234]][U]N,

U = (Ux,..., Us), and ü E k[[X345]]s. Thus F(E(ü)) = 0. We can write

F(E(U)) = 2C,j(U)X{X{,
ij

with

CIJ(U)Ek[[X34]][X5][U]m.

We have C,,(ö) = 0, for all i, j E N. By Noetherianess, there is a finite set 5 C N

such that the equations CU(U) = 0 for all i, j, are implied by the finite set of

equations CtJ(U) = 0, i, j E S.

First we prove the Claim in the special case that A3 and A"4 do not appear. Then,

by Greenberg's theorem [G], there exists u E (k[X5])s such that C¡j(u) — 0 for

/', j E S, and hence also for all /, j E N. Thus F(E(u)) = 0 and E(u) E

(k[[Xx2])[X5]~)N.

This proves the Claim, and hence Lemma 3.1 and Theorem 1.3, in the special case

that A3 and A4 do not appear (the 3-dimensional case). Thus /cflA',, A2]][ A5] has the

Approximation Property. Thus also /c^A^nA^] has the Approximation Property.

Thus also in the general case, there exists u E (k[[X34]][Xs] )s such that Cu(u) = 0

for i, j E S, and hence also for all i, j E N. Let z = E(u). Then F(z) = 0 and

z G (k[[XX234]][X5])N. This proves the claim.    Q.E.D.

Added in proof. Theorem 1.3 is also true when k is a field of nonzero

characteristic. This follows by using a generalization of Theorem 2.2 as in

D. Popescu, Global forms ofNéron''s p-desingularization and approximation, Teubner

Texte Bd. 40, Teubner, Leipzig, 1981.
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