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SUFFICIENT CONDITIONS FOR SMOOTHING

CODIMENSION ONE FOLIATIONS

BY

CHRISTOPHER ENNIS

Abstract. Let M be a compact C°° manifold. Let X be a C° nonsingular vector

field on M, having unique integral curves (p,t) through p G M. For /: M -» R

continuous, call Xf(p) = df(p, t)/dt I 0 whenever defined. Similarly, call Xkf(p)
= X(Xk-'f)(p).

For 0«r<t,aC foliation S7 of M is said to be Ck smoothable if there exist a

Ck foliation §, which C approximates 'S, and a homeomorphism h: M -» M such

that h takes leaves of iFonto leaves of S.

Definition. A transversely oriented Lyapunov foliation is a pair ('S, X) consist-

ing of a C° codimension one foliation ?of W and a C° nonsingular, uniquely

integrable vector field X on M, such that there is a covering of M by neighborhoods

[W¡], 0 *£ i < N, on which ÍF is described as level sets of continuous functions f:

W,, -» R for which Xf(p) is continuous and strictly positive.

We prove the following theorems.

Theorem 1. Every C° transversely oriented Lyapunov foliation ('S, X) is C'

smoothable toa C' transversely oriented Lyapunov foliation (§, X).

Theorem 2. If (S, X) is a C° transversely oriented Lyapunov foliation, with

X Ë Ck~' and X'f(p) continuous for Kj<k and 0 « ; « N, then ('S, X) is Ck

smoothable to a Ck transversely oriented Lyapunov foliation (§, X).

The proofs of the above theorems depend on a fairly deep result in analysis due to

F. Wesley Wilson, Jr. With only elementary arguments we obtain the Ck version of

Theorem 1.

THEOREM 3. If ('S, X) is a Ck~] (k > 2) transversely oriented Lyapunov foliation,

with Xe Ck~{ and Xkf(p) is continuous, then ('S, X) is Ck smoothable to a Ck

transversely oriented Lyapunov foliation (S, X).

Introduction. Let M be a C°° compact manifold of dimension n. In what follows,

X is a C° nonsingular, uniquely integrable vector field on a neighborhood WEM.

Let(p, t) be the unique integral curve throughp = (p, 0) G W.

Definition 0.1. A Lyapunov function for X is a continuous, real-valued function/:

W -> R whose derivative along X trajectories, Xf(p) = df(p, t)/dt |(=0, p E W,

exists, is a continuous function oip and is strictly positive.

Note that by continuity of the flow, the continuity of Xf(p) in p is equivalent to

continuity of Xf(p, t) = df(p, t)/dt inp and t.

Definition 0.2. A Lyapunov foliation ®s of M is a codimension one foliation such

that there is a covering Of M by C°° charts {W¡}, a collection of C° nonsingular,

uniquely integrable vector fields A, on W,, and a collection of Lyapunov functions/:

W^ -> R for the A,, whose level sets,/ = constant, describe ?F D W¡. By this we mean
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that connected components of level sets in W, equal connected components of leaves

offn wt.
Definition 0.3. A transversely oriented Lyapunov foliation of M is a pair (*3, X)

where % is a Lyapunov foliation, A is a global C° nonsingular, uniquely integrable

vector field on M, and the functions/: Wt. -» R (from Definition 0.2) are Lyapunov

forA, = X\w¡.

We are going to prove the following:

Theorem 1. Any C° transversely oriented Lyapunov foliation (%, X) of M is

homeomorphic to a C1 transversely oriented Lyapunov foliation (§, X) by a homeomor-

phism h: M -> M, such that \h — id |co is arbitrarily small.

Since % is C\ it follows that g*A"(i.e. Vp G M, Tpi§p)*Xip) where §p is the leaf

of ê containingp).

The main tool used in the proof of Theorem 1 is

Wilson's theorem [7]. If f: M -> R is continuous, and if X is a C° nonsingular,

uniquely integrable vector field of M, with Xf( p ) defined and continuous, then for any

positive, continuous function e: M -» R, we can find a Cxfunction g: M -» R such that

(i)\f(p)-g(p)\<E(p)VPEM,

(ii)Xg>Xf-E.

In terms of Definition 0.1 this theorem says that a global C° Lyapunov function

for A on M can be approximated by a C°° Lyapunov function for X. That is,

particularly simple types of C° transversely oriented Lyapunov foliations (Definition

0.3) are approximable by C00 transversely oriented Lyapunov foliations, namely

those which are described on the whole of M by the level sets of a single, globally

defined C° Lyapunov function for A. If Wilson's theorem is interpreted in this way,

Theorem 1 partially extends it to a richer class of foliations—partially in the sense

that, for these simpler types of C° foliations, Wilson obtains a homeomorphic

approximation which is C00; whereas in Theorem 1 we obtain a homeomorphic

approximation § which is only C1. That this is actually necessary (and not a

weakness in our method of proof) follows from considering the classical example of

Denjoy [1]. Denjoy constructed a C' diffeomorphism of the circle having a minimal

set that is neither a periodic orbit nor the entire circle. Suspension gives a C1

nonsingular flow on the two-torus T2 having a minimal set that is neither a closed

orbit nor the entire T2. Any flow on T2 topologically equivalent to this one must

necessarily have such a nontrivial minimal set. But by a theorem of A. Schwartz [5],

minimal sets of C2 flows on closed, two-dimensional manifolds M are either fixed

points, closed orbits, or T2 = M. Consequently the C1 Denjoy flow is not topologi-

cally equivalent to any C2 flow, and the integral curves of this flow give a C1

foliation fy of T2 which is not homeomorphic to any C2 foliation. Now it can be

shown that (fy, X) is a transversely oriented Lyapunov foliation where A is the C00

longitudinal vector field on T2. Thus Lyapunov foliations cannot be smoothed past
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C1 in general. Nevertheless, with more assumptions we get

Theorem 2. Let (ÍF, A") be a C° transversely oriented Lyapunov foliation. Assume

that X is Ck~\ and that XJf(p) = djf(p, t)/dtj |,=0, 0 <j < k, is continuous. Then

(*%, X) is homeomorphic to a Ck transversely oriented Lyapunov foliation (§, X) by a

homeomorphism h: M -» M with \h — id |co arbitrarily small.

For the proof of Theorem 2 see §5.

J. Harrison [3] has constructed, for every k > 0, a Ck diffeomorphism of T2 which

is not conjugate to any Ck+l diffeomorphism. By suspension one obtains a Ck

codimension two foliation of T3 which is not homeomorphic to any Ck+' foliation.

By our techniques alone (i.e. without the use of Wilson's theorem) we obtain the

following for k > 2:

Theorem 3. Let C$, X) be a Ck~x transversely oriented Lyapunov foliation (i.e. the

local Lyapunov functions describing <5 are Ck~{). Assume that X is Ck~\ and that

XkfiiP) = dkf(p, t)/dtk |,=0, 0 < i *£ N, are continuous. Then (f, A") can be C*_l

approximated by a Ck transversely oriented Lyapunov foliation (§, X) homeomorphic

to ($, X).

For the proof of Theorem 3 see §§5 and 6.

The hypotheses of this theorem do not force the Ck~x functions/: W, -» R to be

Ck, as can be seen by considering the following example. Let g: R -» R be C1 but

not C2. Define/: R2 -» R by f(x, y) = y — g(x). Then/is clearly only C1. The level

sets of/give a C1 foliation whose leaves are translated graphs of g. It is Lyapunov

for 3/3 v since 9//3y — 1. Furthermore 32//3y2 = 0.

A completely different approach from ours would be tangential smoothing. This

has been studied by Hart [4]. That the two approaches cannot be combined is shown

by the examples of Denjoy [1] and Harrison [3].

In [2] M. Hirsch, C. Pugh and the author give an example of a C' codimension

one foliation of a three-dimensional manifold that cannot be C° approximated by

any C2 foliation.

This work is a slightly revised version of the author's dissertation at the University

of California, Berkeley. It is a pleasure to acknowledge my gratitude to my advisor,

Charles C. Pugh. Discussions with E. O. Davisson, David Hart and Morris W.

Hirsch were also helpful.

1. We begin our smoothing procedure on the C° transversely oriented Lyapunov

foliation C3, X) of a C°° compact manifold M of dimension n. Standing hypotheses

in §§1-6 are as follows: {U¡}, {V¡}, {W¿}, 0 < ¡< N, are finite, open covers of M,

nested according to

U, C H, C Vs C Vs C W, C W„       0<i<N;

/: Wt.-> R is a continuous Lyapunov function for X\^ whose level sets are

connected components of leaves of ?\^. We are going to smooth ^successively on

the pieces Ut.

Here is a useful corollary to Wilson's theorem.
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Corollary 1.1. Let U, V, W be open sets in compact M with UEUEVEVE

W C W, and let f: W -» R be a continuous function with Xf(p) continuous for a C°

nonsingular vector field X on W with unique integral curves. Then given e, 8 > 0 there

exists g: W -» R continuous, satisfying

(i) g is C°° onU,

(ii)g = fonW\V,

(»i) |/-g|c0<£>

(iv) Xg > inf Xf - 8.

Proof. Since U and W\V are compact disjoint sets we may choose a C00 function

ß: W^R,0<ß< 1,

JO    ont/,
[ 1     on W\V.

Since ß G C00, Xß = Dß(X) which is continuous on W. Take | Xß |< M0. Choose

e' > 0, 8' > 0 such that e' < e and e'M0 + 8' < 8. From Wilson's theorem we can

find a C00, g: ÎF -» R, such that

(1) |/-Ilc"<^

(2) Xg>Xf-8'

(just take e = min{ó", e'} in Wilson's theorem). Define g — (I — ß)g + ßf so that

(i) and (ii) are immediate. To see (iii),

l/-g|c»=l/-(l-/5)g-/5/l = |l-/5||/-||<|/-||<e'<e-

To see (iv) we calculate

Xg =(X(l- ß))g +(l- ß)Xg + (Xß)f+ ßXf

= (f-g)Xß + (l-ß)Xg + ßXf

> (/- g)Xß +(l - ß)(Xf- 8') + ßXf= (f-g)Xß+(Xf- 8') + 8'-ß

>if-g)Xß+(Xf-8')> -(e'-Af0) +(inf Xf - 8') > M Xf - 8

by choice of 8', e'.   Q.E.D.

Now we are ready to smooth ÍFon U0 E W0. Let (p, t) denote the unique integral

curve of X through p = (p,0). Choose t > 0 such that for all p E V0 and 11 \< t,

(p, t) E W0D V0. Choose v such that 0 < v < {- inf Xf0. Then applying the corollary

to/0: W0 -» R, we produce a continuous function g0: W0 -> R such that g0 is C°° on

U0, g0 = /o on W0\V0 and

(3) I/o — ̂olc° < »'•t,

(4) Ag0 > v > 0.

Given p G W0 consider g0(p, t). We have Ag0 = dg0(p, t)/dt > v > 0 and \g0(p)

— f0(p)\< v ■ t. Consequently, there is a unique t — t(p) G (-t, t) such that

(5) go(P,t(p))-foip) = 0.

Note that for p E W0\VQ, t(p) — 0 since /0 = g0 there. Define k0: W0 -* W0 by

ko(P) — (Z7. tip))- Our previous remark gives k0 = id on W0\F0.
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In a similar manner, Xf0 = df0(p, t)/dt > v > 0 and \f0(p) — gQ(p) |co < v-r

imply there is a unique s — s(p) E (-t, t) such that

(6) 8o(p)-fo(P,s(p)) = 0

and s(p) = 0 for p G W0\V0. Thus we define a function n0: W0 -» i% by n0(/>) =

Observe that for/> G Wq,

go(*o ° *o(p)) = goi"o(p), *Mp))) = /o(M/»))

= /o(P. *(/>)) =8o(p)-

But integral curves of X are invariant under both k0 and n0, and g0 is monotone

along integral curves so that g0(k0 ° hQ(p)) = g0(p) imphes k0 ° h0(p) = p. Simi-

larly h0 ° k0(p) = p. So the functions h0 and k0 are inverses to each other. They are

also continuous (and hence homeomorphisms) as the following lemma implies.

Lemma 1.2. The functions t(p) and s(p), which are the unique solutions to (5) and

(6) on W0, are continuous.

Proof (for t(p)). Let pn E W0,p„->p and assume t(pn)-t+ t(p). By considering

a subsequence if necessary, we may assume t(pn) -> t ^ t(p), | /1< t. By definition

of t(pn) and continuity of/0 and g0,

go(Pn>*(Pn)) =fo(Pn) ^ M P)

I

g0(p,t)>

But t ¥= t(p) contradicts uniqueness of solutions to (5).     Q.E.D.

Continuity of n0 and k0 follows from this lemma and the continuity of the X flow.

Hence n0 and k0 are homeomorphisms of W0 which are the identity on W0\V0 and

thus leave V0 invariant. Extend them to the rest of M as the identity off W0. Call
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§0 = /zn'CÏ). In W0, connected components of leaves of §0 n W0 are mapped by n0

homeomorphically onto connected components of leaves of ^ n W0.

Proposition 2.1. (§0, A") is a transversely oriented Lyapunov foliation. In particu-

lar, / o h0: hñl(W¡) -» R, 0 < i < JV, describe @0 |A-i(¡¡7) and are Lyapunov functions for

X\h-0\w,y

Proof. Observe first that/ is constant on local ÍFleaves, and n0 carries the leaves

of â0 onto the leaves of l3\ Hence/ ° n0 is constant on local §0 leaves. In particular,

on W0,g0=f0°h0.

To show that/ ° h0, 0 < i < N, are Lyapunov, we first prove the following:

Lemma 2.2. Fixp E M. Then h0(p, t) = (p, p(t)) where p(t) is a C1 function of t,

and on W0,

(V)
dp _   Xg0jp,t)

dt      Xf0(p,p(t))

Proof. For p E M\W0, h0(p, t) = (p, t) so p(t) = t. For p G W0 and \t\

sufficiently small, h0(p,t) is the unique solution to gQ(p, t) — f0(h0(p, t)) = 0.

From§l,/z0(/7, i) = (/>, r + s(p, t)). Soif we set u(0 = t + s(p, t), then p(t) is the

unique solution to g0(p, t) -f0(p, p(t)) = 0. But $(?, p) = g0(p, t) - f0(p, p) (p

fixed) is a nonsingular C1 function since 30/3Z = Xg0(p, t) and 3$/3<x = Xf0(p, p).

Also $(0, ju(0)) = 0(0, s(/7)) = 0. So the C1 implicit function theorem implies that

p(t) is a C1 function near t = 0. With p E W0 fixed, differentiate g0(/>, r") —

/0( 77, jli(O) = 0 with respect to / to obtain (7).    Q.E.D.

Now apply the lemma for/? G h~0\W¡) to get/ ° n0(/>, z) = f(p, p(t)). Along the

integral curve through/» = (p,0),f(p, p) is C1 in /1, near /i(0), since df(p, p)/dp =

Xf(p, p). And since /x(r) is C1 near í = 0, we apply the chain rule to conclude that

/ o h0(p, t) — f(p, p(t)) is C1 in t, near t = 0. So we calculate for/7 G h~0\W¡),

x(f, ° «OK/7) = if.Mp, 0) U = 4/z(/>.m(0) U¿i

¿//i,
dp

n=i¡(0)    dt ( = 0

a7J

= A-/(/7,u.(0)) ~a7 ( = 0

*¡W*»-($|J
*/.(«o(/>))

A/;(«o(/'))-^o(/')/^ô(«o(^))

onA5'(^)\»o.

which in either case is > 0 and continuous in p. Hence/ ° n0 is Lyapunov.   Q.E.D.

3.

Proposition 3.1. 77ze Lyapunov functions / ° h0: h'^W/) -» R, 0 < 1K N, which

locally describe §Q, are Cx functions on U0 D «ô'C^/)-
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Proof. Take any p E U0 n nô'(W^). It suffices to check differentiability in any

smooth chart at p. Since §0 is a C1 foliation on U0 (in fact, C00) there is a C1

foliation chart <f>: Í/' Ç i/0 D «¿'(W,) -* R" with /? G t/' and <J»(/?) = 0, which flat-

tens out the local §0 leaves to horizontal slices xn — constant. From §1 we have that

Ag0 = Dg0(X) > 0 on U' E U0 which implies that the X trajectory (p,t) through

p = (p,0) is differentiably transverse to the local §Q leaves. Since differentiable

transversality is a C1 property and <£: U' -» R" is a C1 chart, this implies that the C1

curve <¡>(p, t) through (¡>(p) = 0 is differentiably transverse to the horizontal slices

x„ = constant. Call <¡>(p, t) = y(t) = (yx(t),... ,yn(t)). Hence y'n(t) > 0 and continu-

ous.

Rn

tyftt)

O^(P.O)

Xh=c

The function / ° ñ0 ° </>"': <j>(U') C R" -* R is constant on horizontal slices xn =

constant, since these correspond to local §0 leaves. Furthermore, it is C1 along the C1

curve y(t) = <p(p, t)in R" since (/ ° n0 ° </r') ° (<>(/>> i)) =/< ° «o(/>> 0 and

(J/a'0(/°«o)(^,0 = A'(/°no)(/7,0

(which is continuous in t because X(f°h0) is continuous by §2 and (p, t) is

continuous in t). We apply the following lemma to the function /. o h0 ° $"' and

conclude that it is C1:

Lemma 3.2. Let g: R" -+ R, andy(t) = (yx(t),... ,y„(t)) be a C1 CMzre in R" through

0 = y(0). 7/y^(z) >0,ifg° y(t) is C\ and if g \x=constanl is constant, then g is C\

Proof. g(xx,... ,x„) = g(0) + /o'<Xn)(g ° y)'(s) ds, where t(x„) is the C1 function

of a single variable satisfying yn(t(xn)) = xn gotten from the C1 inverse function

theorem applied to y„(t).   Q.E.D.

4. We have now assembled all the tools necessary to construct a new C° foliation

§, homeomorphic to % by hx: M -> M (and hence to 'S by n0 ° n,: M -» M) and

such that §x is a C1 foliation on both U0 and Ux. Like §0, §x will be described locally

by Lyapunov functions for X which will be C' on both smoothed regions. Conse-

quently, the procedure may be continued until all of the regions of the cover {U¡}f=0

have been C1 smoothed, and we arrive at a C1 foliation of M, §N. The main

difference between this step and our previous smoothing on t/0 is that we must allow

for the possible intersection of the previously smoothed region U0, with the region
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on which we now wish to perform our alteration. We must be careful to insure at

least C1 smoothness on U0 after our alteration. We do this in such a way that the

general step of smoothing Uk, while preserving C1 smoothness on UQ,...,Uk_x, can

be handled similarly.

We shall make one assumption which in no way affects the results obtained so far.

Lemma 4.1. \h0 — id|co can be made so small as to insure that V¡ C nô'(W^),

0 « i « N.

Proof. Immediate from the definition of h0: M -> M from/0, g0 with |/0 — g0 |co

as small as desired.   Q.E.D.

Start with % described on A¿'(p,) by/, °_n0: hl\Wx) -» R. In general, h^(Wx) n

UQ ̂ 0. 4.1 implies that Ux E Ux E Vx E Vx C hö\Wx):

Then proceeding along lines parallel to §1, choose t, > 0, such that Vp G Vx,

(p, t) Eh~0l(Wx)D Vx for |_f_|<T„ and vx, 0 < j-, < \ inf X(fx ° A„). Applying

Corollary 1.1 to/, ° h0: n¿'(^i) ~* R> produces a continuous g,: nô'i^,) -» R such

that g, is C°° on (7„ g, =/, ° «0 on h~0\Wx)\Vx, |/, o «0 - gx |c„ < r,.:Ti; and

Xg\ > f\ > 0. These estimates on g, and /, ° h0 enable us to produce a homeomor-

phism n, : M -> M in exactly the same manner in which n0: M -* M was constructed

from g0 and /0. In particular, n, = id on M\VX and if we call S, = nf'(§0) =

nj"1 o n¿'CíF), then on h^(Wx), connected components of leaves of §x n ^¿'(I^,) are

mapped by h, : M -* M homeomorphically onto connected components of leaves of

% n VW)-
The new foliation §, is clearly C00 on Ux since it is described there by g, 1^ G C00.

But has C1 smoothness been preserved on t/0? On t/gXn^'íW7,), the answer is clearly

yes, since n, = id there. For U0 D «5'(IK,), recall from the proof of Corollary 1.1,

that  g, = (1 - ßx)gx + j8,(/i ° "0)   where  g, G C°°, /, ° n0 Ln»^,, G C1   by
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Proposition 3.1, and ßx: h~0x(Wx) ̂ R is a positive C00 bump function. So we see

that g, l^n^i^j G C1. It follows that §, is a C1 foliation on U0 U Ux.

The collection of functions/ ° h0° hx: hxx ° h'0x(W¡) -» R locally describe the new

foliation @x (with g, =/, ° h0 ° hx), and essentially the same proofs as in Proposi-

tions 2.1 and 3.1 show that these functions are Lyapunov for X and C1 on

{U0 U {/,} n h~xx o Aq'(W^). Furthermore \h0° hx — id \co can be assumed so small

that Vi E h~xx ° h0A(W¡), 0 < i < N, and thus we are ready to make our smoothing

alterations on the next region h'xx ° h~0x(W2) D U2. Continuing in this manner

completes the proof of Theorem 1.

5. In this section we give some results which, together with the proof of Theorem

1, imply Theorem 2. These results make use of the additional hypotheses of Theorem

2 which are:

(i) A"is of class Ck~\

(ii) XJf(p, t) = dJf(p, t)/dtJ continuous, 0 <j *! k, 0 < i < N. So assume these

have been given. Replace Lemma 2.2 by

Lemma 5.1. Fix p E M. Then h0(p, t) — (p, p(t)) where p(t) is a Ck function of t.

(On W0, dp/dt is given exactly as in Lemma 2.2.)

Proof. The same as before except that (ii) now implies $(z, p) = g0(p, t) —

f0(p, ix) is a nonsingular Ck function. Hence we may apply the Ck implicit function

theorem to conclude p(t) E Ck.   Q.E.D.

Immediately following the proof of Proposition 2.1, insert

Lemma 5.2. The functions / ° n0: h^x(Wj) -> R satisfy XJ(f ° h0)(p) continuous for

0^j<k.

Proof. By 5.1, with/7 G hl\W,) fixed,/ o h0(p, t)=f(p, p(t)), with^z) G Ck.

But (ii) imphes that/(/?, p) is Ck in p. Hence by the chain rule,/ ° h0(p, t) is Ck in

t, and we can calculate for/» G «¿'(W^), 0 </ < k,

Xj(f o h0)(p) =^-(f° h0)(p, t) U = %-Mp, pit)) U-
dtJ dtJ

This calculation, though messy, is, in principle, straightforward by repeated use of

the chain rule and yields, after evaluation at t = 0, a continuous function of p.

Q.E.D.
Proposition 3.1 now becomes

Proposition 5.3. The Lyapunov functions / ° h0: h0A(Wi) -» R which locally de-

scribe §0 are Ck on U0 D hQX(W¡).

Proof. Again exactly as the proof of 3.1 except that, by (i), the integral curve in

the Ck chart, <¡>(p, t) = y(t) = (yx(t),... ,y„(t)), is Ck in t, and/ ° h0 ° f1: <p(U') C

R" -» R restricted to y(t) = <#>(/?, t), namely/ ° n0 ° $~x ° <¡>(p, t) = f ° h0(p, t), is

Ck in t by 5.2 (and continuity of the flow).    Q.E.D.
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The result then follows from

Lemma 5.4. Let g: R" -* R, and y(t) - (yx(t),...,y„(t)) be a Ck curve in R" through

0 = y(0). If%(t) >0,ifgo y(t) is Ck and if g \x=COttstanl is constant, then g is Ck.

Proof. g(xx,...,xn) = g(0) + ¡¿(x"\g° y)'(s)ds, where t(x„) is the Ck inverse

function satisfying y„(t(x„)) = xn.   Q.E.D.

The gluing argument in §4 goes through exactly as before, with the addition that

we can now smooth on Ux while remaining Ck on U0.

6. We state and prove a lemma which is an easy Ck analogue to Wilson's theorem.

Lemma 6.1. Let U,V,W be open sets in compact M with UEUEVEVEWE

W, and let f:  W^R be Ck~x, k>2, with Xf (= Df(X)) continuous for a C°

nonsingular vector field X having unique integral curves. Then, given e, 8 > 0, there

exists a Ck~x function g: W -> R satisfying:

(i) g is C00 onJJ,

(ii)g=fonW\V,

(iii)|/- g|c*-' <e>

(iv) Xg (= Dg(X)) > inf A/(= Df(X)) - 8.

Proof. Choose a C00 function ß: W -» R, 0 < ß < 1, satisfying

Í0    on £/,

11     on W\F.

We can find g: IF-'R, g G C00 and |/— g|c*-i as small as desired. Define

g = (1 — ß)g + ßf. Since multiplication and addition of Ck~x real-valued functions

are continuous in the Ck~x topology, it follows that \f— g|c*-i can be made as

small as desired. This proves (i), (ii) and (iii). From compactness and k > 2, (iv) is

immediate.   Q.E.D.

Using this lemma in place of Corollary 1.1 to select the functions g,: W¡ -» R,

0 «£ i < N, in the course of the proof of Theorem 2, we produce a Ck transversely

oriented Lyapunov foliation (§, X) which Ck~x approximates ($", A') and is homeo-

morphic to it. Hence, Theorem 3 is proved.

Conclusion. In this final section we discuss some open questions related to

smoothing other types of foliations. Naturally it is hoped that the preceding tech-

niques may shed some light in these areas.

There is the question as to whether the results obtained can be generalized to

higher codimension. Natural hypotheses for codimension k foliations might be the

existence of k globally defined, commuting, linearly independent vector fields

X',...,Xk and a collection of continuous functions /: Wt--> Rk describing the

foliation on each chart and whose jih component function is Lyapunov for the

vector field XJ. In such a situation we may produce g0: W0 -» R*, smooth on U0 and

8o ~ /o on ^o\^o> bul tne construction of a homeomorphism between local level sets

of/o = c and g0 = c, if possible at all, is certainly a more delicate matter than in our

proof.



SMOOTHING CODIMENSION ONE FOLIATIONS 321

One can ask whether or not a Lyapunov foliation without a global transverse

orientation (Definition 0.2) can be smoothed. The requirement of a global nonsingu-

lar vector field places severe topological restrictions on M. It would be interesting,

therefore, to see if a proof could be given (or a counterexample found) without

requiring it. The construction of g0 and the homeomorphism n0 can be carried out

exactly as in §1. It is when we try to show that the functions/ ° n0: h-0x(W¡) ̂  R,

i ¥= 0, are Lyapunov for A, that we run into difficulty. Even if Xt is defined on a

neighborhood containing hol(W¡), n0 is a projection along integral curves of X0,

whereas/ is Lyapunov for X¡.

Even a simpler question poses some challenge. What about Lyapunov foliations

which are transversely oriented as foliations by a global vector field X, but are not

Lyapunov for A"? Are they smoothable? More specifically, can they be made

Lyapunov for A"?

The type of situation hopefully ruled out by these conditions is focusing of leaves.

Consider the foliation of 7 X 7 by line segments as in the figure below.

(V),-.

(°.°) (1,0)

This foliation is transversely oriented by Y = d/dy and it is described by the

function whose value on leaf y = (i/b - b)x + b, 0 « x < 1, is {b. Along the

integral curve through (1,0), the Y derivative is identically one. At (0,0), however,

the y-derivative goes to infinity. Consequently, this foliation is not Lyapunov for Y.

It is unclear whether or not this foliation can be made Lyapunov on any neighbor-

hood of (0,0).

Other questions involve Lipschitz foliations, that is, C° foliations for which the

foliation charts are Lipeomorphisms—Lipschitz homeomorphism with Lipschitz

inverses. This is a strong condition to impose on the way in which leaves are fitted

together. We would go so far as to conjecture that all codimension one Lipschitz

foliations are locally transversely oriented. Are they Lyapunov? Smoothable? Even
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in R2 these questions are interesting. Analogous questions for certain types of

Lipschitz manifolds have been studied by Wilson [8]. See also Sullivan [6].
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