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THE DISPERSION OF THE COEFFICIENTS
OF UNIVALENT FUNCTIONS
BY
D. H. HAMILTON'

ABSTRACT. The Hayman T, function for the asymptotic distribution of the coeffi-
cients of univalent functions has a continuous derivative which is closely related to
the asymptotic behavior of coefficient differences.

1. Introduction. Suppose that S denotes the class of functions f(z) =z +
2%_,a,z™ which are univalent in the disk {| z |< 1}. We define

A4,=sup{|a,|:f€ S},
FitzGerald’s method (see Horowitz [9]) shows that 4, < (1.05...)n, and Hayman

[7] showed that 4, /n — K, where K is some absolute constant. (However it is not
even known if 4, is increasing.) A closely related result is Nehari’s [11] proof that

(1) |a,|< 4nK,dist(0,C — f( z|< 1)),

which was extended by Bombieri [1]. Recently FitzGerald [3] showed that if
f(z2)=2%_,a,,z" in S has |a,,|~A4, then |a,,|- 2. Hamilton [5] gave a
simpler proof of a more general result and noted that this implies Littlewood’s
conjecture is equivalent to Hayman’s, ie., |a,|< 4ndist(0,C — f(| z|< 1)) for all
f€ S =K,=1.(See[4,5,6] for related results.)

This paper is concerned with extending asymptotic results of this type. Hayman
[7] proves that if f, = 2% _,a, ,z™ is a sequence in S such that

f,,(l—%)‘=>\>0,

then a, ,/n converges on a subsequence of n > oo and as m/n—>a>0 to a
continuous function 7,. We prove that T, has continuous derivative and as n — oo,
m/n - a>0,

(3) an.m+| —a - T.

n,m a

) lim 2

n— 00

This result has a number of interesting consequences.

THEOREM 1. Suppose that f, € S and a, , = A,; then as n — oo,

(4) |an.m+l | ~|an,m|_) KO’
provided that m/n ~ 1.
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324 D. H. HAMILTON

REMARK 1. We deduce from (3) and the Marty relation yet another proof of
a,, — 2. Also we prove

THEOREM 2. As n = oo,
(5) An+l_An_)K0'

REMARK 2. In particular 4, is an increasing sequence for large n.

REMARK 3. Relation (4) also shows that there is no essential difference between
the odd and even coefficients, as was found by Bombieri [2] near the Koebe
function.

We begin with a discussion of Hayman’s asymptotic theory, concluding that
section with a statement of some technical results. The following sections are
devoted to proving these statements. Finally we obtain Theorems 1 and 2.

2. H-theory. We consider subsequences
(6) 2)=z+ 3 a,,z"
m=2

which satisfy (2). Then some subsequence of n~2f(1 —z/n) converges locally
uniformly on the half plane {Re(z) > 0} to a function ¢(z) such that:

(7 ¢(z) is nonzero on {Re(z) > 0},
(8) ¢(z) is univalent on {Re(z) >0},
©) lim 7] 6(x) = a < 1.

The class H consists of those functions ¢ which satisfy properties (7)—(9). Further-
more for each ¢ € H there is a sequence f, in S, satisfying (2), such that

n(1 —z/n) > ¢(z) asn- oo.
Hayman also shows that

0 . 1
(10) [ ol + )y <5
for ¢ € H, x > 0. In particular the Fourier transform
(1) T(9) =5 [ 6(x +ip)e " dy
4 2w J_o

exists as a continuous function of a. Hayman’s main result is

THEOREM A. If n2f(1 — z/n) > ¢(z) € H as n — oo, then a, ./n— T($) as
n—-ocandm/n - a>0.

Consequently the problem of bounding the linear functional T\(¢) on H is
equivalent to finding lim,_ 4,/n, ie., K, =sup{|T\(¢)|: ¢ € H}. The main
result of this paper is

THEOREM 3. For each ¢ € H and positive a, the improper integral

| '
(12) V:Z((P) = Ej: (x + ly)¢(x + l'y)ea(x+ry) dy
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exists as a continuous function of a. Furthermore if f, € S and n 2 f(1 — z/n) - ¢(z)
then
(13) an,m+l - an,m - V:z((b)’
asm/n - aandn — .
REMARK 4. For fixed x, the function (x + iy)¢(x + iy) is not an L, function of y

(as compared with (10)). Thus Theorem 3 is established in an indirect manner.
ExAMPLE 1. Suppose we choose

f(z) =

z
(1 —2zcos(t/n) + 22) "

Then it is not hard to show that
n (1 —z/2) > 1/(z+ 1)
Thus T, = sin(at)/t, T, = cos(at), while
i + 1)t — si t
Gyrer — @y = sin{(m + 1)t/n} — sin{mt/n} -, cos(ar)

sin(z/n)

asn — oo and m/n — a.
COROLLARY 1. T,(¢) has continuous derivative on (0, o).

EXAMPLE 2. In [5] it was shown how H-theory easily implies Hayman’s results on
functions f € S such that

r 1 =) f(r)|> a>0.
For then putting f, = f we find that
n2f (1 —z/n) - ae/z2* = ¢(z)
along some subsequence, where different § may arise from different subsequences.

Thus T,(¢) = ae’®a and T(¢) = ae®®. Consequently by Theorem 3, |a,,,| —|a
— a, which was the second result in [8].

nl

3. Preliminary results. As we are assuming (2) we need to know the location of
points of maximum modulus of f(re”®) on {| z|= r}. Let M(r, f) = max,|f(re’®)|.

LEMMA 1. Suppose that f, € S satisfies (2). Then for any positive x the maximum
modulus of f, on {|z|= 1 — x/n} occurs at a point of argument n(x) which satisfies
for large n

(14) n(x) < A(A, x)/n,
where A(X, x) is a finite constant depending on X and x only.?

Suppose that n7%| f,(1 — x/n) |~ 0 on some subsequence. Then the corresponding
limit function ¢(z) € H satisfies ¢(x) = 0, which is impossible. Thus as n - o0,

(15) n?2|f,(1 = x/n)|= A(x,\) > 0.
We frequently use the following inequality of Hayman [7, p. 11].

2The symbols A, A(-, -), etc. will be used to denote constants which depend on parameters shown.
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LEMMA A. Suppose that f € S satisfies M(r, f) =|f(r)|=A/(1 — r)*, A > 0. Then
) A(N, e
| f(re®) |< _"”(T-)“—
(-8
forany 0 <e<2.
We apply Lemma A to e "f,(¢"z),r = 1 — x/n and ¢ = 1, noting

M —x/n, f,)= A, x)(1 - (1 — x/n))7,
to obtain

|£(1 = x/n)|< An*/|n]|,
which contradicts (15) unless (14) holds.

In general we want to consider the expression a,, ,, — €"/"a, ,_,. We shall assume
that t =0 and M((1 — 1/m), f,) =|f,(1 — 1/m)|. Suppose that we have estab-
lished Theorem 3 under this assumption. Now for general f, satisfying (2), Lemma 1
shows that the maximum of | f((1 — 1/m )e') | occurs at a point having argument 7,
|n|< A(A, x)/n, x = n/m ~ 1/a. Thus the function e ""f (e""z) satisfies condition
(2) and has maximum modulus at (1 — 1/m). Consequently

) . 1 foo .
an,me‘(m_l)n - an,m—lel(m_Z)n - ﬁf (x + ly)¢(x + l(y - V))ea(x+xy) dy
-00

asif n72f(1 — z/n) - ¢(z); then by Lemma 1
n%e " (e™(1 = z/n)) > ¢(x + i(y — »))

where nn - », z = x + iy. Changing the variable and noting that e’ (™~ Y7 -
ei(m/n)'qn N eiav giVCS

) iav  .oo X
(16) e“(a,,,— e ""a, )~ %—;f (x +i(y +»))o(x + iy)e®™" dy.
—00

Now by Theorem A,

Ay m—1 _1_ «© H a(xtiy) =
-—r—n ~ 3. j:oocp(x +iy)e dy =T,

and consequently (16) becomes
. el .
Ay ="y oy~ %f (x +iy)o(x + iy)e ™M gy + iyT,.
s —00
Thus we obtaina, ,, — a, ,—, = V,. For general ¢ we have
(17) a,,—e'"a -V, +iT,.

Thus we have shown that to obtain (17) it suffices to assume the maximum of
| £.((1 — 1/m)e®) | occurs at (1 — 1/m).

n,m—1

4.a,, —a,,_, remains bounded. To show a, ,, — a, ,_, remains bounded we
need modifications of Hayman’s argument. These modified formulae and Hayman’s
lemmas will be needed to prove Theorem 3.

LEMMA 2. Suppose that f € S satisfies M(1 — 1/m, f) =|f(1 — 1/m)|. Then
|a,, — a,,—|< A, where A is an absolute constant.
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Following Hayman we write

(18) (m—l)am-,—(1—-";)mam=i.j = =1/m) oy g

2niJp=, zm

Next we integrate (18) with respect to p from 1 — 3/m to 1 — 2/m. The left-hand

side of (18) becomes ((m — 1)/m){a _, — a,,}, while the right-hand side becomes
T e 1 e
1-— e’)pdld
27rf| s ds f'(pe”)p db dp.
Consequently
m
(19) ap—y — a4, = m_l{Il+12}’

where forj = 1,2 we have

@ 1 [ e 1) e

and 9, = {z: 1 —=3/m<|z|<1—2/m, 8,/n < Arg(z) <§,/n, for some 6, < 0
<8}, and D, ={1—-3/m<|z|<1-2/m} —D,. Now let us define M, =
M(1 — 1/m, ) and regions ¢, C D, U 9, by

(21) g 27"M, <|f(z) |<2'"*M,.
The following lemma of Hayman [8, p. 238] is useful.
Lemma B. If M, = 2' %M, and G\(R) = M?R*/(M} + R?), then for 1 — 3/m <

p<1—-2/m,
2 e _ _i)z
A pe (1 -

(22) I

where A is an absolute constant.

(1f(pe®)|) db < am27*/4,

Now returning to (20) we have
|I|< 4 l[ pe
J

as p-" < e~>. Consequently

(23) |1,|<A§ ( ff

D;Ney

GDﬁek

- (1-4)

"(pe®) | p d dé

1/2
pdp d0)

( )i |f(z)|* d6p dp)m-

Now

7o

pdpdo <Mz, [[ 11(z) o dpdo

< M2 Area( f(e,)) < M2, 7M? = 4.
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On the other hand, for z € ¢,

VP < 2M; | f(2) |
=z rar
Thus
© 1,2
e 1pl=43 @/f i (1- )Gk(lf(Z)I)Pdpdﬂ) .
Thus by Lemma B,

o0 1-2/m 1/2
L|<4 3 ([ Am2k/4 dp) <4,
k=1\"1-3/m

which by (19) completes the proof of Lemma 2.

5. Estimating I,. The formulae of §4 enable us to estimate I,. Let § = min(§,, -6,)
(see (21)).

LEMMA 3. With f, satisfying (2) and I, defined by (20), m/n ~ a > 0,
|L|< A(X, a)d78.

Now the definition of %), and Lemma A, with ¢ = 1, implies that for |8 |= §/n,
1-3/m<p<1-2/m,

(25) |f(pe®) |< A(N, a)m?/8,

where we used Lemma 1 to ensure that |f(p)|= A(A, a)/(1 — p)? in the range
1-3/m<p<1—2/m,m/n~ a.Thus for

k <[(log* (8) + log™ A(X, a))/log(2)] = k,,
g, N D, = &. Consequently by (23),

(26) I,<A4 2 ([[z— 1——)

by Lemma B. Thus by (25) and (26), I, < A(a, A)8~'/® which proves Lemma 2.

/2

G (|£,(2)])p dp d0) < 42-ko/8

6. Estimating 7,. To obtain asymptotic expressions for I, we take a sequence
f, € S such that n=2f(1 — z/n) - ¢(z). Then we write f, = f, and use the results of
§84 and 5. Integrating by parts,

(27) fs /"M(pe‘” - (1 - %))f’(pe“’)do
= fs'/n&lm‘—)e""""(pe"’ - (1 - —))f(pe"’)

8,/n p

" 81/”('n_;1_){pe-i(m—l)0 — e"im?f(pe®)} ad,
8,/n P
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where the two terms of the right-hand side are denoted by J, and J,, respectively,
and

1 f1-2/m
28 I, = — J,+J,)dp.
(28) 1 2,”'/;_3/”1(1 ,) dp
LEMMA 4. With the above assumptions,

Ul 2/m ‘ _A(a, N ¢)
1

3/m 8l

b

where 8 = min(8,,-0,) >2, m/n~a>0.

Now
(29)
1—2/me-i('n/n)8j( & ( : )) '
s id/n __ _ id;/n
pe'i 1 pe®’")d
| / T — | ) 7(pe™’") dp
<An™  max |f(pe®/")|  max pe/" = (1 B l)l
1-3/m<p<1-2/m 1-3/m<p<1-2/m m

using p~™ < e, m/n ~ a. By Lemmas 1 and B,

. A(a, A, €
o) loetr) = AL
J
and
(31)
i,
s O (B (R R (O
1=3/m<p<1—2/m m m n m
= ‘3 - ﬁ < i&
m n n’’

provided §; > 2. Substituting (30) and (31) in (29) gives

as required.
Next we estimate the second term in (28).

LEMMA 5. Suppose that n*f(1 — (x + iy)/n) —» ¢(x + iy) € Hasn — . Then

1 f1—=2/m (8,/n(m— 1)e ; ;
o et 1) e do

8 .
o [P+ )e(x + )e T dy + o1),
5,



330 D. H. HAMILTON

asm/n - a>0andn — . The error term is bounded by

A(31,32,a){|-’3-—a|+%+ max L’;((]_%)e—iy/n)_¢(x+iy)

8H<y<é, | n

+A(a, x, A\, e)8".

New variables p =1 — x/n and 8 = —y/n are substituted into the double in-
tegral. This becomes

L fhm= o= 3) (- 2]

(- 2] 48,

n
which is

1 f3/a 8 ‘ (1= x/n)e /)
- ae®e'{x + i dxdy + ¢,
P fz/a fsz {x + iy} e ly + ¢

where the error term satisfies

3/a s, m | £, |
g <A — = ) e’*|x+i S dxd
! m_/ n |x + ip| =S dx dy
<Amax(8 -0,, 3)‘ |+ sllf"zldx
n
3 m
< A max 8,,—82,—) |——a|+— .
a n n
Thus the double integral is equal to
(32) 2 f3/af8'(x +iy)e®CTVe(x +iy) dxdy + ¢ + ¢,
2/a
with the second error term satisfying
2 1 — -iy/n
& <A(max(8.,—8z,3)) max { 4 = x/m)e™") —¢(x+iy)}-
a 8, <y<$, n2

Finally we show that integrating with respect to x in (32) is redundant. From
Cauchy’s theorem for any x, < x,,

(] . . ; & . :
LGt o+ e dy = [P +ip)a(x, +ip)esttindy 4,
2 2
where

(x +i8;)o(x + i) e+ dx

< 2 (x, — x,)(x2 + |¢Sj|)e‘”‘2 max |q>(x + i81)| .
=1 X)|SX<X, *
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However by Lemmas 1 and B, letting n'zf,, - ¢,

y
max | ¢(x +i8)|< AR, x), %.8)

x<x<x, 6j2“"
Thus
&y < A(x,, x5, N, e,a)/8' ¢
provided §,,6, = 1. Combining these results proves the lemma.

7. The proof of Theorem 3. From Lemmas 5 and 6, substituting into (28) we have

) .
L= [t ip)o(x + ip)e et dy + ey + g,
27T 8,

where ¢, < A(a, x, A, €)/8' "¢, and &5 > 0 as n - c0. Thus by Lemma 3 and (19), we
have shown

LEMMA 6. With the above notation
1 ¢ )
an,m - an,m—l = 7;/ I(x + ly)d)(X + iy)ea(x-Hy) dy + € + €7,
8,
where ¢ < A(a, x, A, €)/8%and e, > 0 asn > 0.

Now in Lemma 2 it was shown that |a,, — a,,_,| is bounded. Let n = n_ be a
subsequence such that

(33) lim anq,m+l —a

q— x

ngm v,

where the subsequence will also depend on how m/n — a. (The limit ¥ may possibly
depend on the subsequence.) Then by Lemma 6,

(34) V= E%fi'(x +iy)e(x +iy)e®CT N dy + g + e,
)

where e —» 0 as § - oo, and &; » 0 as n — oo. This proves that the improper integral
exists. Thus by Lemma 6 every convergent subsequence of a,, ..., — a, ,, converges
to the same limit once we have checked that V, is a continuous function of a.

LEMMA 7. V, is a continuous function of a.

For any b near a by (34)

1 s . :
V—V,= ﬁ,l; (x4 ip)o(x + ip) {e®FF) — PCHINY gy + g
2

where eg — 0 as § — co. Thus
|V —=V,|<A(8,,8,,x)|a—b]| +e,

which shows that ¥, —» V as b — a. This completes the proof of Lemma 8 and
consequently of Theorem 3. The last comments in §3 mean that we have also proved

(17).
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8. Proof of Corollary 1. This result is proved by showing that T)(¢) = V,, and
then by appealing to Theorem 3. Now let n~%f(1 — z/n) - ¢(z) as n > o and
1/c <a<b<c If m, pare integers such that m/n — a, p/n — b then

T,—T, Ga,u/n—a,,/nteg

(35) (a—b)  m/n—p/n+g
where ¢, — 0, uniformly in c, as n - oo. Now by Theorem 3,
(36) an,mzan,p+(m_p)v;+(m-p)e2’

where | &, |<e; + &4,6; > 0asa —» band g, > 0 as n - oo. Thus by (35) and (36)

Ta—Tb_((m—p)/n)(V;+£2)+e, vV o+
= - a 65’
a—b (m—p)/n+e¢

as n— oo and |&|<e;. Thus as a » b, (T, — T,)/(a — b) - V,, which proves
Corollary 1.

9. Proof of Theorem 1.

LEMMA 9. Suppose that ¢(z) € H and f, € S such that n™*f(1 — z/n) - ¢(z) as
n — co. Then the limit of (|a, 4| — |, mnses M/ — a exists as a continuous
function of a, provided T, + 0,

__ Lpit/n —
Ay m+1 e Ay m = V;z lt]:z’
Thus

Hanmer] =@y mll=> min |V, —iT,|,
—00<t<oo
and the sign of the limit of | a,, ,,,, | —| 4, | is determined by which side of the line
V, — itT, contains 0. Notice that at points a such that T, = 0 we can have a
discontinuity (see Example 1). Also |a, .| —|a, |~ 0 if and only if V, L T,.
Similarly to Corollary 1 we obtain

COROLLARY 2. | T, | is a C' function of a on {a: T, # 0}. For these points a, if
m/n - aasn— o we have |a, ,..\| —|a,, |~ d|T,|/da.

We can now prove Theorem 1. Let f, be a function in S such that | a, ,|= 4,,. Itis
not clear that the maximum of |f,((1 — 1/n)e’)| occurs near (1 — 1/n) so we
consider

fH(z) = e f(e"z),

where |£,((1 — 1/n)e*™)|= M(1 — 1/n, f,). The standard method (see Hayman
[7, p. 3]) shows that

lim n'zM(l - l,fn) =A>0,
n- oo n

and thus we may apply our analysis to £*. Thus for any subsequence of n such that
nf¥(1 — z/n) > ¢(z), for some ¢(z) € H, by Corollary 2, |a, 1| —|aym|~
d|T(¢)|/da as n — o along the same subsequence. Also |a, ,/n|=A4,/n - K.
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Thus | T(¢) |= K,. Then we prove

LeMMA 10. Suppose that | T\(¢) |= K. Then d| T\(¢) |/da = K.

As K, = lim(4,,/n), lim | a,, ./n|< K,(m/n) - Kya and thus | T($) |< K,a for
all a. However | T)(¢) |= K, and | T,(¢) | is smooth near 1 (by Corollary 2), which
implies that

d
% | Ta |a=1 = KO'

Thus we have shown that any convergent subsequence of |a, ,..,| —|a,,| con-
verges to K, as n = 00, m/n — 1. This proves the theorem.

REMARK 5. Lucas [10] shows that
anal =2| @] +la,||< 4n' =2,
but this is not strong enough to prove Theorem 1.

10. Proof of Theorem 2. Suppose that f, is a subsequence in S with |a, ,|= 4
Then by Theorem 1 we have

n*

(37) lan,n+1 | _An - KO
and

(38) An+l - |an+l,n|_)K0
asn — oo.

Since |a, ,4,|< A4, and|a, ., ,|< A4, we deduce
liminf(4,,, — 4,) =K,
n— oo
from the first limit relation and
limsup(ArH-l - An) < KO
n-— o0

from the second limit relation. This proves Theorem 2.
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