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THE DISPERSION OF THE COEFFICIENTS

OF UNIVALENT FUNCTIONS

BY

D. H. HAMILTON1

Abstract. The Hayman Ta function for the asymptotic distribution of the coeffi-

cients of univalent functions has a continuous derivative which is closely related to

the asymptotic behavior of coefficient differences.

1.  Introduction.  Suppose that  5 denotes  the class of functions f(z) — z +

~2m=2amzm which are univalent in the disk {\z\< 1}. We define

A„ = sup{\an\:fES}.

FitzGerald's method (see Horowitz [9]) shows that An < (1.05...)«, and Hayman

[7] showed that An/n -* K0, where K0 is some absolute constant. (However it is not

even known if An is increasing.) A closely related result is Nehari's [11] proof that

(1) | aj< 4«#0<nst(0,C-/(| 21<1)),

which was extended by Bombieri [1]. Recently FitzGerald [3] showed that if

f„(z) = '2^=xanmzm in S has \ann\~An then |a„2|^2. Hamilton [5] gave a

simpler proof of a more general result and noted that this implies Littlewood's

conjecture is equivalent to Hayman's, i.e., | a„ |< 4ndist(0,C — f(\z\< 1)) for all

/ G S => K0 = 1. (See [4,5,6] for related results.)

This paper is concerned with extending asymptotic results of this type. Hayman

[7] proves that if/, = 2*= ,a„ mzm is a sequence in S such that

(2) lim n f-H) = \>o,

then an m/n converges on a subsequence of n -» oo and as m/n -» a > 0 to a

continuous function Ta. We prove that Ta has continuous derivative and as n -> oo,

m/n -» a > 0,

(3) an,m+\  - an,m-'  T'a-

This result has a number of interesting consequences.

Theorem 1. Suppose thatfn E S and an „ = An; then as n -* 00,

(4) \an,m+\\-\an,m\^K0'

provided that m/n ~ 1.
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Remark 1. We deduce from (3) and the Marty relation yet another proof of

a„ j -» 2. Also we prove

Theorem 2. As n -» oo,

(5) A„+l-An^K0.

Remark 2. In particular An is an increasing sequence for large n.

Remark 3. Relation (4) also shows that there is no essential difference between

the odd and even coefficients, as was found by Bombieri [2] near the Koebe

function.

We begin with a discussion of Hayman's asymptotic theory, concluding that

section with a statement of some technical results. The following sections are

devoted to proving these statements. Finally we obtain Theorems 1 and 2.

2. 77-theory. We consider subsequences

00

(6) f„iz) = z +  2 <W"
m = 2

which satisfy (2). Then some subsequence of n~2fn(l — z/n) converges locally

uniformly on the half plane (Re(z) > 0} to a function <¡>(z) such that:

(7) </>(z) is nonzero on {Re(z ) > 0},

(8) <>(z) is univalent on (Re(z) > 0),

(9) lim x2\<¡>ix)\= «=£ 1.
JC->0O

The class 77 consists of those functions <#> which satisfy properties (7)-(9). Further-

more for each <i> G 77 there is a sequence/, in S, satisfying (2), such that

n~2fn(l — z/n) -» <i>(z)    asn^oo.

Hayman also shows that

/oo
\<p(x + iy)\dy^ —

-oo LX

for <j> E 77, x > 0. In particular the Fourier transform

1      r°°
(11) Ta(<t,) = —      4>(x + iy)e«*+^dy

Z7r '-oo

exists as a continuous function of a. Hayman's main result is

Theorem A. If n'2f„(l - z/n) -» <¡>(z) E H as n -> oo, then anm/n -> Ta(<¡>) as

n -» oo and m/n -> a > 0.

Consequently the problem of bounding the linear functional Tx(<¡>) on 77 is

equivalent to finding limn-00y4„/n, i.e., AT0 = sup{| 7",(^>) | : <j>EH}. The main

result of this paper is

Theorem 3. For each <$> E H and positive a, the improper integral

/•O0

(12) va($)=—       (x + iy)4>(x + iy)e«*+i» dy
Zw-/-oo
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exists as a continuous function of a. Furthermore if'/, G S and n'2fn(l — z/n) -* <¡>(z)

then

(13) anm+x -anm -» V„ii>),

as m/n -» a and n -» oo.

Remark 4. For fixed x, the function (x + iy)if>(x + iy) is not an L, function of v

(as compared with (10)). Thus Theorem 3 is established in an indirect manner.

Example 1. Suppose we choose

/n(z) " (l-2zcos(z/n) + z2)'

Then it is not hard to show that

n-2fn(l-z/2)^l/(z + t)2.

Thus Ta = sin(at)/t, T'a = cos(ai), while

sin{(n7 + l)t/n) — sin{wi/n)

a"'m+x ~ a"m ~ sin(i/n)

as n -» oo and m/n -» a.

Corollary 1. T^) /zas continuous derivative on (0, oo).

Example 2. In [5] it was shown how 77-theory easily implies Hayman's results on

functions/ G S such that

'•"'(I -r)2|/(r)|-»a>0.

For then putting/, = /we find that

n-2/,(l-z/n)-«e'Vz2 = ^>(z)

along some subsequence, where different 0 may arise from different subsequences.

Thus Ta(<f>) — ae'ea and T'a(<$>) = ote'6. Consequently by Theorem 3, | a„+, | —\an\

-* a, which was the second result in [8].

3. Preliminary results. As we are assuming (2) we need to know the location of

points of maximum modulus oîf(re'e) on (| z | = r). Let M(r, f) = maxfl \f(re'e) | .

Lemma 1. Suppose that f„ES satisfies (2). 7/zen for any positive x the maximum

modulus of fn on {| z |= 1 — */n} occurs at a point of argument tj(x) which satisfies

for large n

(14) n(jc) <Ai\, x)/n,

where A(\, x) is a finite constant depending on X and x only.2

Suppose that n~2\fn(l — x/n) \ -» 0 on some subsequence. Then the corresponding

limit function <f>(z) E H satisfies (¡>(x) = 0, which is impossible. Thus as n -> oo,

(15) n-2|/„(l-x/n)|s*,l(x,A)>0.

We frequently use the following inequality of Hayman [7, p. 11].

2The symbols A, A( ■, ■ ), etc. will be used to denote constants which depend on parameters shown.
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Lemma A. Suppose that fE S satisfies M(r, f) =\f(r)\>\/(l - r)2,X > 0. Then

\fire")\<       A{X:e)
(l-rf-c\6\*

for any 0 < e < 2.

We apply Lemma A to e~'nfn(e,r)z), r = 1 — x/n and e = 1, noting

M(l - x/n, fn)>Ai\, x)(l - (1 - x/n))'2,

to obtain

\fn(l-x/n)\^An2/\r,\,

which contradicts (15) unless (14) holds.

In general we want to consider the expression an m — e"/nanm_x. We shall assume

that t = 0 and M((l — l/m), /„) =|/„(1 — l/w)| . Suppose that we have estab-

lished Theorem 3 under this assumption. Now for general /„ satisfying (2), Lemma 1

shows that the maximum of |/((1 — l/m)e'e) | occurs at a point having argument tj,

| T) |< A(X, x)/n, x = n/m ~ 1/a. Thus the function e~'nfn(e'nz) satisfies condition

(2) and has maximum modulus at (1 — l/m). Consequently

«„,m-1e'(m~2),' ^jzj   (x + '»*(* + *(y - "))ea(x+iy)dyanmei(m~x^
n ,m

as if n 2/„(l — z/n) -> <¡>(z); then by Lemma 1

n-V-y^e^O - z/n)) - 4>(x + i(y - v))

where r¡n -» v, z = x + iy.  Changing the variable and  noting  that  el(m~X)Tl -*
ei(m/nynn _„ ßiav g^

(16) e'a"(a„,m - e'(-"'/"a„,m-,) - ^~/   (* + «v> + "))*(* + i»«?«*"»^.
Z7r '-oo

Now by Theorem A,

a , 1     i-°q
-*^^±-f   <t>(x + iy)e°^+^dy=Ta,

n ¿it J_œ

and consequently (16) becomes

/•OO

"„.* - ^'VX,m-i - ^r/   (* + <»<*>(* + iy)e«x+'»dy + ivTa.
¿■IT J_x

Thus we obtain anm — anm_x -* Ka. For general z we have

(17) ^,m-^/X.m-.-^ + ^-

Thus we have shown that to obtain (17) it suffices to assume the maximum of

|/„((1 - l/m)eie) I occurs at (1 - l/m).

4- an m — a„ „,_, remains bounded. To show a„ m — a„ „,_, remains bounded we

need modifications of Hayman's argument. These modified formulae and Hayman's

lemmas will be needed to prove Theorem 3.

Lemma 2. Suppose that f E S satisfies M(l — l/m, f)—\f(l — l/m) \ . Then

I am ~ am-1 I ** A, where A is an absolute constant.
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Following Hayman we write

(is) („-,).._,-(i-!)*«.=¿jr
|z|=p ^

Next we integrate (18) with respect to p from 1 — 3/zt7 to 1 — 2/tt7. The left-hand

side of (18) becomes ((m — l)/m){am_, — am], while the right-hand side becomes

y-/,_2/7
¿TT J,_3/m J,,

-i(m-l)«

1-3/m J\z\ = p        P

pe ±))/V) pdOdp.

Consequently

(19)

where for y = 1,2 we have

m
lm-\        "m îfo+h),

(20) ">      2¿//^(^-f1-^)^^^^'
and <$, = {z: 1 - 3/m <| z |< 1 - 2/w, 62//i < Arg(z) « 8x/n, for some 82 < 0

< 8X), and % = {1 - 3/w <| z |< 1 - 2/w} - <$,. Now let us define Af, =

M(l - l/m, f) and regions ek E tyx U <>D2 by

(21) eJk:2-*M,<|/(z)|<2,-*A#I.

The following lemma of Hayman [8, p. 238] is useful.

Lemma B. IfMk = 2x~kMx and Gk(R) = Mk2R2/(Mk2 + R2), then for 1 - 3/

p *£ 1 - 2/m,

(22) C\pe'e-(l - ^)\2GÁ\f(pe,e)\)d6<Amr^,

where A is an absolute constant.

Now returning to (20) we have

II^A j(\\pe« - (\ - ±)\f'(Pei0)\pd6dê

m

as p m < e 3. Consequently

(23) JA<A
k=\  \ <¡í)Jnek

ri*)
/(*)

1/2

pdpdO

X
.// 777

1/2

\f(z)\2d6pdp

Now

riz)
f(z)

¡j M-^ p dp de < m,-2 , // |/'(z) |2p dp rf«

Af^, Area(/(eJ) < Mk2+x-uM2 = Air.



328 D. H. HAMILTON

On the other hand, for z G ek,

2M2\f(z)\2

IA  "       M2 + \f(z)f

Thus

12 \ l/2
JI \z - (l - ^)\GMz)\)pdpd0\     .

j       k I

Thus by Lemma B,

\I,\<A f  lr2/mAm2-k^pdp)V2<A,
k=\\J\-V»> I

which by (19) completes the proof of Lemma 2.

5. Estimating 72. The formulae of §4 enable us to estimate 72. Let 8 = min(S,, ~82)

(see (21)).

Lemma 3. With f„ satisfying (2) and I2 defined by (20), m/n ~ a > 0,

\I2\<A(X,a)8-x/s.

Now the definition of <3D2 and Lemma A, with e = 1, implies that for | 6 \> 8/n,

1 - 3/nz < p < 1 - 2/m,

(25) \f(pe,e)\^AiX,a)m2/8,

where we used Lemma 1 to ensure that \f(p)\> A(X, a)/(l — p)2 in the range

1 — 3/ttj < p < 1 — 2/777,777/n ~ a. Thus for

k <[(log+ (8) + log+ A(X, fl))/log(2)] = k0,

skn%= 0. Consequently by (23),

(26) ^^f   [S^\-{l-~)\GMU)\)pdpd0^      <^2-*o/s

by Lemma B. Thus by (25) and (26), 72 < A(a, X)8'x/% which proves Lemma 2.

6. Estimating Ix. To obtain asymptotic expressions for 7, we take a sequence

f„E S such that n~2fn(l — z/n) — ¡¡>(z). Then we write/, = /, and use the results of

§§4 and 5. Integrating by parts,

= /v.Me-,-(pe,_(1_l))/(pe,.)

+ (S,/"(m~ l\pe-*m-»e - e-""ef(peie)}d8,
h2/n       Pm
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where the two terms of the right-hand side are denoted by Jx and J2, respectively,

and

(28)
f\-2/.

1-3/m

Lemma 4. With the above assumptions,

I     fl-2/m,
7' = ^/ (Jx+Ji)dp.

If' Jxt
•1-2/m

'1-3/m

where 8 — min(8x,-82) > 2, m/n ~ a > 0.

Now

Aia,X,e)
sl-e

(29)

/

-2/me'i(m/n)Si

1-3/m

An
1-3/m

(p,'V«-(l-l))/(pe'V«)a-p

max \f{pe's'/n)\ max peiS'/n - [l - — )
«ïp«: 1-2/m 1-3/m-Sp-s 1-2/m \ Z7J /

using p m < e3,77z/n ~ a. By Lemmas 1 and B,

(30) lf{peisj/n)l<A^An2

and

(31)

max
l-3/m*îp< 1-2/m

pe
'V» -     1

nz
<A

= A

i-¿)(i + 4
m / \ n >77

777 n n   7

provided 5y s* 2. Substituting (30) and (31) in (29) gives

2

I       "7, ap
'l-3/m

as required.

Next we estimate the second term in (28).

Lemma 5. Suppose that n~2/„(l — (x + iy)/n) -» </>(* + z» G 77 as n -» oo. Then

1    n-2/m /•«,/« (m - l)e"'"1     /-1-2/m /•

].1T J, _•»/„,  7Ä1-3/m 'Sj/"

■{pe"-l}/,(e*)p<«rfp

1
= -v- ( '(* + i>U(* + í>)efl(x+n')íí> + oil),

¿IT Jx
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as m/n -» a > 0 and n -* oo. Tne error term w bounded by

A(8X,82, a)
m

-\-h    max
n       s2«v<5

A((l-£).-»/.)-*„ + *)

+^(a, x, X,e)8*-x.

New variables p = 1 — x/n and 6 = -j/n are substituted into the double in-

tegral. This becomes

1      rln/m  rS,. .1 x \-n(m/n)x tl x\       ■   ,
— /        /   (777-1)1- e'(m/n)A\l-)e-,y/n-l
2vJ2n/mJs2 V        n! IV       « /

which is

— /       /   ae-aVa>{j>c + zv) —i-:--dx dy + e,,
•¿77 ./-> /„ /» n¿'2/a JS2

where the error term satisfies

«i< A(3/a(\\(™-a) + ±
h/a Js2   Iv n I      n

<Ama\[ 8x,-82, — J
777
-a
n

I/ I
e^lx + zjl^axaj

n

+ ±f^n A    „2■'s,   n

</lmax 8x,-82,
m
-a
n

+ 1
n

Thus the double integral is equal to

a     /-3/a

^2/a •%

with the second error term satisfying

,2

e, <A[ max  ô

£- (/a f'ix + iy)e^x+^ix + iy) dx dy + e, + e2,
¿■it J-) /n Jf¡_

/,((!- x/n)e-'y/")»±mmax <*>(* + »>)

Finally we show that integrating with respect to x in (32) is redundant. From

Cauchy's theorem for any xx < x2,

fS\xx + iy)<j>ixx + iy)e"(x'+^ dy = (\x2 + z»<i>(*2 + iy)e«x*+i* dy + e3,

where

¡X\x + i8j)<t>(x + iS^e^+'V dx< 2
7=1

2

< 2 (*2_*l)(*2 + I5,-!)«"2   max    l"f>(* + '8/)| •
7=1

Xi^X^X,
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However by Lemmas 1 and B, letting 77  /„ -» (f>,

max    |+(x + tt,)|<^(X,*1,*?,e).
x^x<x2{Vy jn 82-'

Thus

e3 <A(xx,x2, X,e, a)/8x~e

provided 8X,82> 1. Combining these results proves the lemma.

7. The proof of Theorem 3. From Lemmas 5 and 6, substituting into (28) we have

1
Ix = -jzf \x + iy)*(* + iy)e°(x+i?Uy + e4 + e5,

where e4 < A(a, x, X, e)/8x~\ and e5 -» 0 as n -» 00. Thus by Lemma 3 and (19), we

have shown

Lemma 6. With the above notation

p (S'(x + iy)<t>ix + iy)e^x+i^dy + e6 + e7,
2-, "2

where e6 < A(a, x, X, e)/8x/% and e7 -» 0 as n -> 00.

Now in Lemma 2 it was shown that | am — am_x \ is bounded. Let n = nq be a

subsequence such that

(33) lima    m+1 - a       -> V,

where the subsequence will also depend on how m/n -» a. (The limit Kmay possibly

depend on the subsequence.) Then by Lemma 6,

(34) V= ¿/V + iy)*ix + iy)ea<x+i^dy + e6 + e7,

where e6 -^ 0 as 8 -> 00, and e7 -» 0 as n -^ 00. This proves that the improper integral

exists. Thus by Lemma 6 every convergent subsequence of anm+x — a„ m converges

to the same limit once we have checked that Va is a continuous function of a.

Lemma 7. Va is a continuous function of a.

For any b near a by (34)

V- Vb= -z- Ç\x + iy)4»ix + iy){ea(x+iy) - eb(-x+iy)} dy + e8,
Lti J/¡2

where e8 -> 0 as 8 -» 00. Thus

\V- Vb\<Ai6i,82,x)\a-b\+es,

which shows that Vb -> F as o -» a. This completes the proof of Lemma 8 and

consequently of Theorem 3. The last comments in §3 mean that we have also proved

(17).
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8. Proof of Corollary 1. This result is proved by showing that T'a(<$>) = Va, and

then by appealing to Theorem 3. Now let n~2/,(l — z/n) -* <#>(z) as n -» oo and

1/c < a < b < c. If m, p are integers such that m/n -» a, />/« -» b then

,^ rfl-7; = an.Jn - anJn + e,

K    ] ia-b) m/n-p/n + Ex     '

where e, -» 0, uniformly in c, as n -» oo. Now by Theorem 3,

(36) anm = anp + (m-p)Va+(m-p)E2,

where | e2 | < e3 + e4, e3 -» 0 as a -» ft and e4 -> 0 as n -» oo. Thus by (35) and (36)

Ta-Tb = ((m-/7)/n)(Kg + E2) + e,

as n -» oo and | e51< £3. Thus as a -» ¿>, (Ta - Th)/(a — b) -» Ka, which proves

Corollary 1.

9. Proof of Theorem 1.

Lemma 9. Suppose that </>(z) G Tf ana1/, G 5 s«c« zVzaZ n"2/„(l - z/n) -» <í>(z) ai

n -» oo. r/zen i/z^ /z'mz'i o/ (| a„ m+1 | —| a„ m |)„^oo» m/n -* a exists as a continuous

function of a, provided Ta ¥= 0,

fln,m+l - *"/HOm,m - K - ÍtTa.

Thus

\\an,m+\\-\an,m\\^        ^111        | Kfl - ÍtT„ \  ,
-00<Z<00

and the sign of the limit of | an m+ x\—\ an m \ is determined by which side of the Une

Va — itTa contains 0. Notice that at points a such that Ta = 0 we can have a

discontinuity (see Example 1). Also \anm+x \ — |a„im|— 0 if and only if Va ± Ta.

Similarly to Corollary 1 we obtain

Corollary 2. \Ta\ is a Cx function of a on {a: Ta ^ 0}. For these points a, if

m/n -» a as n -» oo we have | an m+x \ — | an m \-* d\ Ta \/da.

We can now prove Theorem 1. Let/, be a function in S such that | an „ | — An. It is

not clear that the maximum of |/„((1 — l/n)e'e)\ occurs near (1 — 1/n) so we

consider

ff(z) = e-"f„(e"z),

where |/„((1 - l/n)eia(n)) |= Af(l - 1/n, /,). The standard method (see Hayman

[7, p. 3]) shows that

lim n"2Aí(l - -,/„) =X>0,
h-»oo V n       I

and thus we may apply our analysis to/,*. Thus for any subsequence of n such that

n~2f*(l - z/n) -* <#)(z), for some <f>(z) G 77, by Corollary 2, |a„„,+ 1 | ~\anm\^

d\ Ta(<j>) \/da as n -> oo along the same subsequence. Also | an„/n |= A„/n -» A^0.
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Thus I Tx(<¡>) I = K0. Then we prove

Lemma 10. Suppose that | Tx(<f>) \ = KQ. Then d \ Tx($) \/da = K0.

As KQ = lim(An/n), lim | an m/n |< K0(m/n) -» K0a and thus | Ta((¡>) |< K0a for

all a. However | 7",(<i>) |= K0 and | Ta(<¡>) | is smooth near 1 (by Corollary 2), which

implies that

d .     .
-^\Ta\a=l-K0.

Thus we have shown that any convergent subsequence of | a„ m+x | — | a„ m | con-

verges to 7T0 as n -» oo, m/n -» 1. This proves the theorem.

Remark 5. Lucas [10] shows that

IK+2I -2|a„+il +\a„\\<Anx-^,

but this is not strong enough to prove Theorem 1.

10. Proof of Theorem 2. Suppose that /„ is a subsequence in S with | a„ „ |= An.

Then by Theorem 1 we have

(37) \an,n+l\-An^KQ

and

(38) A„+x -\a„+h„\^K0

as n -» 00.

Since I a„„+1 |<^n+, and | a„+1,„ |< /!„ we deduce

hminf(^n+1 -i4„)> #0
«-♦00

from the first limit relation and

Umsup(^n+1 -An)^K0
n—00

from the second limit relation. This proves Theorem 2.
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