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PRODUCTS OF POWERS OF NONNEGATIVE DERIVATIVES

BY

JAN MARIK AND CLIFFORD E. WEIL

Abstract. This paper contains some results concerning functions that can be

written as /f1 ■•■/f", where n is an integer greater than I, £ are nonnegative

derivatives and /8 are positive numbers. If we choose /},= ■■•=/?„= 1, we obtain

theorems about products of nonnegative derivatives.

1. Introduction. In the original version of [1] the first three authors proved that the

characteristic function of a subset A of the real line can be written as the product of

two nonnegative derivatives if A is closed, but cannot be so expressed if A is a

nontrivial open set. The first of these two assertions is a simple corollary of Theorem

4.2 and the second follows from Theorem 5.5. These two theorems are proved with

the help of two lemmas established in §3. To indicate the results of §6 let us suppose

that / is a positive function on the real line which is continuous at each point

different from 0. We construct numbers qn such that, for « = 2,3,..., / can be

expressed as the product of « derivatives if and only if /(0) > qn. (In the notation of

Theorem 5.5 we have q„ = max(S"(g'/"), 5"(«I/")), where g(x) = f(x), h(x) =

f(-x) for x > 0.) In §6 we find the limit of the sequence (a„).

The work is concluded with some assertions involving approximate continuity. It

is easy to construct two derivatives that are not continuous whose product is

continuous (in fact, identically 1). However, according to Theorem 7.8, if the

product of two or more positive derivatives is approximately continuous, each factor

is approximately continuous.

2. Notation and conventions. The real line is denoted by R. The symbol | A | stands

for the (Lebesgue) measure of a measurable set A ER. All functions are mappings

of a subset of 7? to R. Integrals are Lebesgue integrals. The letter J denotes [a, b]

where a, b E R and a < b. If S is an open set or an interval (not necessarily open) in

R, then A(S) is the system of all functions defined on S that have a finite,

nonnegative derivative relative to S at each point of S; further tf)(S) — {F'; F E

A(S)}. (If, e.g., S[0,1), then A'(0) means here F'+ (0).) We write A(7?) = A and

<$(/*) = <$.

Throughout the paper, « is an integer greater than 1 and ß],...,ßtl are positive

numbers. If there is no danger of misunderstanding, we write 2 and II for 2"=, and

nj=1, respectively. We set

(0) ß = 2ßj,   «j = ßj/ß      0=1,...,«).
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3. Two lemmas. In this section we establish two lemmas which we need for the

proofs of the major theorems to come. This is accomplished by a series of

propositions.

3.1. Proposition. Let A, B, y, S E (0, oo). Let fand g be nonnegative functions on J

such that 0 < /,/ < A and 0 < fjg < B. Then there are positive functions <p and ip

continuous on J such that Jjfcp = A, \jg-ty = B, <p(a) = <p(b) = 1 and <py\¡>s = 1 on J.

Proof. There are c,dEJ such that ( jcaf )-(jcbf)>0 and ( tfg) ■ ( tfg) > 0. Since

the roles of/and g are interchangeable, we may assume that c < d. There is a closed

interval L C (d, b) such that jLg > 0. There are functions p and q continuous on J

such that p(a) = q(a) = q(b) = 0, p > 0 on (a, c), p = 0 on [c, b], q = 1 on L and

0 < q < 1 on A. For each / £ [ 0,1) there is a number X(t) such that

f(l+X(t)p-tq)f=A.

Let <pr = 1 + X(t)p — tq. Obviously X(t) > 0 so that tpr > 0 on J. Therefore we may

define \p, = q>,~y/s. Then

JJ JL JL

Since q>0> \ on J, we have ¡jg^0 < B. Since fjg4>, is a continuous function of t

which tends to oo as / increases to 1, there is a t E [0,1) such that jjg\p, = B. Now

let (p — <p, and \p = \pr

3.2. Proposition. For j = 1,...,« let Aj E R and let f¡ be a nonnegative function

on J such that 0 < Jjf < Aj. Then there are functions tp,,... ,<p„ on J such that

(1) <pj is positive and continuous on J with <pj(a) = <p,-(¿>) = 1,

(2)jJfj% = Aj(j=\,...,n),

(3) n<rf = 1 on J.

Proof. There are functions t//2,...,^n continuous on J such that $• > 1 on A,

<r)(a) = */&) = 1 and /,/}>//, = A¡ for / = 2,...,«. Define ^, by Lty/J = 1. Obvi-

ously /y/,1//, < y4,. By 3.1 there are functions <p and ^ continuous and positive on A

such that <p(a) = <p(b) = 1, fjf^w — Ax, fjf^ip — A2 and tp"1^"2 = 1 on 7. Now

we set (¡o, = i|/,<p, <p2 = \¡/2\p and tp^ = uV fory = 3,... ,n.

3.3. Proposition. Let f\,...,f„ be nonnegative functions integrable on J and let

Ax,...,An be positive numbers such that \jWff1' < JIAJj. Then there are functions

<p„...,% fulfilling (1), (3) and

(4) ffjVj<Aj       U=h...,n).

Proof. Replacing f¡ by fj/Aj we may suppose that Ax = ••■ — An= 1. Then

P = fj^-fp < 1. Choose a Q E (P, 1). Since each / is integrable on J, there is a

function / integrable on A such that/>/, V • • • V/n. By the Lebesgue Dominated

Convergence Theorem there is a 5 G (0,1) such that

(5) fjKfj + SfY^Q.
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Set K = 1 + S"1, gj =fj + 8f, g = WgJJ, and Ä, = g/gj. Obviously Uhf = 1 and
8f<gj<(l+8)f so that 8/<g<(\ +8)f and Tí""1 < «7 < 7C Q = 1,...,«).
Using the absolute continuity of the integral and Lusin's Theorem we get a set S C J

and functions <p,,..., <p„ _, continuous on / such that <py = « ̂ -on J\S, K'x < <p, < K

on J,<pj(a) = <pj(b)= 1,

(6) Kffj<l-Q   (j=l,...,n-l)   and   Kx">jfn<\-Q.

Define a positive function <p„ on / by (3). Then <p„ is continuous, <p„(a) = %(b) = 1,

<p«"<7Ca' + •■•+<«»-'< AT on / and, since UhJJ = 1, <p„ = «„ on J\S. Obviously

<pn < 7i"l/a" and fjhj < g7«y = g for each/. Therefore, by (5) and (6),

for7 = 1,...,« - 1 and, similarly, /,/>„ < fjg + Kx/a-fjfn < 1. This proves (4).

Propositions 3.2 and 3.3 prove the following assertion:

3.4. Proposition. Let fj and Aj be as in 3.3. If jjfj > 0 for j = 1,...,«, then there

are functions <pj satisfying (1), (2) and (3).

In the proof of the first important lemma we will use the well-known fact that

fjF' = F(b) - F(a) for each F E A(J). We will also need the following

3.5. Proposition. Let f E6Î)(J) and let <p be a function continuous on J. Then

/«p G ûD(/).

Proof. Let F = /and let G(t) = /j/tp for each t E J.lf x,y E J and x <y, then

(F(y) - F(x))min<p([x, y]) < G(y) - G(x)

<(F(y)-F(x))max<p([x,y]).

These inequalities and the continuity of <p show that G' = F'tp = /<p on /.

3.6. Lemma. Let /„...,f„ G <$(/), Au...,An G (0, co) and fjüffJ < II^A 77ie«
there are g,,... ,g„ G <$(/) ímc/i r«aí Ilg"^ = 11^ a«í/ /«ai

fgj = Aj>   8j(o)=fj(a),   gj(b)=fj(b)   forj=l,...,n.

Proof. If fJfj > 0 for each/, choose <pj according to 3.4 and set gy = fj<pj. Then, by

3.5, gj E ^(J) and, by (l)-(3), the remaining requirements are satisfied as well. In

the contrary case we may assume that /,/, = 0. Let F' = /,. Then F is monotone and

F(b) - F(a) = /,/, = 0. It follows that F is constant so that/, = F' = 0 on J. Let

a < c < d < b and let g, be a nonnegative function continuous on J such that g, = 0

on /\[c, d] and /,g, = ¿,. Note that /,(a) = g,(a) =/,(6) = g,(ô) = 0. For/ =

2,...,« there is a nonnegative function g; continuous on / such that gj = 0 on [c, d],

gj(a)=fj(a), gj(b)=fj(b) and fjgj = ¿y. Obviously 11 g? = 0 = n/a>.

3.7. Lemma. Le/ JJ, 77,. G A(/) (/ = 1,...,«) and let U(FJ)ßj < U(H^)ßJ on J. Then

there are Gj E A(/) such that 11(6^')^ = U(FJ)ß' on J and that on the set {a, b} we

have G] = Fj and G} = 77y.
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Proof. Set A} = 77,(6) - H ¿(a). It follows from Holder's inequality that

fjU(Hj)aJ «£ UAjj. Now it suffices to choose functions gj according to 3.6 and set

Gj(x) = 77y(a) + S:gj (x E J) forj = 1,...,«.

4. First main result.

4.1. Notation. If S is an open set or an interval (which need not be open), let

*(s) = {n^;/;-G6D(s)}.

If 0, = • • • = ßn = 1, we write %(S) = ^"(S). We set <$> = <$>(R), ¿D" = ty"(R). If

necessary, we write % = 9>(ßx,... ,ß„).

4.2. Theorem. Let S be a closed set in R and let T = R\S. Let u E %(T), v E<$>

and let « < « on T. Let w be the function on R such that w = u on T and w = v on S.

Then w G <®.

Proof. Let u = U(Fj)ßJ and v = ]l(Kj)ßJ, where Fj E A(T) and Kj E A. Let <p be

a function continuous on R such that <p > 0 on T and tp = <p' = 0 on S. Let $' = <p

on 7? and let 77y = AT, + 4> for/ = 1,...,«. Let 7 be a component of 71. There is a

strictly increasing sequence {X^.}^^ of numbers in 7 such that sup¿. Xk = sup 7,

inf^ X¿ = inf 7 and that, for each k,

max{Hj(Xk) - &j{kk_x); j = 1,...,«} < min{<p(x); x G [a*_-,,aJ}.

Let £ be any integer and let J = [\A_,, XJ. Obviously U(Fj)ßJ = u<v = U(Kj)ß'

< U(Hj)ßJ on /. Let G„..., G„ be as in 3.7 (with a = X^. „ b = Xk). Then Gj - 77y

< Gj(Xk) - 77/X^,) = Hj(Xk) - Hj(Xk_,) < <p on /; likewise 77, - G]■< <p on J.

Consequently, | Gj — Ej \ < tp on /.

Since on the set {Xk_x, Xk} we have GJ = Hj and Gj = Fj, this procedure defines

functions Gx,..., Gn on 7 and hence on T such that n(G,')^' = u and | Gy — 77,\ < <p

on T. Set Gy = //. on S. Then | G- — i/-1 < <p on 7?. Since <p = <p' = 0 on S, we have

G; = 77; = 7C; on S. Therefore U(Gj)ßJ = o on 5.

Remark. Taking m = 0 and v = 1 in 4.2 we see that the characteristic function of

every closed set belongs to %. This result can be generalized as follows:

4.3. Theorem. Let & C $ and let & be closed under addition. Let m be a natural

number. Forj = 1,... ,m let fG ë, and let g. be the characteristic function of a closed

set. Thenly=JjgjE<$>.

Proof. Let w0 be the zero function and let éE0 = & U {u0}. For j = l,...,m set

uj—f\g\ + ' " " +fjgj- Trivially, u0 +/G $ for each /£ 6B0. Now suppose that

j E {l,...,«i} and that «,-_, +/G $ for each /G 6E0. Choose such an / and set

u = Uj_} + f, v = uy_, + /¡■ + /. It follows from our assumption that u, v E <35. Let

5 = {x G 7?; gy(x) = 1}. Obviously u *z v on R, Uj + f = v on S and w, + / = u on

R \ S so that, by 4.2, wy + / G $. This shows that uOT + / G % for each / G 6B0. In

particular, wm G <$.

Remark. It is easy to see that <£ may be chosen as the system of all nonnegative,

bounded, approximately continuous functions on 7?. If <$ = ty2, we may also choose

6 = 6D and we see that under the corresponding assumptions there are <p, \L e ^

such that l/j=xfjgj = <p»//.
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5. The second main result. In this section we answer the following question: Let

m G ®((0, oo)). When is it possible to define u(0) in such a way that u E •&([ 0, oo))

and, if it is possible, what are the choices for m(0)? An easy consequence of the

answer is that

<$>{yx,...,yp)\§(ßx,...,ßn)*0,

if p > 1, y,,... ,yp E (0, oo) and Yi + " ' ' + yp > ßi + ' ' " +ßn- This shows, in par-

ticular, that the obvious inclusion 6D" C tf)"+x is proper for each n.

The answer lies in a certain measure of mean values of a function on intervals

close to 0 which we investigate first.

5.1. Notation. We define addition and multiplication in the set R U {-00,00} in

the usual way. (In particular, 00 + a = 00 for each a > -00; 00 — 00 is undefined;

00 • a — 00 for a > 0.) The letter J shall, as before, always denote a closed bounded

interval.

Let £ be the system of all functions u for which there is a c G (0, 00) such that /0cm

makes sense allowing 00 and -00. Let u and c fulfill this requirement. For each

tj G (0, 00) and each 8 E (0, c) set

SvS(u) = sup\\J\-xfu; JE [0, ô]and|/|>T)dist(0, J)i.

Further define S^u) = lim S„>8(«) (8\0) and S(u) = lim S„(u) (ij \0).

Let 5" be the system of all sequences $• = {[ak, bk]}k°=x such that 0 < ak < bk,

bk -» 0 and sup¿. a¿/¿>¿ < 1. For each « G £ and each f= {Jk} E 5"define

A(m, J) = limsup [/¿I"1 / u       (k^oo).

Let £0 be the system of all functions « G £ for which there exists a finite limit x'xJqU

(x\0).

Remark. Obviously ^([0, 00)) C £0.

5.2. Proposition. Let u Et. Then

(7) S(u) = sup{A(«,£);£G?T}.

Proof. Denote the right-hand side of (7) by L.

I. Let % = {Jk} G ÍTand 7^ = [ak, bk\. There is an tj G (0, 00) such that (1 + t/)"1

> ak/bk for each k. Then | /^ | = bk — ak 3s fja^ = tj dist(0, Jk). It follows that for

each sufficiently small positive number 5 we have A(m, f) < S s(u). Hence A(u, $■)

< Sv(u) < S(u). Thus L < S(m).

II. Let K E (-00, S(u)). There is an tj G (0, 00) such that Sv(u) > K. For k

= 1,2,... we can find an interval Jk = [ak, bk] E [0, l/k] such that \Jk\>

tj dist(0, Jk) and that | Jk \~xjjU > AT. It is easy to see that ak/bk < (1 + tj)"1 so that

i = {Jk} G Í. Obviously L > A(u, %) > AT whence L > S(u).

Remark. It follows at once from 5.2 that

S(u) > limsupx"1 / u       (x\0)
Jo
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for each u G £. If u G £0, we can tell more, namely:

5.3. Proposition. Let u E £0, x~xf¿u -> y (x\0) and let {Jk} E S\ Then

I Jk I'// u ~* T (^ ~* °°)- ^n particular, S(u) = y.

Proof. Let Jk = [ak, bk] and a = sup¿ ak/bk. There are ek, -qk E R such that

/0<"h = ak(y + ek), /„**« = ¿t(y + tj*) for each k and that | ek \ + \ i,k | - 0. Obvi-

ously

\Jk\ = \bkVk-akek\/(bk-ak)

<(l«*l+ln*l)/(i-«)-o.
The relation ,S(«) = y now follows from 5.2.

The assertions listed in the following proposition are easily verified.

5.4. Proposition. Letu,vE £. Then

(a) S(u + v) < S(w) + S(v), ifu + ü G £ ano* z//«e rig/i/ side is defined;

(b) S(« + v) = S(u) + S(v), ifv G £0;

(c) S(u) < S(v), ifu<v;

(d) S(cu) = cS(u)for any c G (0, oo);

(c)\S(u)\^S(\u\).

We now prove the major theorem of this section.

5.5. Theorem. Let u be a nonnegative function on [0, oo) such that its restriction to

(0, oo) is in <S((0, oo)). 77ie« u G <S([0, oo)) if and only if

(8) u(0)>Sß(ul/ß).

If (S) holds, there are gj G fy([0, oo)) such that u = Ugf' and that gy(0) = u]/ß(0)for

each j.

Proof. Seto = ux/ß.

I. Let w G$([0, oo)). Then u = Uf/j with fj E ^([0, oo)). If J C [0, oo), then, by

Holder's inequality,

l^|-,//«=l^r1/,n//^n(|/r1/4.)"y.
It follows from 5.2 and 5.3 that S(v) < n(/}(0))™> = v(0) which proves (8).

II. Let (8) hold. This means that S(v) < u(0). For each positive integer â: there is a

6\ G (0, oo) such that | J \'xjjV < S(v) + k~x, whenever J C (0, 8k) and dist(0, J) <

k \J | . Further we may assume that {8k} decreases to 0. Set pk — k/(k + 1). For

each k there is a positive integer rk such that 8kpr¿ < 8k+x. Let yx E (0, 8X) and

let >^+l = ykpk- Note that _yA < 8k for each A:. Next, for k = 1,2,... and i =

0, 1,. . . ,rk set z¿ . = ykp'k. Let x,, x2,. . . be the sequence of numbers

zx0,zxx,... ,zXr¡,zxx,... ,z2ri,zxx,.... Obviously zX0=yx,zXr¡ = y2 = z2,0,z2,r2 = ^

= z30,... so that x, > x2 > • • • and xm -* 0 («i -> oo). Define/m = [xm+,, xm] and

st = 1 + r, + • • • +/£_, (w, £ = 1,2,...). Then yk — x for each k. If sk*z m<

sk+x, lhenxm+x/xm=pk and

k\Jm\=k(xm-xm+l) = xm+] = dist(0, Jm)
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so that, by the choice of 8k,

(9) fv<\Jm\(S(v)+k-x).

For m = 1,2,... set em = k'x, where sk < m<sk+x. Then xm+1/xm = (1 + em)'x,

hence xm+ x/xm -» 1 (m -> oo), and, by (9),

00) /»<l/J(t>(0) + O        (m=\,2,...).

Since v = UffJ, it follows from 3.6 that there are functions gx,...,g„ E ^((0, oo))

such that UgjJ = v on (0, oo) and that

(H) f 8j=\Jm\(v(0) + *m)

for each / and m. Since xm+,/xm -» 1 and since em -* 0 (m -* oo), we have

x~lSo8j -> «(0) (x\0). Thus, if gy(0) is defined to be v(0), we have g, G <î>([0, oo))

and Ilg^ = u.

Remark 1. Let m be a nonnegative function on [0, oo) that is continuous on

(0, oo). It follows from 5.5 that u G ®([0, oo)) if and only if «(0) > Sß(ux/ß). If, e.g.,

«(0) > S V/4), then there are/,, f2, g„ g2 G 6D([0, oo)) such that u = f2f2 = gxg¡.

For each integer « > 1 let qn = 5"(M1/n). Then m G ^"([0, oo)) if and only if

m(0) 3= qn. Since ^î)2 C ÓD3 C • • •, we have q2 > a3 > • • • so that we may set

q = lim a„. It is obvious that if w(0) > q, then u E ^"([0, oo)) for some «, and that if

u(0) < q, then u is in none of the systems ^"([0, oo)). In §6 we prove some assertions

concerning the limit q. We show that even the limit Q(u) = lim Sx/x(ux) (x\0)

exists for each nonnegative function u E £ and in Theorems 6.10 and 6.12 we find

representations for Q(u).

Remark 2. Suppose that u E £, u 3= 0 and that the limit X = u(0 + ) exists and is

finite. Then, obviously, S(ux/") = Xx/" for each natural number «. If, moreover,

w(0) < X, then, by 5.5, we do not have u E ^"([0, oo)) for any «. This shows, e.g.,

that the characteristic function of a nontrivial open set cannot be expressed as the

product of any number of derivatives.

We conclude §5 by a theorem from which it follows that ÓD" ¥= fy"+x for each «.

5.6. Theorem. Let p be an integer greater than 1. Let yx,...,yp G (0, oo) and let

yx + ---+yp>ßx + ---+ß„.Then

%(yx,...,yp)^(ßx,...,ß„)^ 0.

Proof. Let c G (1, oo). Define <p(x) = ln(cx + 1) (x G R) and xP(x) =

(<p(x) - cp(0))/x (x t¿= 0), t//(0) = 2 Inc. Obviously tp'(x) = (1 + c~x)-x Inc. There-

fore \p(Q) — tp'(O) and <p' increases. It follows that <p is strictly convex so that \p

increases as well.

Now let « be a function continuous on (0, oo) such that 1 < u < c and that the

right-hand density at 0 of both sets {/; u(t) = 1} and (/; u(t) = c) is A. It is easy to

see that, for each x > 0, rxj¿ux -> (cx + l)/2(/\0). By 5.3 we have S(ux) =

(cx + l)/2 so that In Sx/X(ux) = tp(x) and Sy(ux/y) = exp i>(\/y) (x, y G (0, oo)).
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Now let y = Yi + " " ' +Y/, and let/be a function on R such that/= exp \p(l/y)

on (-00,0] and/ = u on (0, oo). It follows easily from 5.5 that

fE®(yx,...,yp)^(ßx,...,ßn).

6. The function Sx/x(ux). Throughout this section, u is a nonnegative measurable

function on (0, oo). For each x G [0, oo) we have ux G £ so that we may define

Z(x) = S(ux). (Note that Z(0) = 1.)

6.1. Proposition. Let a, ß G (0,1), a + ß = 1, x, y G [0, oo), x <y, and Z(x) +

Z(y) < oo. 77ie«

(12) Z(ax + ßy) < Za(x)Zß(y).

In particular, Z(t) < oo for each t E [x, y\ If, moreover, Z(x)Z(y) — 0, then Z = 0

on (x, y).

Proof. Let/ C [0, oo), jjUy < oo. Then, by Holder's inequality,

i/r1//-«+A'<(^r7/)"(i/r1//)'.

It follows that for each f E ?Fwe have

A(«-+M) < (A(u*,$))a(A(ur,$))ß.

This and 5.2 easily imply (12). The rest is obvious.

6.2. Proposition. Let y E (0, oo), Z( y) < oo. 77ie« the following assertions hold:

(a) Z(t) < oo for each t G (0, y);

(b) ifZ(t) = 0 for some t E (0,v], then Z = 0 on (0, >0;

(c) if Z(t)> 0 for some t G (0, y), then both functions In Z awa1 Z are cowuex on

[0, y].

Proof. To show (a) we take x = 0 in 6.1; (b) follows from 6.1 in a similar way. If

Z(t) > 0 for some / G (0, y), then, by (b), Z > 0 on [0, y] and (c) follows easily

from (12).

6.3. Theorem. Let x,y E (0, oo), x <y, Z(y) < oo. Then

(13) Zx/x(x)^Zx/y(y).

If equality holds in (13), then Zx^'(t) = Zx/\y)for each t E (0, y).

Proof. If Z(t) = 0 for some / G (0, y), we apply 6.2(b). Otherwise, by 6.2(c), the

function c = In Z is convex. As c(0) = 0, we have c(x)/x < c(y)/y which proves

(13). If c(x)/x = c(y)/y, then c is linear on [0, y] whence c(t)/t = c(y)/y for all

/ G (0, y).

6.4. Notation. We set ooc = oo for c > 0, exp(-oo) = 0, and InO = -oo.

According to 6.3 we may define

Ô = ô(M)=limZ'/*(x)        (x\0).

The right-hand derivative at 0 of a function / defined on an interval [0, 8] will be

denoted by/'(0).
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Remark. It is easy to see that Q < oo if and only if Z(x) < oo for some

x G (0, oo). If 6 < oo, then, by 6.2, the limit Z(0 + ) and the derivative Z'(0) exist

and we have 0 < Z(0 + ) < 1, -oo < Z'(0) < oo.

6.5. Proposition. If Q < oo, then

(14) g = expZ'(0).

Proof. If Z(0+) < 1, then Q = 0 and Z'(0) = -oo so that (14) holds. If Z(0+)

= l(=Z(0)),then

In Z'/*(x) = x"1 In Z(x) - (In Z)'(O)        (x\0).

By the Chain Rule we have (In Z)'(O) = Z'(0)(Z(0))-' = Z'(0) so that (14) holds

again.

6.6. Proposition. Let Q < oo and let inf m((0, oo)) > 0. Then

(15) Ô = exp5(ln«).

Proof. First assume that u > 1 on (0, oo). It is easy to prove that

(16) e' < 1 + / + /V/2 < 1 + / + /V

and

(17) ln/</-l</

for each / G (0, oo). Since Q < oo, there is a y E (0, oo) such that Z(y) < oo. Let

x G (0, y/3). Since u > 1, we have, according to (16) and (17), ux < 1 + xln u +

uxx2ln2 u and (.y/3)ln u = In uy/3 < uy/\ Therefore w*ln2 u < u-),/\3/y)2u2y/3 =

(3/y)V and ux < 1 + xln u + x2(3/y)2u-v whence, by 5.4, Z(x) < 1 + xS(ln m)

+ x\3/y)2Z(y) so that Z'(0) = lim x~x(Z(x) - 1) < S(\n u).

It follows from (17) that xln u — In ux < ux — 1. Again by 5.4 we have x5(ln u)

< Z(x) — 1 (x G (0, oo)) from which the inequality S(ln u) < Z'(0) follows easily.

We have proved that S(ln u) = Z'(0). Now (15) follows from (14).

In the general case we choose an e G (0, oo) such that u > e and set t> = u/e.

Then v > 1 so that, by what has just been proved, Q(v) = exp S(ln v). For each x >

0 we have Sx/x(ux) = eSx/x(vx) whence Q(u) = eQ(v). Further expS(lnu) =

exp(ln e + S(ln v)) = eexp 5(ln t;). This proves (15).

Remark. We note that the condition inf u((0, oo)) > 0 was used only to establish

Z'(0) < 5(ln u). The opposite inequality holds for each positive measurable function

u with Q < oo. The next example shows that we may have -oo < S(\n u) < Z'(0).

On the other hand, Theorem 6.12 shows that the condition inf «((0, oo)) > 0 can be

weakened.

6.7. Example. There is a function u continuous on (0, oo) such that 0 < u < 1,

In « G £0, S(ln u) = -1 and Z(x) = 1 for each x G [0, oo). Consequently, Z'(0) = 0

and Q = 1 > exp S(ln u).

Proof. Let {ak}°k°=x be a sequence decreasing to 0 such that ak+x/ak -* 1

(k -» oo). (For example, ak = \/k.) For k — 2,3,... let bk = ak + (ak^x — ak)/k.

Let <p be a nonnegative continuous function on (0, oo) such that <p = 0 off

ur=2K> bk) and /fl**<p = ak_t - ak. Since ak+x/ak -» 1, we have rxf¿<p - 1 (/\0).
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Thus, by 5.3, S(-<p) = -1. Now define u = exp(-tp). Then u is continuous on (0, oo),

0 < u < 1 and S(ln w) = S(-<p) = -1. If x G [0, oo), then

a*-> - <*k > r*"'«* > 0 - k~y)^k-x - ak)   for k = 2,3,....

Using the relation ak+x/ak -» 1 again, we see that t~xf¿ux -* 1 (/\0) and hence

Z(x) = 1.

Remark. Our next goal is Theorem 6.10 where an expression for Q is found using

only the assumption that Q < oo. We need some auxiliary assertions.

6.8. Proposition. Let 8 E (0, oo), J = [0, 5] and letf, /,, f2,... be functions convex

on J. Suppose that fk>fon J, fk(0) = /(0) for each k and that /¿.(x) -> /(x) (A: -* oo)

for each x E J. Then

(18) /¿(0W(0)       (*-oo).

Proof. Obviously fk(0) » /'(0) for each k. Suppose that (18) does not hold. Then

there is a number L and an infinite set M of natural numbers such that /'(0) < L <

fk(0) for each k E M. There is an x G (0, 8) such that f(x) </(0) + xL. For each

k G M we have, however, /¿(x) > fk(Q) + xfk(0) >/(0) + xL which is a contradic-

tion.

6.9. Proposition. Let ux,u2,... be measurable functions on (0, oo) such that

uk >u for each k and that uk-* u uniformly. Then Q(uk) -> Q(u) (k -> oo).

Proof. Since Q(uk) > Q(u) for each k, we may suppose that Q(u) < oo. There is

a natural number p and positive numbers e , ep+x,... such that uk < u + ek for

k = p,p + 1,_Let x G (0,1). It is easy to prove that (c + d)x < cx + dx for any

c, a" G [0, oo). Hence uxk < ux + ex so that, by 5.4, S(ux) < S(u£) < S(ux) + exk.

Since Q(u) < oo, there is, by 6.2, a Ô G (0, oo) such that S(ux) and S(ux) (x G [0, 8])

are convex functions (k = p, p + 1,...). Now we apply 6.8 and 6.5.

6.10. Theorem. Let Q < oo. Then

Q = lim exp S^ V In u)        (y -» -oo).

Proof. Let e G (0, oo), v = m V e and _y = In e. Since In ü = y V In m, we obtain

from 6.6 the equality Q(v) = exp 5( v V In u). Now we apply 6.9.

6.11. Proposition. Let \p be a nonnegative function on [0, oo) such that \p(r)/r -* oo

(t -* oo). Let 8 E (0, oo) and let f be a measurable function on (0, 8) such that

S(i o l/l) < oo. 77ie« S(y Vf) -> S(f) (y - -oo).

Proof. There is a t0 G (0, oo) such that >//(t) > t for each t G (t0, oo). It is easy to

see that |/(/) |< t0 V ip(|/(i) |) for each / G (0, 8). Therefore/ G £.

For each z E [t0, oo) set y(z) = sup{t/ip(t); t > z}. Obviously <p(z) -> 0 (z -*

oo). Now let y E (-oo, -t0) and let / G (0, 8). If /(/) > y, then, trivially,

(19) 7 V/(/) </(/) + <p(b|)^(|/(i) |);

if/(/) <y, then

1/(0l>bI.  <p(M)>l/0)l/*(l/0)l).  -fU)=\f(t)\<<p(\y\)H\f(t)\),
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and y V f(t) = y < 0 </(/) + <p(|>> |)»K|/(0 I) so that (19) holds again. Hence (see

5.4) S(y V f) < S(f) + <p(\y \)S(ip ° |/|) from which our assertion follows at once.

6.12. Theorem. Let u > 0 on (0, oo) and let Q < oo. Let <p be a nonnegative function

on [0, oo) such that cp(r)/r -» oo (t -» oo). Le/ S(<p ° (0 V (-In «))) < oo. Then

Q = expSOnw).

Proof. Set \p(r) = t2 A <p(r) (t G [0, oo)). It is easy to see that ^(t)/t -» oo

(t -> oo). Since Q < oo, there is a y E (0, oo) such that S(uy) < oo. Since In T < T

for each T E (0, oo), we have (y/2)ln u = In uy/1 < uy/1, so that In u < (2/y)uy/1.

Sei A = {/ G (0, oo); «(/)> 1} and B = (0, ao)\A. On A we have

tp°|lnM|=tp°lnu< In2« < (2/y) uy;

onB,

4> ° | In « | = <p ° (-In«) < <p o (-In u) = <p ° (0 V (-In w)).

Therefore tp ° | In w|< (2/y)2uy + <p ° (0 V (-In «)) on (0, oo).  By 5.4 we have

S(\p o | In u |) < oo. Now we apply 6.11 with/ = In w and 6.10.

Remark. If u > 0 on (0, oo), if Q < oo and if 5(| In u \c) < oo for some c > 1, then

the assumptions of 6.12 are fulfilled, so that Q — expS(ln u). Example 6.7 shows

that we must not write here c s= 1.

7. Approximate continuity. In this section we show that a positive function in <®

can be approximately continuous only in exceptional cases.

7.1. Notation. In this section symbols like lim/= c or f(x) -> c always mean

c = Urn f(x) (x\0); similarly for lim sup, lim ap etc. The letter / stands for [0,1], *$

is the set of all nonnegative, measurable functions on /,

5P1 = |/e5ß;jf/<oo|,

2í={/GÍJ3;/(0) = limap/},

58={/G^;0</(0)<liminfap/},

3K= {/G^1;/(0) = limx-'/7},and

31= {/eVi;Ao)>iim»upjc-1/*/}.

7.2. Proposition. Let/„.,..,/„ G m and yx,...,yn E [0,1], Sy, < 1. Then Wf/O E

31.

Proof. We may suppose that II y, > 0 and that 2y, = 1. Set g = Ufjyj. For each

x G (0, 1) we have, by Holder's inequality, x~'/0xg < n(x_1/o7))yj whence

limsupx-'/^g^ní^O^^gíO).

7.3. Proposition. Let f E $,; set g(x) = x/(x) (x G /). Then g G 91.

Proof. Let e G (0, oo). For each x G (0,1) let Mx= {/£ (0, x); g(/) > e}. Then

\Mx\/x<-e-lfMJ-+Q.
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7.4. Proposition. Let g G 31. Let L be an open interval containing g(J). Let <p be a

positive, decreasing, and strictly convex function on L. Let « G 33 and let « • (<p ° g) G

31. 77ie«gG91.

Proof. Suppose that g G 9Í. Let y0 = g(0). There is a decreasing, linear function X

such that X(y0) = <p(y0) and that X < <p on L \ {y0}. There are e, 8, tj G (0, oo) such

that the upper density at 0 of the set V = {t E J;\g(t) — g(0) | > e} is greater than 8

and that <p > X + tj on L \ (y0 — e, y0 + e). Set / = n ■ (<p ° g) and k = X ° g. Let

c G (0, «(0)) and M = {/ G 7; «(/) > c}. The right-hand density of M at 0 is 1. For

each x G (0,1) define Mx = M n (0, x). Obviously (p°g>k + t]onV, k^ X(0) A

(cp o g) on/, c-'/oY> /M<p <=g>/wfc + r,|FnMJ, and

[*k< f k + X(0)\(0, x)\M\ .

Thus

(20) tj| VD Mx\<c~x ("f- [Xk + X(0)\(0,x)\M\ .

Since -X is an increasing linear function and g G 31, we have limsupx~1/0*(-A:) *

-k(0). Now it follows from (20) that tjS < c"'/(0) - k(0). Hence tj5 </(0)(«(0))-' -

k(0) = 0—a contradiction.

7.5. Proposition. We have 31 n 9Í c 3JI.

Proof. Let / G 31 n 91. Set g = / A /(0). Since g is bounded and g G 91, we have

x-'/o'g - g(0) = /(0) so that Urn inf x"1^/ > /(0). Since/ G 9^, we have x"'/cf/ -♦ /(0).

7.6. Theorem. Le/ / G 9?, y, G [0,1] (/ = 1,...,«), Ey, < 1, and let \\ff> G 33.

ThenWfy' E W n 9Í.

Proof. Let /3 and o, be as in (0). Set >p(x) = x (x G J), F = li"Z¡fp, g = /„"" + »p,

« = Fg, and P = U"J=, /}YA By 7.2, we have F, /„"», F G 9Í. Thus g G 31 and g > 0 on

J. It follows from 7.3 that Ftp G 91. Since Ffna- = (II"=, ff')x/ß G 33, we have « G 33.

Since/¡g"1 = FG 3c, we have, by 7.4, g G 9Í.Thus/„ G 91. Similarly/,,.. .,/„_, G 91,

so that F G 91. By 7.5, P E3JI.

7.7. Notation. The symbol Cap stands for the system of all approximately continu-

ous functions on R.

7.8. Theorem. Lei yf G [0,1], /} G 3) (/ = 1,...,«), a«íi 2y, < 1. 5eí /= üjf'.
Suppose thatf E Cap and that f>0. Then Ufy' E ^ D Cap. 7« particular, /} G Cap/or

y=l,...,n.

(This follows easily from 7.6.)

Remark. The following example shows that the nonnegativity of the functions f

in 7.6 is essential even in the case when Yi = ß\ — • ' ■ = ß„ = 1- We construct

functions F and G differentiable on J such that their derivatives / = F' and g = G'

are continuous on (0,1], fulfill the conditions/(0) = g(0) =L,0</g«l,-!«£/<

2,-1 < g < 2, /g G 91 (so that fg G 33 ), but are not approximately continuous on J.
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Let 1 =y0 >yx> ■ ■■ ,yk -* 0,yk_x/yk -> 1. Set

dk=yk-l-yk,   ek = dk/(90 + k),

xki=yk + 4dk/9>   xk2=yk + %dk/9,   xk3=yk_x,

h\ = [yk + 2ek> xkx - 2ek],   Ik2 = [xkx + 2ek,xk2 - 2ek],

and

hi = [xk2 + ^k^xk3-5ek]       (k= 1,2,...).

Let / and g be functions on J such that /(0) = g(0) = 1, f(xkj) = g(xkj) = 0

(/= 1,2,3),/= 2, g = j- on/fcl,/=l,g = 2on/fc2,/=g= -1 on 7^, and/and g

are linear on each of the intervals [yk, yk + 2ek], [xkx — 2ek, xkx], [xkx, xkX + 2ek],

[xk2 - 2ek, xk2], [xk2, xk2 + 5ek], and [xk3 - 5ek, xk3\. Then ///"'/= ///'g = dk.

Since fg = 1 on IkX U 7^2 U Ik3, we have fg G 9Í. It is easy to see that the functions

F(x) = /0x/and G(x) = j¿g (x E J) have the desired properties.
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