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TOPOLOGICAL SEMICONJUGACY OF PIECEWISE

MONOTONE MAPS OF THE INTERVAL

BY

BILL BYERS

Abstract. This paper establishes a topological semiconjugacy between two

piecewise monotone maps of the interval which have the same kneading sequences

and do not map one turning point into another, whenever itineraries under the

second map are given uniquely by their invariant coordinate. Various examples

are given and consequences obtained.

0. Introduction. In recent years there has been a great deal of interest in under-

standing the complicated asymptotic behaviour which arises in studying the iteration

of maps of the interval [1, 3-5, 7, 10]. In particular, Guckenheimer [4] classifies

maps with negative Schwarzian derivative and one critical point up to topological

equivalence by the systematic use of the Milnor-Thurston kneading theory.

In this paper we apply this kneading theory to piecewise monotone, continuous

maps and show that within a very general class of maps with the same kneading

sequences those maps z for which the invariant coordinate is injective serve as models

in the sense that there is a surjective, semiconjugacy from any map onto z (Theorem

5). It follows (Proposition 7) that any two of these maps (with injective invariant

coordinates and equivalent kneading sequences) are topologically equivalent. In

particular any two expanding maps with equivalent kneading sequences are topo-

logically conjugate. This result implies that (Proposition 8) : A map with one turning

point and a kneading sequence which is not eventually periodic is topologically

semiconjugatetoamapT^oftheformT^Jc) = p.x(\ — x).

1. Preliminaries. All maps r: [0, 1] -+ [0, 1] will be continuous and piecewise mono-

tone, i.e. there exists a minimal partition 0 = C0 < Q < ■ • • < Cm_, < Cm = 1

of [0,1] such that z\ [Q_i, C,] is strictly increasing or strictly decreasing.

For such maps the kneading theory of Milnor and Thurston [5] applies. Let /x =

[C0, CO, Im = (Cm_1; Cm] and Ik = (Ck_h Ck), k = 2, ..., m - 1. Then, using the

notation of [4], associated to each point x e [0, 1] is a sequence A(x) = {A„(x)}^0,

called the itinerary of x, where An(x) = Ik or Ck according as t"(x) 6 Ik or zn(x) = Ck.

The points tCk are called turning points for z and their itineraries are called the

kneading sequences of z. An orientation-preserving topological equivalence between

maps z\ and zz must preserve kneading sequences.
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Define £(Ik) = +1 if z\Ik is increasing, e(Ik) = — 1 if z\Ik is decreasing and e(Ck) =

0. Then given a sequence a = {a„}£Lo of symbols Ik and Ck, the invariant coordinate

0(a) = {0„(<?))~ o is defined by

6„(g) = £(a0)e(a1) ■ ■ ■ £(a„_i)a„,       0o(a) = a0.

If x e [0,1], write 6(x) = 0(A(x)).

If we order the symbols by

ÍO-Cfcl
-/„ < -C„_, < -/„_, < • • • < -I0<IA< I0< Ci< ■■■ < h

and the sequences 6(g) by 0(a) < 6(b) if g ^ b and 0„(g) < 0„(b) for the smallest n

for which í7„ # b„, we then have

Lemma 1 [5]. jcj < x2 implies that 0(xi) < 0(x2)-

2. Construction of the semiconjugacy. In the following we shall always be consider-

ing pairs of continuous, piecewise monotone maps z\, z2 with turning points C\ and

C\, k — 1, ..., m — 1, respectively, which are simultaneously increasing or decreas-

ing on the interval [0, Cfl, / = 1, 2. Let I'k = (Q_„ Q), / = 1, 2; À: = 1, ... , m.
To avoid confusion we shall denote the itinerary of a point x under zi by A(x) =

{^„(x)}£l0 and of a point v under 7/2 by P(v) = {^„(j)}^ but we shall compare

Ö(^(x)) with d(B(y)) by identifying /* with I\ and C] with C£.

Given x e [0, 1]. Let L(x) = (v|0(v) = 6(B(y)) < 0(A(x)) = 6(x)} and t/(x) =

{.ylöCv) > 6(x)}. Suppose z2 has the property that 0(vi) = 0(^2) only if yx = yz (we

shall say that 6(y) is one-to-one for 7/2). Then L(x) intersects U(x) in at most one

point. If L(x) and U(x) are nonempty and disjoint then Lemma 1 implies that y1 < y2

for any yx e L(x) and y2 e t/(x). Thus there exists a unique point y — supP(x) =

inf U(x). We define y = cflx) in this case and <fi(x) = P(x) f] ^(-*) hi the case where

the intersection is nonempty. Thus <p(x) is well defined whenever both L(x) and

U(x) are nonempty.

We collect the following observations in :

Lemma 2.   (a) cp\x) is defined o 6(B(0)) < 0(A(x)) < 0(B(V>).

(b) Ifx e I\ and <p(x) is defined then tp(x) e I\.

(c)<¡iCD = Cl,k = \,...,m.
(d) cb-\Il) c II k - 1, ... , m.

Proof, (a) L(x) and U(x) are nonempty if and only if

0(P(O)) s 6(A(x)) < 6(B(l)).

(b) If 6(y) < 6(x) then B0(y) <, A0(x) = Ik. Thus L(x) £ [0, C¡) and 0(x) < Cf.

Similarly U(x) ç (CfJt, 1] and #*) > Cf.!. Thus #*) e [C|_x, C|].

(c) tfCD = sup{v|ö(v) < 0(C])} = sup{j;|ö(v) < d(Cl)} = Cf.
(d) Suppose çu(x) e I\. If x = C} then ç!>(x) = C) by (c). Thus x e I) for some /.

Then <¡Ax) e 7| by (a) and therefore/ = k.
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Let X = {x\6(B(0)) £ 6(A(x)) £ d(B(l))}, the domain of definition of cp. Since

0 is nondecreasing for z\, X is an interval. We proceed to show that <¡> conjugates z\

and z2 and is continuous whenever z"(C?) # C) for any /,/,«.

Proposition 3. <p~ is a nondecreasing function on X. Moreover if x, z\(x) e X then

(¡)Zi(x) = z2<p(x) ifz\ and z2 have the same kneading sequences.

Proof. If x1 < x2 then d(x1) < 6(x2) and so P(xt) ç L(x2). Thus çX*i) =

sup L(xi) < sup P(x2) = (¡)(x2).

Now fix x e X such that zi(x) e X. If there exists a point y such that d(A(x)) =

6(B(y)) then y = (¡ix) and either

(a) A,{x) is an interval / = 0,1, ... and z{(x) e I\ <*• t2( v) e 7f, j = 0,1, ... , or

(b) A{(x) is an interval for i = 0, 1, ..., n — 1 and z[(x) e I\ o z2(y) e I\, i = 0,

1, ... ,n — 1, and z"(x) = C\, z2(y) = C\. In either case ofrix) = 0(z2y) or cX^x) =

r2yX*) unless n = 0 in (b), i.e. v = Cf and x = C£ in which case 6(z\C\) = 0(r2Cf)

if the kneading sequence of C\ under n and of Cf under z-2 are the same.

We now look at points x e X for which d(y) # 6(x) for all v 6 [0,1]. Thus y e P(x)

o 0(y) < 6(x) and >> e U(x) o 0(y) > 0(x).

For any point z, 6„(A(z)) = s^oOO) • • • e(A„_1(z))A„(z) and 0„_iO4(ííz)) = e(A1(z))

• • • e-GV^Kiz). Thus 0n(z) = ¿-(^„(^„-li^and similarly 6„(B(w)) = £(P0(w))

Ö„_i(r2w). Thus 0„(w) is less than (greater than) 0„(z) «t> £(P0(w))ö„_i(w) is less than

(greater than) e(A0(z))d„-i(z) if /i > 0.

Suppose that x e 7| and <¡¡(x) e II where rltC^, C¿] is increasing. Then e(A0(x)) =

+ 1. <¡>(x) = sup{ v e 7f|0( y) < 0(x)} and since 7-2|7f is also increasing z2(¡i(x) =

sup{z2(y)\y e I\ and 6(y) < 6(x)}. For such a j, if « is the smallest integer for

which d„(y) < 6„(x) and « > 0 then by the above 0„-\(z2y) < 0„-i(zix) since e(A0(x))

= +1 = e(B0(y)). Note that n must be greater than 0 since B0(y) = A0(x). Thus

z2[L(x) fi Ils ^ 7,(7ix) and zitj/x) < (jAztf). Similarly z2[U(x) fl 7f] Ç U(zix) and

r2^/<x) > (pXzix). Thus z2((p(x)) = ç^nx).

If x e 7|, çt(x) e 7f, and TiHC^, CfLJ is decreasing then e(A0(x)) = - 1 and

**pXx) = z2(sup{yel¡\d(y) < 6(x)})

= ini{z2y\y e I\ and 6(y) < 6(x)}

but for such a >> 6„(y) < 0„(x) => d„-i(z2y) > 6n-i(zix) and z2(y) e U(zix). Thus

^(x) > 97Ti(x). Considering ¡Ax) = inf {y e Pk\0(y) > 0(x)} we get z^x) < (¡(z\(x)),

which completes the proof for such values of x.

Since cp\C\) = C\ and d(C¡) = 0(Cf) it remains to consider points for which (¡Ax) =

C\ and x # C^. For such points if v ^ C| then 0(v) < (or >) 6(x) if and only if y <

(or >) Cf.
Suppose ?! is decreasing on [CJ¡_lt C\] and increasing on [CL C¿+J. If x e II (or

x e I¡+1) then z^x > z^CI and ¡Arix) > ^(tiC|) = z2(¡AC\) = tiftj)- Gn the other

hand çXx) = sup 7f = inf 7|+1 and so z2 (¡Ax) = inf r27f = inf 7;27|+1. However if

v e 7f (v e 7|+1) then 0( v) < 6(x) (0(y) > 0(x)) so that 0(r2v) > 0(nx) if either xel\

and v 6 7f or x e 7¿+i and v e 7|+1. Thus T2(7f) £ ^(^x) if x e 7| and T2(7|+1) e {/(rjx)
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if x e 7¿+1. This implies that Z2fp(x) >: inf U(z±x) = (zxx) in both cases and so z^tpXx)

= (¡jz\(x). This same reasoning applies if z\ is increasing on [C|_1( C\\ which completes

the proof of the proposition.

We use Proposition 3 to show

Proposition 4. If z\, z2 satisfy the conditions of Proposition 3, and z2(0) = 0 and

z2(\) = 0 (or 1) in the case where we have an odd (or even) number of turning points.

Suppose zn2(C%) # C] for any n > 0; k, I = I, ...,m. Then <¡>: [0, 1] -► [0, 1] is

continuous.

Proof. (¡Ax) is defined for all x since 0(P(O)) < 6(4(0)) < 0(A(x)) <: 6(A(l)) <,

0(P(1)). Note that for points 'x' for which z-ftx) ^ C\ and zn2((¡Ax)) # Cf for any

n = 0, 1, 2, ... and k = 1, ..., m we have r"(x) e 7£ if and only if z2((¡Ax)) e 7f.

(This follows from Lemma 2.) We begin by considering such points x0.

Let y0 = (¡Axq). Then Ç^z^B^y^) = {y0} since 0(v) is one-to-one for r2.

Lemma 2 and the above comment imply that (¡i(A„(x0)) ç= B„(y0). Therefore

/oo \ co _

ysin^nu^o)) s n rr^jo),
\»=o /      »=0

since rg^x) = Ç7rï(x) e Bn(y0) if 7?(x) e A„(x0). Let T)^ = P)£L0 z2"B¿y¿) and set

7) = Hw=o E>N. The 7)^ form a decreasing nested sequence of closed sets with inter-

section D. Suppose D = {y0}. Then if xm -> x0, we have xm e (^H^zY" A„(x0) and so

(pXxm) e Pw for large m. Thus ç/(xm) -» yo- It 's not difficult to show that 7) is an

interval. However if z e D, z # j0, then z2(z) e B„(y0) and z2(z) $ B„(y0) for some n,

i.e. 77^(z) = Cf for some k. Since r2 is at most 777 to 1 the set of such points is countable

and so D = {y0}.

We next consider points x0 for which (¡>(x0) — C\ for some k. Then x0 e (C¿_x,

C¿+1). Let x„ -> x0 where x„ e (C¿_1( C¿+1) and ^x„) e [Cf_j, Cf+1]. Then zxx„ -> nx0.

But t^(0(tiXo)) # C? and r{(rix0) # C) for any / since in either case we would have

z2+\Cl) = Cj contrary to assumption. Thus (¡1 is continuous at tjXq and dj o zx(x„) -»

0 ° Ti(x0) i.e. r2 ° $*») -♦ z2 ° (¡ix0). If <JAxHh) -» >> then r2( v) = r2^x„) and v e [C%.x,

Cf+1] i.e. vefCf^, Cf+2] n r2Kz2C¡) = {Cf}. Therefore (¡Ax„) -> Cf = #x0).
Finally consider a point x0 for which (pz"(x0) = rgyX^o) = Cf and n > 0. Let {/ be

a neighbourhood of (p(x0) small enough so that C\ i (J^r|(í/)(such a neighbourhood

exists because ^(ciixo)) ¥= Cj for m < n). Then r||t/ is a homeomorphism onto an

open neighbourhood of Cf. But <¡> is continuous at points like r"(x0) for which (¡rz"(x0)

= Cf by the previous result. Thus (¡rl(U) =z\~n(fi~1z2(U) is open. This completes the

proof.

What we have shown so far is summarized by

Theorem 5. Let z\, z2 be continuous and piecewise monotone maps of the interval

with the same number of turning points and equivalent kneading sequences. Suppose that

the invariant coordinate d(y)is one-to-one for itineraries of points under z2, that z2(0) =

t2(1) = 0, and that no turning point is mapped into any other under an iterate of z2.

Then the map dj is a continuous, semiconjugacy from z\ to z2 i.e. (¡)°z\ = z2° (¡).
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Remark. If zx(0) = 0 = z\(l) then (¡> is onto since in this case (p(0) = 0 and <]A\) =

1.

3. Examples and applications.

Example 1. We show that the condition that r"(C?) # Cj is essential. We begin

with the following example of Guckenheimer [4] :

i/jx, 0 < x <, i, i + j-$
t2(x) =\r where ft = v J   > 1.

[p. - px,    i < x < 1, r 2

We shall show in the next section that 0( v) is one-to-one for z2, but

+ yy   -i + vt\
(i-1

is a periodic orbit so the kneading sequence of z2 is CIiI0CIiI0 .... There is no point

'x' with itinerary g = 717170717170 ... [4].

Let z\ be any C1 map with unique turning point C = x and the same kneading

sequence as z2 such that t;i(0) = z\(l) = 0. There exists [4] a point 'v' with A(y) = g.

If (¡i were continuous then it would be surjective and so there would exist a point 'x'

with (¡Ax) = v. Suppose z"(x) = ¿ for some n, then rjKv) = t2<¡Ax) = Ç77;ï(x) = %

which contradicts the fact that g consists entirely of intervals. Thus A(x) = g which

is impossible. Thus dj is not continuous.

Example 2. We give the following simple example to illustrate Theorem 5 (cf. [1]).

We modify the map z2(x) = 4x(l — x) while keeping the same kneading sequence.

Define

Tl(x) =

'6x2, 0 <; x <|,

1 X — -f, ■£< X < j,

4x(l — x),    {-<> x < 1.

Then z\(x) is the type of function which we have been describing for which 6(x) is

clearly not one-to-one since zx([0, ¿]) = [0, £]. Thus (pQO, |]) = 0 and if 7 is any

interval such that z1(I) Ç [0, ¿] then zfyjA1) = 0 and so ̂ (7) = 0 or 1. If

En = [0, 1] - »*(0)

then ^|Eri is onto since çu(|) = 0 and

•v/30«(1^)-'
where

1   l + ^30_eE6,    2  ■+■     12    tz.n

and for x1( x2 e Eri, çt(x) = ^(jO **• 7B(x) = z-"( v) = | for some n.
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To use Theorem 5, it is necessary to identify a class of maps with the property that

the invariant coordinate is injective on itineraries. In [4] it is shown that C3 maps z

with z(0) = t(1) = 0, a single turning point, and negative Schwarzian derivative and

no contracting periodic points have this property. The same is true for maps, one of

whose iterates is expanding.

Definition. A piecewise monotone map z is expanding if there exists a constant

A > 1 such that |r(x) — z(y)\ > /|x — v| whenever both x and v lie in the same inter-

val [C„ C,+1].

Proposition 6. Suppose zm is expanding for some m. Then 0(x) = 0( v) only ifx = y.

Proof. If 0(x) = 0( v) there are two possibilities :

(a) A„(x) = An(y) # C„ n = 0, 1, 2, ..., or

(b) A„(x) = An(y) # Cfc n = 0, ..., k - 1 and zk(x) = zk(y) = C,.

In case (a) |z-*m(x) — zkm(y) \ > Xk\x — y\ and so zm(x) = zm(y). Thus we are in case

(b) if we let k be the smallest integer such that zk(x) = zk(y). Then either zk~l(x) =

zk^(y) or Ah_i(x) # Ak_i( v). This is impossible unless x = v.

In [5] Milnor-Thurston show that for any map z with growth number s = s(z) > 1,

there is a semiconjugacy from z onto a map Ps of constant slope s. Thus every such

map has a piecewise linear expanding "model". However the Milnor-Thurston model

is not unique in the sense that there may be semiconjugacies onto different maps of

constant slope, in particular the number of turning points may be reduced. If z has a

unique turning point and the turning point C of Ps satisfies F?(c) # c for n = 1,2, ...

then the kneading sequences are identical [6].

A natural consequence of Theorem 5 is :

Proposition 7. If z\. [0, 1] -> [0, 1] are as in Theorem 5 but zAO) = n(l) = 0 and

0(x) is one-to-one for z\ then (p is a homeomorphism, i.e. z\ and z2 are topologically

conjugate.

Proof. From Theorem 5 we have nondecreasing, onto maps fa, fa such that

(¡>i0Zi = z2°fa and fa°z2 = Z\°fa. Then fa°fa°z\ = fa°z2°fa = z\°fa°fa where
fa o fa is continuous, nondecreasing, and onto. Let (¡> = fa° fa. Then fax) = x for the

dense set of points for which z2fax) # Cf for any 77, i. By continuity dj is the identity.

Similarly fa°fa = identity and fa, fa are homeomorphisms.

Proposition 8. If z is any piecewise monotone map with z(0) = r(l) = 0 and a

unique turning point 'C whose kneading sequence is not eventually periodic then z is

topologically semiconjugate to a member of the series z^x) = px(l — x).

Proof, z has the kneading sequence of some z^ [4]. Now the maps z^ have at most

one periodic attractor which (if it exists) always attracts the critical point x = \ [8, 9].

This would make the kneading sequence of zM eventually periodic. This is excluded

and therefore z^ has no periodic orbit and therefore 0(y) is 1-1 for zy The result now

follows from Theorem 5. Of course if 0(x) is 1-1 for z, then the z is conjugate to zy
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