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STEENROD AND DYER-LASHOF OPERATIONS ON BU

BY

TIMOTHY LANCE1

Abstract. This paper describes a simple, fast algorithm for the computation of

Steenrod and Dyer-Lashof operations on BU. The calculations are carried out

in H*(BU, Z(i>) and H^BU, Z(í)) where p local lifts are determined by the

values on primitives and Cartan formulas. This algorithm also provides a

description of Steenrod and Dyer-Lashof operations on the fiber of any H map

(or infinite loop map) BU -> BU, and applications to the classifying spaces of

surgery which arise in this fashion will appear shortly.

1. Introduction. This paper describes a simple, fast algorithm for the computation

of Steenrod and Dyer-Lashof operations on BU. The calculation is made by lifting

to cohomology and homology with coefficients in Z (i), the integers localized at p,

where polynomial bases can be defined directly in terms of the primitives. These

bases occur naturally in the study of the fibers of 77 maps/: BU -> BU, and applica-

tions of this work in the computation of the bordism and description of the geometry

of the classifying spaces of surgery which arise in this fashion will appear shortly.

For convenience we assume throughout that p is an odd prime, although the same

arguments work for p = 2 with minor modifications. Let {dei, dn, ...} and {cei,

cn, ...} denote the usual bases for the primitives in H*(BU, Z{p)) and H*(BU, Z{p)),

respectively. For example, dSn is dual in the basis of monomials to the nth Chern

class c„.

Let Tk(t0, tlt ... , tk) = t{f + ptf'1 + ■•■ +pktk be the kth Witt polynomial.

Using the Waring formula for the primitives and some elementary number theory

of multinomial coefficients we show that the equations

de„pt = Tk(an¡o, a„A, ... , a„tk)

and

%* = r*(ö»%> a*!, ... , a*k)

inductively define bases {a„, ¿} and {a*k} for 77+(Pf/, Z{p)) and H*(BU, Z(p)), re-

spectively, where n ranges over the positive integers which are prime to p and k > 0.

Our general approach is to use the above formulas to define maps of polynomial al-

gebras with the correct values on primitives, and then check that the maps are indeed

well defined for Z{p) coefficients and have the desired mod p reductions. For the
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Steenrod operations we obtain the following (where (f) equals the binomial coeffi-

cient if 0 < b < a and 0 otherwise).

Theorem 1.   There   is   a   map of polynomial algebras P = P° + P1 + • • • :

H*(BU, Z(p)) -> H*(BU, Z (p)) defined inductively for n prime to p and k > Oby

§C?) W+K,-ü =  WO**  • • •  - P<k)-
s=(T

The component homomorphisms Ps: Hm(BU, Z(p)) -> 77m+2sCí_1,(PÍ7, Z(p)) reduce

mod p to Steenrod operations. Dually, there is a map P* = P% + PJ + • • • :

HJ^BU, Zip)) -* H*(BU, Z(p)) of polynomial algebras defined inductively by

2,/np» - s(p - l)\ np> -TIP a Pa    \
¿j^ 5 ) npk - s(p - 1) a'»t>-«.p-» - i*^*"».o, •• •. r*an,k)

where the component maps P%: Hm(BU, Zip)) ->■ Hm_2s{p^i)(BU, Z(p)) reduce modp

to the dual Steenrod operations.

The proof is quite easy thanks to a result of Borel and Serre [3] giving Ps(Cn) as an

integral polynomial on the Chern classes defined by its effect on elementary symmetric

functions.

Theorem 2. There is a ring homomorphism Q = Q° + Q} + ■ • ■ : H^BU, Zip)) -»

H^BU, Z (#)) defined inductively for n prime to p and k > Oby

2(" !)"+r (nrp,r_\)de^+Kp.u = Tk(Qa„j0, ..., Qan,k).

The component maps Q": Hm(BU, Z(p)) -> Hm+2r{p^X)(BU, Z(p)) reduce modulop to the

Dyer-Lashof operations.

Here H^BU, Z{p)) denotes the ring of formal series X0 + Xx + X2 + • ■ ■ with

Xf £ H2i(BU, Z(p)). For the proof we must rely on Kochman's [8] computation of

Qr(dem) to define our lift, and then check that its mod p reduction satisfies the condi-

tions of his algorithm. The hardest verification is of the Nishida relations ; the proof

makes use of the particular lift P¿ defined above and a monstrous identity involving

binomial coefficients whose proof was supplied by Leonard Carlitz.

The construction of the lifted map Q requires only that it is a ring homomorphism

with the right values on primitives. Hence by working p locally instead of mod p the

list of necessary properties in Kochman's algorithm ([8, Theorem 97] or Theorem 4.1

in this paper) can be trimmed substantially.

Corollary. There is an algorithm for computing the p-local lift Qr : Hm(BU, Z(p))-*-

Hm+2r(.p~\){BU, Zip)) of the Dyer-Lashof operation using the following properties:

(1) Qr is linear for all r > 0.

(2) Qr(xy) = LAQ-xXQ'-^forallr > 0.

(3) Q'(dJ = GPIK.+k,-« forr>0,m> 0.

Several spaces of geometric interest, such as Im(7) or the factor N of PP/0 with
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ick(N) equal to the p torsion in bPk+1, are defined as the fibers of p local 77 maps

/: BU -* BU. Such maps are studied in [9], and a simple description of the cohomology

of the fiber Pis given in terms of the basis elements a*k and their suspensions. In [11]

the algorithm of Theorem 1 is then applied in an Adams spectral sequence computa-

tion of the complex bordism of N and the spaces in its Postnikov tower. Iff is an

infinite loop map then Theorem 2 provides a similar description of the Dyer-Lashof

operations on P. This is exploited in [10], particularly in the construction of smooth-

ings classified by N.

A number of detailed calculations of these operations on BO and BU have already

appeared. Brown, Peterson, and Davis have some partial descriptions of the Steenrod

operations in [4, 5], while in [17] Peterson obtains a formula for PS(C„) in terms of

Chern classes and certain symmetric polynomials. Closed formulas for the Dyer-

Lashof operations have been obtained by Priddy [18] for p = 2 and D. Moore [15]

for p > 2 extending some low dimensional computations of Kochman [8]. Shay [20]

constructs integral lifts of both families of operations, deriving closed expressions

using the Newton and Waring formulae. The algorithms above also yield closed

formulas in terms of the bases {a„j} and {a*tj} which are relatively efficient ;Qr(ank),

for example, is a polynomial of < (r — mpk + 1)¿* terms. All of these formulas,

however, are complicated and difficult to work with. For the applications in [10, 11]

it is essential to have the simple recursive description of P and Q above.

I would like to thank Stewart Priddy and Stan Kochman for very helpful comments

about this work. I am indebted to Leonard Carlitz for providing a proof of Proposi-

tion 5.3 when I had despaired of ever finding one. Finally, it is a pleasure to thank

Peter May for asking the question which led to this research and for his help and

encouragement.

2. Witt polynomials and the homology of classifying spaces. Given indeterminants

t0, ti, ... and a fixed odd prime p we define the kth Witt polynomial at p by

Tk(t) = ttf + ptf-1 + ■■■ + pHk

where we abbreviate t = (t0, tx, ...). Classically, these polynomials were used to

invert functors which one might not have suspected were invertible [2]. For us their

usefulness stems from the following /^-integrality result, where R denotes either the

integers or a/7-local ring and tp = (t$, t{, ...).

2.1. Lemma. Let g0, glt g2, ... be polynomials or formal power series in t0, tx, ...

with coefficients in R such that gk(t) = gk-i(tp) mod ph, k = 1,2, ... . Then the equa-

tions

gÂO = Tk(ç0(t), Vl(t), ...,(pk(t))

inductively define polynomials or formal series with coefficients in R.

Proof. Since tpQ = g0, we suppose inductively that ç>0, ..., (pk_x are polynomials

in R for some k > 0. But Tk(t) = Th_x(tp) + pktk, so we must verify that gk(t) -

Tk-A((po(t))P, ..., ((pk-i(t))t>) vanishes mod pk.
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Evidently the polynomials ((p,{t))p and (pAtP) are congruent mod p. Applying the

binomial theorem inductively it follows that ((pj(t))pi+1 and ((p¡{tp))pi are congruent

mod pi+l. Consequently,

Tk-i((nit))p, ■■-, (p*-i(0)>) = T^ç^tP), ..., (pk^(tP))   mod p".

But g*_i(0 = Tk_A(p0(t), ..., (pk-i(t)) by definition, and so

gk^(tP) = T^tyoOP), ..., (pk^(tP))-

The lemma now follows from the congruence gk(t) = gk-AtP) mod pk. □

We use this to describe a p local decomposition of the homology and cohomology

of BU. Recall that H*(BU, R) is a polynomial Hopf algebra R[c1; c2, ...] on the

universal Chern classes whose coproduct, coming from the Whitney sum map p,

is given by p*c„ = £ci ® £„-,- If d„ e H2„(BU, R) is dual (in the basis of monomials)

to c\, then the correspondence c„ ~» d„ defines an isomorphism of Hopf algebras

H*(BU, R) -> H*(BU, R).

For any «-tuple of nonnegative integers a = («i, ..., a„) of weight w(a) — ax +

2a2 + ■■• + na„ let ca = cfi • • • cj» e H2wia)(BU, Z{p)) and da = dp ■ ■ • d%« e

H2wla)(BU, Z(p)) denote the cup and Pontrjagin products, respectively. Denote the

classes dual (in the basis of monomials) to c and da by da and ca, respectively. We

describe these classes directly. Let part (a) denote the partition 7 = ilt ..., ir of w(a)

in which the number/ appears exactly ctj times, and define S¡ to be the unique poly-

nomial satisfying S fay, ..., a„iay) = ¿¡if1 • • • t{/ where <ti, ff2> ■ • • are the

elementary symmetric polynomials in tx, ..., tm, m > w(a) (we follow the notation

of [14, p. 188]). Then by a straightforward generalization of arguments in [12] we

obtain the following.

2.2. Lemma. ca = Smtia) (clt ..., c2wla)) with coproduct

P*ca  =      Tl      C«l ® Ca2-
a\+az=a

The primitives of H*(BU, R) are generated as an R module by cei, ce2, ... where

en = (0, 0, ..., 0, 1) is the nth unit vector. These are given explicitly by the Waring

formula

cen = S„(Cl,...,cn)=   2   (-1)'«'+»  »   {a}c"
w(.a)=n l"l

where \a\ = «i + a2 + • ■ ■ + a„ and {a} = \a\ !/(ai! • • • a„!). The corresponding

statements about d„ and d. are also true.

2.3. Theorem [7, 9]. For any p local ring R and n prime to p the equations

ce»pk ~ Tk\.a„,o, .. .,a„)k)

and

de„p" =  TÂan, 0>  ■■ -,a„, h)

inductively define elements a*k e H2npk(BU, R) and a„jks H2npk(BU, R). If A* denotes

the polynomial Hopf algebra R[a*0, a*}1, ...] and A„ = R[an<0, a„;1, ...], then there
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are canonical isomorphisms of Hopf algebras

H*(BU, R) s      Cx)     A*
n prime to p

and

H*(BU, R) s      <8>     An.
n prime to p

Proof. We first check that an¡ k is /»-integral. By Lemmas 2.1 and 2.2 it suffices to

show that

SnA^h • • • > dnPk) — SBÍ*-i(íii, • •., dnpk-i)

vanishes mod/7*. But for any a of weight npk with some entry prime top the coefficient

of d" is given by the Waring formula as ±npk{a}l\a\, and {a}/|a| is p integral by

Proposition 5.1. If a = pß, then the coefficient of da is ±npk~l({pß) - {ß})/\ß\

(apply Lemma 2.2 twice). But ({pß} — {ß})l\ß\ is/? divisible in Z(p) by Proposition

5.2, so a„¡k is well defined. Since a„ik = ndnpk + decomposables by the Waring for-

mula again, for any p local R the elements a„ik with n prime to p and k > 0 form a

polynomial basis of H%(BU, R).

Note that A„ ® Q is clearly a sub Hopf algebra of H*(BU, Q) since both are

primitively generated, and hence A„ is a sub Hopf algebra of the torsion free

H%(BU, Z(P)). It follows that the map above is an isomorphism of Hopf algebras.

The proof for cohomology is the same.    □

The subalgebras A„ and A* are in fact isomorphic bipolynomial Hopf algebras.

Identify H*(BU, Z{p)) with the dual of H^BU, Z(p)) and give the latter free Zip)

module the basis of all monomials in the elements a„t ¡ for 77 prime to p and j > 0.

The dual of any element of A„ lies in A*; for example, ((— l)"+1/w)ce„/ is dual to

a„t k. The correspondence a„j -» a*j defines an isomorphism of Hopf algebras.

3. Lifting the Steenrod operations. Let Ps: H<i(X, Z/p) -* Hi+2siP-l)(X, Z/p) denote

the Steenrod reduced pth powers with dual operations

Pi- Hq+2s{p_v(X, Zip) -> Hq(X, Zip)

(i.e. Pi = Hom(Ps, 1) where

H*(X, Zip) = Homz/p(H*(X, Zip), Zip)).

For X = BU Borel and Serre described the action of Ps as follows.

3.1. Theorem [3]. Psc„ = Spartc»-^...^^ • • • > cn+s<p-u) (the s is in the pth posi-

tion).

This is usually treated as a mod p formula and in principle determines Ps on

H*(BU, Z/p) because of the Cartan formula. In what follows we regard Theorem

3.1 as an integral lift of the Steenrod operation on c„ and examine its p local prop-

erties. In particular, we assume all calculations are carried out in H*(BU, Z(p)).
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3.2. Corollary.

psCn = n + SU> -   ) Qcn+s(j)_1) + decomposables.

Proof. The fundamental symmetry principle of symmetrical algebra [13, Volume 1]

states that, given a, ß of equal weight, the coefficient of ca in 5part(^(c) equals the

coefficient of c$ in Spart(a)(c). In particular, the coefficient of cn+s(p_v in Ps(c„) equals

that of cf'c'p in 5,B+S(i_i)(c). By Lemma 2.2 this equals [(« + s(p - 1))/«]®.    D

Note that this result agrees modulo p with Brown and Peterson's Psc„ =

("T^Cn+s^-D + decomposables [4] (and dually with Kochman's Lemma 96 in [8]).

Their formula, however, cannot be satisfied integrally by any family of lifts

P>: H*(BU, Z(p)) - H*(BU, Zlp))

which send primitives to primitives and satisfy the Cartan formula. If such lifts do

exist and satisfy Corollary 3.2 then Ps(ce„) = (?)cen+s(/,-„ since cen = (— \)n+lnc„ +

decomposables by Lemma 2.2. We use this to construct the desired lift.

3.3. Theorem. There is a map of polynomial algebras P = P° + P1 + • • • :

H*(BU,Zlp)) -> H*(BU, Z(p)) defined inductively for n prime top and k >0by

¿CÍRak,-!, = Tk(Pat,0, ..., Pa*k).
s=0 \       /

The component homomorphisms

P>: H"(BU, Zip)) -> p/m+2s(í-i,(5í/) Z(í))

satisfy multiplicative and comultiplicative Cartan formulae, vanish if 2s > m, are

given on the Chern classes by Theorem 3.1, and reduce mod/7 to the Steenrod operations.

The comultiplicative Cartan formula (or co-Cartan formula) states that Psp*x =

JJ,JJ(P'a:') ® (Ps~'x") where p*x = 2*' ® *" and follows modulo p by naturality

and the Cartan formula. The Adem relations seem to be an intrinsically mod p result

and do not lift to Zip) coefficients.

Proof. We first check that P is well defined. By Theorem 2.3 we may write the

degree/ term of

?(f)«»/+sCi-D

as a polynomial 4\ ¿(a) where a denotes the sequence, ordered by degree, of poly-

nomial generators a*t, for 777 prime to p and / > 0. By Lemma 2.1 it suffices to show

that $A /a) vanishes mod pk if / is prime to p, and <í>¿, /a) = 4>¿_i, j/p(ap) mod pk

when/7 divides/.

Since

*.» ̂("0
C«»/.*+j(i-I)

with s prime to p when/ is, the first requirement follows by Proposition 5.1. Thus

suppose p> is the highest power of p dividing j for some / > 0, and set m = j/p>,
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/ = 77/7* + ■*(/> - 1). and am = (am¡0, am¡ 1; ...). Then

<&k,la) - $k-ij,p(aP)

= ("?)K> - TM(«0) + (("P)-{%))T,-tW.

But

CD-CSD -*
by Proposition 5.2, while T,{a) — T^aP) = p'ami. If / > k we are done, and if

i < k then/7' exactly divides s (i.e. no higher power divides it) so that

(^*) =- 0   mod /7*-'

by Proposition 5.2.

Since P is a map of polynomial algebras, the component maps Ps: Hm(BU, Z{p)) -+

H>n+2sip-i)(BU, Z(p)) satisfy the Cartan formula. By convention ("?) = 0 if s > npk

so that Ps vanishes for s > m. To verify the co-Cartan formula and the value of

Ps on c„, let P = Pq + P1 + • • • denote the map of polynomial algebras given on

the Chern classes by Theorem 3.1. We show that P = P by checking that they agree

on primitives. But by Theorem 3.1 and Lemma 2.2

P  Pcn ~ 2j P*c(n-s,0.0,s>
5

=     Zj    C(í-si,0,...,0,í) ® c(»-i-S2,0,...,0,s2)
SI» S2> i

= 2 pci ® pc*-i-
i

If follows that p*P = (P ® P)p* (that is, P satisfies the co-Cartan formula) and hence

that P sends primitives to primitives. Using Lemma 2.2 and Corollary 3.2 it follows

that P%  = (")ce .„...= Psce, and hence P = P.    □

By dualizing we obtain a lift of the Steenrod homology operations Pj. This par-

ticular lift will be crucial in determining that the maps constructed in the next section

actually reduce modulo p to the Dyer-Lashof operations.

3.4. Theorem. There is a mapping of polynomial algebras P* = P£ + PJ + • • • :

Hç(BU, Zip)) -* H%(BU, Z{p)) defined inductively for n prime to p and k > 0 by

SC " ?" " ') ̂ w---T) "••>'-»- - wv-°' • ■ • • '•**

The component maps P¿: Hm(BU, Z(p)) -* 77m_2s(í_1)(PÍ7, Z(í)) satisfy multipli-

cative and comultiplicative Cartan formulae and reduce mod p to the dual Steenrod

operations. In fact, Ps = Hom(Pj, 1) under the identification H*(BU, Z(/1)) =

HomzJT/^Pt/.Z^), Z(i)).

Proof. P# is shown to be well defined exactly as in the proof of Theorem 3.3. By
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Corollary 3.2 and Theorem 3.3 the dual of the Z(p) lift of P constructed in Theorem

3.3 is a map of polynomial Hopf algebras which agrees with P* on the primitives

and hence equals it.    □

4. Dyer-Lashof operations on BU. For any infinite loop space A'let Qr : Hm(X, Z/p) -*

Hm+2rip_1)(X, Z/p) denote the Dyer-Lashof operation. In constructing a lift to Zip)

homology when X = BU we use as our starting point the following algorithm of

Kochman [8, Theorem 97].

4.1. Theorem. There is an inductive algorithm for computing Qr(d„) using the follow-

ing properties of Dyer-Lashof operations on H*(BU, Z/p):

(a) Q<: Hm(BU, Z/p) -* Hm+2r(p_v(BU, Z/p) is linear.

(b) Q'dm = 0ifm> r.

(c)Qr(xy) = TnQ'x Qr~{y(Cartan formula).

(d) k*Qrx = LiSO'V ® Q'-'x" where A is the diagonal and A*x = £*' ® x"

(co- Cartan formula).

(e) Qrdr = dPJor all r > 0.

(0 P%Qr « 2,(-l)'(((rl^r1))Or~s+'^Í (Nishida relation).

{g)Q'dem = {-\Y+m(.m-A)dem+KP_,y

(h) Q'dm = (-ly+n+K'm1) dm+r(p-i) + decomposables.

The Dyer-Lashof operations also satisfy certain naturality conditions and an

Adem type relation. We will use condition (g) and the Witt polynomial to construct

a lift of Qr just as we did for Steenrod operations. Identifying the mod p reduction

is a lot harder this time, though, since we no longer have a Borel-Serre theorem giving

Qrd„ as the mod p reduction of an integral class with nice coproduct.

Our construction uses, as before, formal sums Q° + Q} + • • • . But by (g) or

(h) Qrx will in general be nonzero for infinitely many r, so we work in the ring

H^BU, Z{p)) of formal series x0 + jcj + • • • where x¡sH2i(BU, Zip)). Finally,

recall again our convention that the binomial coefficient (f) vanishes if b < Oora < b.

4.2. Theorem. Let Q = Q° + Q} + ■ ■ ■ : H*(BU, Z(p)) -> H**(BU, Z(p)) be

the ring homomorphism defined inductively for n prime to p and k > 0 by

¿(-^(n/^-SH^K,-» = T¿Qa„,o, ■ ■ -, Qan,t).

The component maps Qj\ Hm(BU, Z{p)) -► Hm+2r(p_i->(BU, Z(p)) satisfy Cartan and

co-Cartan formulae, vanish ifm>r, and reduce modulo p to the Dyer-Lashof maps.

Proof. The fact that Q is well defined follows just as in Theorem 3.3 using the fol-

lowing ((2) follows from Proposition 5.2):

o» i;."_1,)-(„;.)-»'"="0 ■»«"'•
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We check that the mod p reductions of the component maps Qr satisfy the condi-

tions of Theorem 4.1 and hence equal the Dyer-Lashof operations.

By definition we have forced (g), and since d„n = (— l)n+1ndn + decomposables

by Lemma 2.2 it follows that

Qrdn = (-1)"+^ I j) " + r{Pn " l) «/„mj-d + decomposables.

But

(-i)"+i:¡)"+r(r1) - (-i)B+r+i(rñl)=i-v*§-'

and (h) is satisfied. The maps Qr satisfy the Cartan formula in HJ^BU, Zip)) since

Q is multiplicative, and they satisfy the co-Cartan formula since H*(BU, Q) is

primitively generated, Q is multiplicative and sends primitives to primitives. Since

Qrdem = 0 for m > r by definition, a straightforward application of Lemma 2.2 and

the Cartan formula shows that Qrdm = 0 if m > r.

To prove (e), note first that Q}dx = Q}dex = de, and

de, =   Z¡   (- l)í+lal -rr {<*) d" = dp« = d{.
w(.a)=p \CX\

Assume inductively that Q'd¡ = dp¿ mod p for all / < r, and let a = (ai, ... , ar)

be an /--tuple of weight r. Then

Qrd" =      2      ß'Krff») • • • QHd"/)
• l+---+ir-r

= Qa\dp)Q^(df) ■ ■ ■ Qra'(d?).

The second equality follows from the fact that for any other partition we must have

ij < jcLj for some / and hence Q''(d"') = 0 by the Cartan formula. If a / er, then

by the Cartan formula again, property (b) and induction it follows that Q'a>(d°j¡) =

dp' for each/ = 1, ... , r - 1. Thus

Q!((-\y^rdT) = Q'(der-    2   (-l)r+la,^-{«}^)
C&er \GC\

w(a)=r

= d,rt-  2 (-iP'i^W^
w(a)=r

w(a)=pr \CL\ a*er |tt|
tv(a)=r

If a # 77/3 for any r-tuple /3 then {a}/\a\ e Zlp) by Proposition 5.1 so that (pr¡\a\){a)

d" vanishes mod p. Thus the above difference of sums is congruent mod/? to

which equals (- \)r+lrd$ mod ^ by Proposition 5.2, proving (e).



506 TIMOTHY LANCE

We are left with verifying the Nishida relations. Let cpp5, 4>£,s: H^BU, Z(p)) -+

H*(BU, Z(p)) be defined by

$>ïs = P%Qr   and

d>^=ç(-i)^((r ~ss)sppi~ iy)Qr-sHPi.

We show that <pr's = dpj-s — 0§>s vanishes identically mod p.

Assertion 1 (Double Cartan Formula).

<&ï's(xy) = Tl(<bk>'x)((S>r'"s-'y)-
k,l

Proof. Since the integral lifts P% and Qr satisfy a Cartan formula, $?s clearly

satisfies a double Cartan formula. For <&%s note that

<s>n*y) = ç (- i),+s ((/" -/ÏJ,-1}) Qr~s+i KW

• (ß*-'+'Pix)(ß'-s-*+'+>Piy)

= S w*) (4>r*'w^).

This uses the identity (a+4) = ZXi)G-/) which follows by applying the binomial

theorem to both sides of (x + y)a+b = (x + y)"(x + y)h.

Assertion 2. If <J>r- sx = 0 mod p for all r, s, then (¡>r-s(xP') s 0modp'+1.

Proof. From Assertion 1 it follows that $r = £s$r's satisfies a Cartan formula,

7 = 1,2. Suppose deg x > 0 (the deg x = 0 case is clear) so that <I>°x = 0. Then

<t>ï(xp') =    2    {«}(*<*)"
w(a)—r
\a\=p>

where (<î>,x)a = (<&]x)ai • • • (dppc)'2'-. By assumption there is a formal series yr such

that <i>[x = OS* + />yr. Suppose, for some a, that pk exactly divides a. Then p'~k

divides {a} by Proposition 5.1. It follows that

{a}(<ï>ix)a< = {a}(<Pix)°« + g {a}(f W^O"'-'

where each coefficient in 2 f=i vanishes at least mod p'+1 by Proposition 5.1. Thus

Qfccf) s    2    {a}^*)" = *50eA0   mod p'+K
\a\=pi

The assertion follows by taking components.

Assertion 3. 4>r>**/,„,* = 0 mod pk+l.
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Proof. If r = 0 then $[-* dem = 0 = 0r¿s dem, while if s = 0 we have <&['sdem = Qrdem

= $[;'s í/e . In general, since

Q%m = (-l)^m-_\)de,

and

ps¿   _(m-s(p-\)\ m ,

S(/7-l)

the proof of the assertion reduces to showing that

/r-\\/m + (r-s)(p-l)\

= T((r-s)(p-l)\(m-i(p-l)\(   r-s + i-l    \ m
-¿f\     s-pi      A        i        )\m-i(p-\)-\) m-i(p-l)

modulo pk+l if pk divides m and r, s > 0. This is established in the next section

(Proposition 5.4).

To verify the Nishida relations it suffices by Assertion 1 to show that $r' saKi k = 0

mod p for all r, s > 0, n prime to p, and k > 0. When k = 0 this is just Assertion

3 with k = 0, so we assume inductively that $>r'sa„j s 0 mod/7 for 0 < / < k. Then

Pk$r,s(an,k) = $"*(</) - $r,s«*o) - ••• - Pk-l&'s(apn,k-i).

But each term on the right vanishes modpk+l, the first by Assertion 3 and the remain-

ing terms by Assertion 2 and induction. Thus $r'sa„, k = 0 modp, as desired.    □

5. Appendix—some /; local properties of multinomial coefficients. For any «-tuple

a = (ah ..., a„) of nonnegative integers we let \a\ = «i + • • • + a„ and {a} =

\a\ !/( ail • • • a„!). We say that pk divides a if it divides each a,-, and it exactly divides

a if no higher power divides a.

5.1. Proposition. Ifpk divides \a\ and pi exactly divides a, j < k, then pk~' divides

{a}.

Proof. Since {a} = {«i, a2 + • • • + a„) {a2, ..., cx„} it suffices to verify the case

n = 2. If a = (ai, a2) with at prime top the result is well known, so suppose a = p'ß

with ßx prime to p. Let n (0 denote the product of all natural numbers < / which are

prime to p. By some simple bookkeeping we obtain

{pßViß} = u(pßi + pß2)iu(pßi)n(pß2)

and hence

{p*ß} t\ Uip'ßuiKp'ßu = {ß} n itwi+ä»-
<—i f=i

Since n takes values prime to p, the p divisibility of {p'ß} equals that of {/3} and hence

is at least pk~K    □

5.2. Proposition. Ifpk divides \a\, then {pa} = {a} modpk+l.
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Proof. Generalizing the formula in the proof above, for any n-tuple a we have

{pa} I {a} = IK\pa\)ITl(paù ■ • • U(pa„) and hence Uipaù ■ ■ • U(pa„)({pa} - {a})
= {«KlTd/wi) - Yi(pai) ■ • • IT (/**»))• Suppose pi exactly divides a, so that pk~i

divides {a} by Proposition 5.1. But by Wilson's Theorem [6] we have that n(IP«l) —

(~l)M/P'mod pi+1 and T\(pa¡)= (—l)ai/pJ mod pi+1. Since fl takes values prime

to p, pi+1 divides {pa}-{a}.    □

The proof of the following result, which is essential in establishing the Nishida

relations on the primitives, was supplied by L. Carlitz.

5.3. Proposition. Let a, b, c, dbe nonnegative integers, a # 0. Then

v/ b   \( d \(b + d+j-\\ _ (a+d\(b + c-\\ bd+ab + cd
?\a-j)\c-j)\        J        )     \  c   )\a-\   )    a(a+d)    '

Proof. For any m and integer / > 0 define (m)j = 777(777 + 1) • • • (m + j — 1),

and set (m)0 = 1. Then (?) = (- m)k/( - k)k, and using (£•) + (^) = (»¿-i) it follows that

^Giy)GiX+/+J)-?(«-5-.)(4-.)e+n
_ /M /</\ v   (-a)/-c)/¿+ </+!)/

\aJV)y j\(b-a+\),{d-c + \)¡

_( b  \( d  \y, (-a+l)X-c + l)Xft + </+l)y
W-lAc-1/1^      /!(é-fl + 2)Xd-c + 2)y      '

To get a closed form for the above sums we appeal to the theorem of Saalschütz

[19, p. 87] : If q, r, s, t are integers with q > 0 then

y (-g)X0XJ)> - 0-r)¿t-s\
i   JK0ÁF + s-q-t+l)j       (t\(t-r-s\'

Applying this to each of the sums above yields

s_(b\(d\(d+l)a(-b-c)a       I  b   \(  d  \ (¿+l)>_1(-¿-c+1)^-1
WW (d-c + \)a(-b)a      \a-\)\c-\)    (d-c + 2)^1(-b)a_1

b\ d\ (a+d)\(d-c)\    (b-a)l(b + c)\
' a\(b-a)\    c\(d-c)\     d\(d-c+a)\      b\(b + c-a)\

_b\_d\_
(a-l)!(è-a + l)!    (c-\)\(d-c + \)\

(a+d-\)\(d-c + \)\    (ft-a+l)!(6+c-l)!
d\(d-c + a)\ b\(b + c-a)\

_/a + d\(b + c-l\ bd+ab + cd
\   c   )\ a-l   )     a(a + d)    '    U(a + d)

The binomial coefficient (f) is often defined for any complex number m and

integer k > 0 by (f) = ( — m)k/(—k)k. With this definition the above result and proof

are valid for any nonzero complex numbers a, d with a + d ^ 0 and integers c, d.
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We have not adopted that convention here since, for example, the Nishida relations

would then be incorrect if s > r.

5.4. Proposition. Suppose m, r, s are positive integers such that m + (r — s)(p — 1)

> 0 andpk divides m. Then

(r- l\(m + (r-s)(p-l)\      m + r(p-\)
\m-\)\ s ) m + (r-s)(p-\)

= T((r-s)(p-lWm-i(p-lW   r-s+i-l   )_m_    mod*+1
- ¿t\     s-pi      A      i Km-i(p-\)-\)m-i(p-\)   m°ap

The above sum is assumed taken over all values of / such that the binomial coeffi-

cients involved are nonzero. In particular, m — i(p — 1) > 1 for all such i.

Proof. By our conventions on binomial coefficients it is easy to check that if s > r

the above congruence is actually 0 = 0. When s = r it reduces to the identity p = p

or 0 = 0 depending on whether or not m = r = s = 0 mod p. Thus suppose r > s.

Using the identity (?)(*) = (?)(j=°) it follows that

R _ r((rs)(p-l)\(m-i(p-l)\(   r-s + i-ï   \        m
K-¿t\     s-pi     A        i        )\m-i(p-l)-l)m-i(p-l)

_Y((r-s)(p-l)\(m-i(p-l)\(   r-s + i   \      m
¿f\     s-pi     A        i        )\m-i(p-l)J r-s + i

= y((r-s)(p-l)\(r-s + i\(r-s\      m

¿f\     s-pi     J\    i     )\m-ip) r-s+i'

But note that ifp1 divides r — s + i then

(r-si + i) = (pr~ppsi+pi)  mod/,'«

by Proposition 5.2 and hence

(r~s + *)_HL—, s (*r-s) + P'\    ,  P™_r    mod /7*+i.
V     i     ) r - s + i      \        Pi       J p(r-s)+pi F

Thus

* - ?C-A-T"T%'=t)>í5ñr ™*pM

= 2Í(r " s)(p- " 1})((r ~ s)p.+ j~l)(r~s)   m

where the second line is congruent to the first modulo pk+1 since we have added terms

with / prime to p so that mp/[(r — s)p + j] = 0 mod pk+l. The desired result now

follows from Proposition 5.3 by setting a = m, b = (r — s), c = s, and d = (r — s)

■ (P - D-   D
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