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NEIGHBORHOODS OF ALGEBRAIC SETS1

BY

ALAN H. DURFEE

Abstract. In differential topology, a smooth submanifold in a manifold has a

tubular neighborhood, and in piecewise-linear topology, a subcomplex of a

simplicial complex has a regular neighborhood. The purpose of this paper is

to develop a similar theory for algebraic and semialgebraic sets. The neighbor-

hoods will be defined as level sets of polynomial or semialgebraic functions.

Introduction. Let M be an algebraic set in real n-space R", and let X be a compact

algebraic subset of M containing its singular locus, if any. An algebraic neighborhood

of A' in M is defined to be a_1[0, 8], where ö > 0 is sufficiently small and a: M -> R

is a proper polynomial function for which a > 0 and a_1(0) = X. Such an a will be

called a rug function. Occasionally we will need rational or analytic a, but this is not

a significant generalization. Algebraic neighborhoods always exist. The curve selec-

tion lemma is used to prove uniqueness ; anyone familiar with [Milnor 2] will recognize

the technique. Since uniqueness is a crucial result, and since there are a few trouble-

some small points, this proof is given in detail. The uniqueness theorem shows that

the "link" of a singularity of an algebraic set M is independent of the embedding of

M in its ambient space; I have been unable to find a proof of this result in the litera-

ture. In addition, an algebraic neighborhood of a nonsingular X in M is shown to be

a tubular neighborhood in the sense of differential topology.

This material is in §1. In §2 the theory is rapidly developed for real and complex

projective space by embedding these spaces in real affine space. As an application,

it is shown that when M is an affine algebraic set with projective completion M, then

the complement in M of a large ball centered at the origin of affine space is an alge-

braic neighborhood of the intersection of M with the hyperplane at infinity.

In §3, the theory is generalized to the case where M is a semialgebraic subset of

R" and X is a compact semialgebraic subset of M. (For example, X could be a non-

isolated singular point of M.) A semialgebraic neighborhood of X in M is defined to

be a-1[0, ö], where ô > 0 is sufficiently small and a: M -> R is a proper semialgebraic

function for which a > 0 and a_1(0) = X. Again these neighborhoods exist and are

unique ; this is shown by mimicking the proof in the algebraic case, using semialgebraic
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stratifications and Thorn-Mather isotopy theory. A proof is given of the well-known

fact that semialgebraic maps can be stratified (Theorem 3.3). When A'and M are sim-

plicial complexes, a PL regular neighborhood of X in M is a semialgebraic neighbor-

hood. In addition, the "polydisk" link of a singularity is shown to be homeomorphic

to the usual link. Also, Milnor's fibration theorem is generalized from polynomials

on C" to polynomials on an arbitrary complex set, as is the theorem on the connec-

tivity of the fiber of this fibration.

§4 generalizes the theory to semialgebraic neighborhoods of algebraic sets in

projective space. The main purpose here is to show that the boundary of a neigh-

borhood of the exceptional set in the resolution of a singularity is homeomorphic to

the usual link of a singularity. A similar result is given for singular fibrations.

§5 contains an example showing that uniqueness does not hold for smooth (non-

algebraic) rug functions.

The idea of a rug function came from [Thorn], which develops a theory of smooth

neighborhoods of simplicial complexes in R".

0. Preliminaries. The symbol A" will denote real affine n-space R" or complex

affine n-space C". A subset of A" is an algebraic set if it is the set of common zeros of

some collection/!, ... , fk of polynomials. Note that the zero locus of a set of com-

plex polynomials in C" is also a real algebraic set in R2".

Let X be an algebraic set in R", and suppose that f, ... , fk span the ideal of all

polynomials vanishing on X. Let p be the maximum value of the rank of the k x n

matrix [df(p)/dXj], over all/? e X. A pointy is nonsingular or smooth if

rank dJL.(p)
L dxj

The set of nonsingular points of X forms a real or complex analytic manifold of

dimension n — p. For further discussion, see [Milnor 2, §2].

The symbol P" will denote real projective n-space RP" or complex projective

n-space CP". Points of projective n-space P" will be written as (n + l)-tuples

(x0, ... , x„) of real or complex numbers, not all zero, with the equivalence relation

(x0, ... , x„) ~ (a*o, • • • , ax„) for A a nonzero real or complex number. An algebraic

set in P" is the set of common zeros of some finite collection of homogeneous poly-

nomials in n + 1 variables. All such sets are compact. Let

77,-= {(x0, ... ,xn)sP»:x, = 0}.

Then P" — H¡ is isomorphic to A" by the obvious map. A point x = (x0, ..., x„)

of an algebraic set X in P" with x¡ ^ 0, some i, is nonsingular if it is nonsingular in

the affine algebraic set X f| (P" - 77,).

Let X c P" be a projective algebraic set. A rational function on X is one which may

be written as the quotient of two homogeneous polynomials of the same degree.

(A (real) rational function on a complex projective algebraic set is one which

may be written as the quotient of two homogeneous real polynomials of the same

degree.)
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A subset X of R" is semialgebraic if it can be written as a finite union and

intersection of sets of the form {* e R" : f(x) = 0} and {xeR": f(x) > 0}, where /

is a polynomial function on R". A semialgebraic set is nonsingular if it is an open

subset of the set of nonsingular points of some algebraic set.

Let X c= R» and Y c Rm be semialgebraic sets. A function f: X -> Y is semialge-

braic if it is continuous and its graph is a semialgebraic subset of R" x Rm. For ex-

ample, rational functions are semialgebraic; so is the function/: R2 -> R defined by

f(x, y) = max(x, y). Finite simplicial complexes in R" are semialgebraic sets, and

simplicial maps are semialgebraic functions. The Tarski-Seidenberg theorem states

that the image of a semialgebraic set under a semialgebraic map is again semialge-

braic. Hence the composition of two semialgebraic functions is again semialgebraic.

Semialgebraic sets can be triangulated (see, for instance, [Hironaka, p. 170]): Let

Xh ..., Xr be semialgebraic sets in R". Then there is a locally finite simplicial de-

composition of R" = (JA, into open simplexes and a semialgebraic automorphism

a of R" such that each Xk is a finite union of some of the ff(A,).

Let X c P» be an algebraic set. A function/: X -» R is semialgebraic if its restric-

tion to each affine piece X f| (P" — 77,) is semialgebraic, for 0 < / < t?.

1. Algebraic neighborhoods of affine algebraic sets.

Definition 1.1. Let M be an algebraic set in R" and let X be a compact algebraic

subset of M with M — X nonsingular. An (algebraic) rug function for A' in M is a

proper polynomial function a: M -> R such that a(x) > 0 for x s M and a-1(0) = X.

Recall that a function is proper if the inverse image of every compact set is com-

pact. To say that a is a polynomial function means simply that it is the restriction

of a polynomial on R".

Lemma 1.2. Letf: R" -> R be a polynomial function withf~l(0) compact andf(x) > 0

for all x. Then there is a proper polynomial function g: R" -* R with g"l(0) = /-1(0)

andg(x) > 0 for all x.

Proof. We may assume, without loss of generality, that/(0) = 0. Let a: [0, 00) -«• R

be the function defined by

a(r) = min {fix)}.
\x\=r

It is not hard to see that a is a semialgebraic function. If limr_(00 a(r) = 0, then there

is a positive integer p and a positive number b such that a(r) > br~f for large

r: Let ß(s) = a(s_1). Near s = 0 the function ß has a fractional power series

expansion

ß(s) = asP'i + a1J(f>+1,/« + • • •

for some a > 0 and some positive integers p and a. Choose b such that 0 < b < a.

For small s, ß(s) > bsP'i > bs*. Thus for large r, cc(r) > br~P. Now let g be the poly-

nomial function g(x) = \x\2ff(x). Then g-1(0) = /_1(0), and g is proper since

\g(x)\ > \x\2<>a(\x\) > b\x\P.   D
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A function/as in the lemma may not be proper, as was pointed out to me by H.

King. For example, let

fix, y) = (x2 + y2)((y(x2 + 1) - l)2 + y2).

Thenf-\0) = 0 but/(x, (1 + x2)-1) -> 0 as x -» oo.

Corollary 1.3. Any set X as in Definition 1.1 has a rug function.

Proof. It suffices to take M = R" since the restriction of a rug function is a rug

function. If

X={f = ■■■ =fk = 0}

then X = {/ = 0} where / = /2 + ■ • ■  + f¡¡, and the function g as constructed in

the above lemma for/is a rug function for X.

Lemma 1.4. A rug function has a finite number of critical values.

Proof. See [Milnor 2, Corollary 2.8].

Definition 1.5. Let M and Xbe as in Definition 1.1. A subset Jwith X cz T <= M

is an algebraic neighborhood of X in M if T = or1 [0,5], for some rug function a and

some positive number ô smaller than all nonzero critical values of a.

Suppose, for example, that X = {p} is an isolated singular point of M. The bound-

ary of an algebraic neighborhood T of p in M is called the link of the singularity

of M at p. One usually takes the rug function

ctLx) = \x - p\2.

Proposition 1.6. Let Tbe an algebraic neighborhood of X in M. Then the inclusion

X a. Tis homotopy equivalence.

Proof. Since X and M can be triangulated, X has a basis of closed neighborhoods

X <=. ••• <= U„ a ••• c C/jcAf with each t/, homotopy equivalent to X. Since

the function a is proper, the sets T„ = a-1[0. ö/n] for n = 1,2, ... also form a neigh-

borhood basis of X. Choose nx and n2 such that X <= T„2 c Uni cz Tv The inclusion

T„2 <= Tx is a homotopy equivalence, since we may push T„2 out to Tx using a gra-

dient vector field of a. Thus the inclusion T„2 <= [/M1 induces an isomorphism of

homotopy groups and hence is a homotopy equivalence.    Q

Let a: M -> R be a rug function for I c M c R». The usual Riemannian metric

on R" induces a metric on the manifold M — X, and this metric may be used to define

the gradient vector field grad a of a on M — X. In fact, grad a is a semialgebraic

function on M — X, since grad a(x) is the image of the projection of the vector

(daldxi, ... , da/dx„) to the tangent plane of M - Zat x.

Proposition 1.7 (uniqueness of algebraic neighborhoods). Let Tj and T2 be

algebraic neighborhoods of X in M. Then there is a continuous family of homeomor-

phisms ht: M -> M for 0 < t < 1 such that

a. «o '•* me identity,

b. h,\ X is the identity, for all t,

c. hi(T{) = T2, and hi is a smooth diffeomorphism of Tx — X onto T2 — X.
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Proof. Let T¡ = ajl[0, 5,] for some rug function a,-, for i = 1,2.

When ai = a2 (and assuming without loss of generality that di < ö2), we may use

the gradient vector field of oc\ to push Tj out to T2. This is a standard technique of

Morse theory [Milnor 1, Theorem 3.1]. In the case ai # a2, we need the following

lemma. (Compare [Milnor 2, Corollary 3.4].)

Lemma 1.8. There is a neighborhood UofX in M such that grad cc\ and grad a2 are

nonzero and do not point in opposite directions on U — X.

Proof. Let

Y = {x 6 M — X:  grad cx\(x) and grad a2(x) are both

nonzero and point in opposite directions}.

The set Y is semialgebraic, since it is the intersection of the set of x e M — X where

the inner product <grad ct\(x), grad a2(*)> ¡s negative with the set of x e M — X

where grad ai(x) and grad a2(x) are linearly dependent, and these sets are semialge-

braic. It suffices to show that X does not intersect the closure of Y. Suppose this is

false. Then by the curve selection lemma [Milnor 2, 3.1] there is a real analytic curve

ß:[0,e)-+M with ß(0) e A'and ß(t) e 7for t > 0. Near t = 0, a,ß(t) is an increasing

function of t, so dcx,ß(t)ldt is positive there. However, this derivative equals <grad a,,

dß/dty, and grad ct\ is a negative multiple of grad a2 on Y, a contradiction.   Q

Choose d2 > 0 such that a2x[0, ô'i] c U and then choose 3[ > 0 such that

af^O, o¡] is contained in the open set a^iO, ô2). By the first part of the proof, the

sets aT^O, ö,] and aT^O, ö^i are isotopic, for / = 1,2. Hence it suffices to find an

isotopy of aï^O, 3[] to a^fO, ö£}. Let S be the subset of M defined by

S = a^[0, <?2] - orHO, ô[)

and let/: 5 -> [0, 1] be defined by

cciix) - 5[_
/(*) = (ai(x) - 5[) + (ô2 - a2(x))

Note that/^ffj) = aí\o[) and/-!(l) = aj^di), that the denominator of/is never

zero on S, and that/is proper. The function/has no critical values, since its gradient

is

(cci(x) - <?;) grad a2 + (ô2 - a2(x)) grad ax

K«iW - <5i) + iöi - a2(x)))2

and grad a2 and grad a.\ are nonzero and never point in opposite directions on U — X.

Let m be a vector field on S which projects under the derivative of/to the vector

field 3/3i on [0, 1]. Integrating u gives the required isotopy ht.   Q

The uniqueness theorem shows, for instance, that the algebraic neighborhood of

X in M is independent of the embedding of M in R" : Let n be a map of R" to itself

with an inverse, both of which are defined by polynomials. Then a ° his a rug func-

tion for h~l(X) in k~l(M), so a ° n defines an algebraic neighborhood of hrl(X),

and this neighborhood is homeomorphic to the neighborhood of X defined by a.
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There are two more general types of rug functions for which the above theory

works equally well. The first possibility is to replace the polynomial a by a rational

function. These will be important when generalizing to projective space (§2). The

second is as follows :

Definition 1.1 (bis). Let M be an algebraic set in R" and let X be a compact alge-

braic subset with M — X nonsingular. An (analytic) rug function for X in M is a

proper real analytic function a (defined on some neighborhood of M in R") such

that a > 0, a-1(0) = X, and a has a finite number of critical values.

The theory goes through just as before, except in the proof of the uniqueness the-

orem where the analytic curve selection lemma must be used.

For example, let A" and M be as usual, and suppose that both A'and M are smooth.

The function a: M -> R defined by

a(x) = (distance in M from x to X)2

is an analytic rug function for X in M. The set arx([0, S]) for small 8 is fibered by geo-

desies of length i/o which start perpendicular to M, and hence is a smooth tubular

neighborhood of A" in M. The uniqueness theorem then gives the following result:

Corollary 1.9. Let Xand M be as above, and suppose that both X and M are smooth.

Then every algebraic neighborhood ofX in M is a smooth tubular neighborhood of X in

M.

2. Algebraic neighborhoods of projective algebraic sets.

Definition 2.1. Let M be an algebraic set in real or complex projective space P"

and let X be an algebraic subset of M with M — X nonsingular. An (algebraic) rug

function for A" in M is a rational function a: M -* R U {°o} such that a(x) > 0

for x e M and or^O) = X.

Any such set X as above has a rug function : As before, it suffices to show this for

M = P». If

X - {Ft-Fn = 0}

where F¡ is a homogeneous polynomial of degree df, let

a = UFtflr'i] + ... + [\Fk\2lr*>]

where r(x0, ...,xn) = \x0\2 + ■■• + \x„\2.

Again a rug function a has only a finite number of critical values: The set of

critical points of a is a semialgebraic set, which may be written as a finite union of

smooth manifolds. Since a is constant when restricted to each of these smooth mani-

folds, a has only a finite number of critical values.

Lemma 2.2. RP" 777a.y be embedded as an algebraic set in R<"+1)2 in such a way that

every rational function on RP" is the restriction of a rational function on R(M+1)2. There

is a similar embedding o/CP" in R2(M+1>2.
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Proof. Let x0, ..., x„ be homogeneous coordinates for RP" and let y,7 for 0 <, i,

j <, nbe coordinates for R"+1>2. The embedding is defined by

y a = x,xjH4 + ■■■ + x2).

It is easy to see that this has the required properties. The rational function

a(x0, ..., x„) on RP" corresponds to the rational function a(yoj, ...,yn]) on R(B+1)2,

for any /'. (This embedding followed by the projection R("+1>2 -» Rp(»+»2-i js the

Veronese embedding of algebraic geometry.)

Similarly, if zQ, ..., z„ are homogeneous coordinates for CP" and vf„, 0 <, i,j <> n

are complex coordinates for C("+1)2 ~ R2("+1>2, we let

»>ij = z.-zjlizozo + ■■■ + z„z„).   D

The uniqueness theorem for algebraic neighborhoods (Proposition 1.7) holds

exactly as stated before. It is proved by using the above lemma to reduce to the

affine case. Corollary 1.9 holds as well.

Application 2.3. Let M be a nonsingular algebraic set in A" and let D be a suitably

large ball about the origin of A". Let M <= P» be the projective completion of M and

let 77 = M — M. Then M — M f| D is an algebraic neighborhood of 77 in M.

Proof. Let A" have coordinates Xi, .. -, x„ and let P" have coordinates x0, ..., x„.

The large ball in A" is r(x) < N for some number TV, where r(x) = \x-¡\2 + • • ■ +

\xn\2. Let a: P" — (1, 0, ..., 0) -> R be the extension to P" of the inverse of the

function r; in projective coordinates a may be written

a(x0, ...,*„) = W2/(l*il2 + ••• + W2).

Clearly a is a rug function for 77 in M.   Q

3. Semialgebraic neighborhoods of affine semialgebraic sets.

Definition 3.1. Let M be a semialgebraic set in R" and let X c M be a compact

semialgebraic subset. A (semialgebriac) rug function for A" in M is a proper semi-

algebraic function a: M -* R such that a(x) > 0 for x e M and a_1(0) = X.

Here are some examples of semialgebriac rug functions :

1. M = R", X = {0}, a{x) = x\ + ■ ■ ■ + x2„.

2. M = R", X = {0}, a(x) = max{|x,|, ..., |xj} (a PL function).

3. M = R2, X = {0}, a(x) = xf3 + x\ (a semialgebraic function which is not

smooth).

4. M is an algebraic set with X = {0} a nonisolated singular point, and a(x) =

x\+ ... + x2.

Lemma 3.2. Semialgebraic rug functions exist.

Proof. The set X = {xe R": f(x) > 0} has rug function a(x) = max(- f(x), 0).

If the semialgebraic sets A"x and A"2 have rug functions ct\ and a2, then the set A, |J A"2

has rug function a\a2 (or min(aj, a2)), and the set X1 f| A"2 has rug function cc\ + cx2

(or max(a1( a2)). Thus every compact simplicial complex in R" has a rug function.

Now let M and X be as in Definition 3.1. By the triangulation theorem, there is a

simplicial decomposition R" = (J,e/ A,- and a semialgebraic automorphism o of
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R" such that X = \JItEE/ <j(A,) for some J c I. Since X is closed, K — (J,s/ A,- is a

simplicial complex in R". Let a be a rug function for AT in R". Then a ° a"1 is a rug

function for X in R", and the restriction of this to M is a rug function for X in M.   □

Let A" be a subset of R". A stratification of A" is a partition X = [JA,- of X into a

finite collection of pairwise disjoint smooth submanifolds A,- of R" satisfying the

frontier condition: If A,- f] A,- # 0, then A,- ̂  Ay. A Whitney stratification is a

stratification satisfying Whitney's condition b [Mather, p. 2; Wall]. A substrati-

fication of a stratified set X = (J A,- is a stratification A" = \J A} such that each Aj is

contained in some A¿.

Two stratified sets A" = \J A,- and F = (J Ty are isomorphic if there is a homeomor-

phism /: A" -> y with the property that for each stratum A,- of X the map f\ A,- is a

diffeomorphism of A,- to some stratum Tj of Y.

Let A" be a semialgebraic set in R". A semialgebraic stratification of A" is a stratifica-

tion X = y A,- of X with each A,- a nonsingular semialgebraic set. The dimension of

X is the maximum of the dimensions of the strata A,-.

Theorem (see e.g. [Wall]). Let Ar1, ..., Xr be semialgebraic sets in R». Then

there is a Whitney semialgebraic stratification of R" such that each X¡ is a union of

strata.

Theorem 3.3 (stratification of maps). Let X <r R" be a semialgebraic set and let

f:X -> RP be a semialgebraic function. Then there is a Whitney semialgebraic stratifica-

tion X — (J A,- of X such that f\ A,- is real analytic and of constant rank, for each i.

We call this an f-stratification of X. This theorem is well known, but a proof is

given here for lack of a reference. We need the following facts :

Fact 1. Let X <= R" be a semialgebraic set and let /: X -* R* be a semialgebraic

function. Then there is a Whitney semialgebraic stratification X = (J A,- such that

the graph of f\ A, is a nonsingular semialgebraic set, for each i.

Proof. LetT <= R" x RP be the graph of/, and let T = (J T, be a semialgebraic

stratification of T. Let it : X x R* -> X be the projection to the first factor. By the

Tarski-Seidenberg theorem, each set itÇTj) is semialgebraic. Then let X = (J A,- be a

Whitney semialgebraic stratification of X such that each it(Fj) is a union of strata.   □

Fact 2. Let A" be a nonsingular semialgebraic set and let /: X -> RP be a function

whose graph is a nonsingular semialgebraic set. Then the set of points of X where/is

not differentiable is contained in a closed semialgebraic set with dimension less than

the dimension of X.

Proof. This set is contained in the set of critical values of the function which

projects the graph of/onto X.

Fact 3. Let U be an open subset in Rm and let/: U -» RP be a differentiable function

whose graph F is a real analytic submanifold of Rm x R*. Then /isa real analytic

function.

Proof. The projection of r to Rm is a real analytic map whose derivative is in-

vertible. Hence its inverse is real analytic. The map/is the composition of this inverse

with the projection to R*.
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Fact A. Let U <= R" be a nonsingular semialgebraic set of dimension m and let

/: U -* RP be a differentiable function whose graph in R" x R* is semialgebraic.

Then there is a Whitney semialgebraic stratification U = (J U¡ such that f\ U¡ has

constant rank, for each i.

Proof. The derivative Df: U -* TU of / is a semialgebraic function. There is a

Whitney semialgebraic stratification of m x p real matrices such that each stratum

consists of matrices of constant rank. Hence the tangent bundle TU has such a strati-

fication, and this is pulled back to U.

Proof of the theorem. The proof is by induction on the dimension of X. By Fact 1,

we may assume that X and the graph of / are nonsingular semialgebraic sets. By

Fact 2, there is a closed semialgebraic set Tin A" with dim Y < dim X such that/is

differentiable on X — Y. The set Y has an /-stratification by inductive hypothesis.

By Fact 3,/is real analytic on X — Y, and by Fact 4 there is a stratification of X — Y

such that / has constant rank on each stratum. Combining these two stratifications

gives an/-stratification of X.   Q

Definition 3.4. Let M be a semialgebraic set in R" and let X c M be a compact

semialgebraic set. A set T with A" <= T c M is a semialgebraic neighborhood of X in

M if there is a semialgebraic rug function a and a suitably small positive number ö

such that T = or^O, S\.

The problem is to determine how small 5 should be. Let M = [j A,- be an a-

stratification of M such that A" is a union of strata. Let

J = {/: A,-ni=0 and A,- n X # 0}.

Then a has rank one on each A, for i e J: If a|A, had rank 0 then a|A,- would be

constant and in fact would have value 0, which contradicts A,■ Ç] X = 0. Now choose

ô small enough so that 0 < a(x) < ö implies that x e (J,e/ A,-.

As for algebraic neighborhoods, the inclusion X c T is a homotopy equivalence.

Two semialgebraic sets X and Y are S-isomorphic if there are Whitney semialgebraic

stratifications of X and Y which are isomorphic as stratifications.

Proposition 3.5 (uniqueness of semialgebraic neighborhoods). Let Ti and T2

be semialgebraic neighborhoods of X in M. Then there is a continuous family ofhomeo-

morphisms ht: M -> M for 0 < t < 1 such that

a. n0 is the identity,

b. ht\X is the identity, for all t,

c. hx(T{) = T2, and hi is an S-isomorphism of Ti and T2.

Proof. For y = 1, 2, let T¡ = aJ^O, ôj] for some semialgebraic rug function a;

and a;-stratification M = (J A¿ as above. Let M = IjA,- be a Whitney semialgebraic

stratification of M which is a substratification of [jAJ and (JA2.

First suppose that ai = a2 and that ôi < ô2. Let S = aï\0, ô2) for some ô2 > ô2

with the property that a~[x[0, d2] is still a semialgebraic neighborhood. The Whitney

semialgebraic stratification of M restricts to S. Consider the function ai: S -> R.

The gradient vector field of ai|A, is nonzero on the set S f] A,-, for each / e /. Thorn's

first isotopy lemma then says that there is a controlled vector field generating a one-
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parameter group of maps which gives an isomorphism of the stratified sets af^O, 5J

and aïl{0, ö2] [Mather].

Now we return to the general case ai =¡í a2. The following lemma is proved exactly

as Lemma 1.8 is proved.

Lemma 3.6. Let A <= R" be a nonsingular semialgebraic set and let p e R" be in the

closure of A. Let ai, a2 '■ A -> R be differentiable functions with semialgebraic graphs

which vanish at p. Then there is a neighborhood of p in A on which grad ai and grad a2

do not point in opposite directions unless one of them vanishes.

By applying Lemma 3.6 to all A, for i e J, we find a neighborhood U of X such

that grad(ai|A,)and grad(a2|A,) are nonzero and do not point in opposite directions

on (U — X) fl A,-, for all i g J. Choose d2 > 0 such that «^[O, d2] <=■ U and choose

d'i > 0 such that aï 1[0, ô{] <= a2l[0, d2). By the first part of the proof, the stratified

sets ajx[0, ö,] and ajx[0, <?}] with stratifications IJ,A{ are isomorphic, for j =1,2.

Also, the stratified sets ajl[0,5',] with stratifications \J,A{ and (J,A,- are S-isomorphic,

for j =1,2. We will show that the stratified sets a\~l\0, ö[] and «^[0, d2] with strati-

fications (J A, are isomorphic. Define Sand/: S -» [0, 1] as in the proof of Proposition

1.7. The set 5 is a stratified subset of R" and the map/is proper and has no critical

values when restricted to each stratum of S. As in the first part of the proof, we can find

a controlled vector field on S which generates a one-parameter group of maps taking

/-i(0) = aïKô'i) to /-i(i) = cc2\d'2).   D

Proposition 3.7. Let X c T a M be finite simplicial complexes in R", and suppose

that T is a PL regular neighborhood ofX in M. Then T is a semialgebraic neighborhood

ofXinM.

Proof. One way of constructing a PL regular neighborhood of A" in M is the

following [Hudson, p. 51]: Subdivide X so that it is a full subcomplex of M. Let a:

M -» R be a linear function with a > 0 and a_1(0) = X. Choose ô > 0 such that

ô < a(v), for any vertex v of M - X. Then a~l[0, d] is a PL regular neighborhood of

X in M. This is a semialgebraic neighborhood as well. By PL uniqueness [Hudson,

p. 57], every PL neighborhood can be constructed this way.   Q

It would be interesting to know whether the following is true or not : Let X <=. T <=

M c R" be closed semialgebraic sets with X compact and T a semialgebraic neigh-

borhood of X in M. Let a be a semialgebraic automorphism of R" such that o(X) c

a(T) c: o(M) are simplicial complexes in R". Then a(T) is a PL regular neighborhood

of a(A")in a(M). This would be true, for instance, if 5-isomorphic simplicial complexes

were PL-isomorphic.

Application 3.8 (polydisk links of singularities). Let M be a real or complex algebraic

set in R" or C" (with coordinates x = (xh ..., xn)) which contains the origin 0.

The (semialgebraic) link of 0 in M is 37", where T is any semialgebraic neighborhood

of 0 in M. For example, we could use the rug functions

aiix) = l*il2 + • • • + \x„\2

or

a2(x) = maxflxil/ei, ..., \xn\/en)
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where $i, ■ ■■,£„ are fixed positive numbers. By the uniqueness theorem these links are

^-isomorphic. For example, let M be a complex algebraic curve with one branch at 0,

and suppose that the algebraic tangent space at 0 to this branch is the Xj-axis. Let

£l = £2 = 1 and let T = a2l[0, ô]. For small 5, M [\ dTVies in the part of ST defined

by \xi\ = ô, x2 <s ô. An obvious generalization of the uniqueness theorem to pairs

shows that the pair (dT, dT |~| M) is S-isomorphic to (S|, S$ [) M), where Sj is the

3-sphere of radius ô about 0. The polydisk neighborhood is easier for computations

[Kahler].

Next we generalize Milnor's fibration theorem [Milnor 2, §4] from polynomials on

C" to polynomials on an arbitrary complex variety.

Let M be a complex set in C", letp be a point of M and let/: M -» C be a complex

polynomial function with/T/?) = 0. Let N = /-1(0). Let Df be the closed disk of radius

ö about p in C" and let 5|"_1 be its boundary.

Theorem 3.9 (Fibration Theorem). For suitably small positive ô and r¡, the space

E = (M - N) fi Sf~l

is the total space of a fiber bundle over the circle whose fiber F is homeomorphic to

f-\7¡) n Df.

Proof. The function a(x) = |x — p\ is a rug function for p in the pair (M, N).

(By this we mean a rug function for p in M and p in N.) Choose ö small enough so

that (M, N) H Df is a semialgebraic neighborhood of p in (M, N). Next, the function

l/l is a semialgebraic rug function for N fl iDf, S¡n~l) in M f| (Df, Sj"'1). Choose

r¡ small enough so that the function / restricted to any stratum of M fl i^f, Sf~l)

has no critical values in D2 — 0. Then /_1(7)2) f] (Df, -S|"_1) is a semialgebraic neigh-

borhood of N fl (7)1", S2"-1) in M 0 (Df, Sf-1). By Thorn's first isotopy lemma

[Mather], the map of pairs

f:f-\D2 - 0) fl iDf, Sf1) - (7>2 - 0)

is a locally trivial fiber bundle with fiber /_1(t;) D iDf, ^l"-1). Hence

E' = (/-!(£>? - o) n si*-1) u iffisi) n £>2/)

is a fiber bundle over SJ with fiber homeomorphic to f~liij) fl Df.

Let /3 : M -» R be defined by

/3(x) = max{77|x-Jp|,o|/(x)|}.

Note that ß-1([0> yd]) is the closed set bounded by E'. The function ß is also a rug

function for p in (Af, N). By making 5 and 77 smaller if necessary, we may assume that

/3_1([0,2?5]) is a semialgebraic neighborhood of/? in (M, N). By the uniqueness theorem,

the sets a_1(5)and ßr^rjö) are homeomorphic, and (looking at the proof), this homeo-

morphism fixes their common intersection/_1(7)2) fl Si"-1- Thus 7¿and E' are homeo-

morphic, so E is also a fiber bundle over S\ with fiber homeomorphic to f~l(t]) fl

Df.   D
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(A result similar to Theorem 3.9 has also been Obtained by Le Düng Tráng.)

The fibration theorem can now be used to relate the connectivity of the fiber F with

the connectivity of the link of p in M:

Corollary 3.10 (connectivity of the fiber). Suppose in addition that M has di-

mension 777 and is a subset ofCm+r (i.e., n = m + r), and thatp is an isolated singularity.

Then F is (m — r — l)-connected.

Proof. Let K = M f| S2"-1. According to a local connectivity theorem [Hamm],

K is (m — r — l)-connected. Furthermore, the complex (m — l)-dimensional fiber F

is diffeomorphic to f~l(tj) f] Df, which by the usual Morse theory argument is

obtained from a 2(m— l)-disk by attaching handles of index < m— 1. Also, K— F is

homotopy equivalent to F. The argument is now similar to [Milnor, §6] : Consider

the exact sequence

-> Hi+i(K, F) -> Htf) -+ Tí/*) -> H,{K, F) -.

By duality,

77(+1(iV, F) ~ H2m~2~'(K - F) ~ H2m~2-'(F) = 0

for i < m — 1. Also, H,{K) = 0 for i < m — r. Thus 77,(7") = 0 for / < m — r;

an argument as in [Milnor, p. 57] shows that Fis simply-connected as well.    □

4. Semialgebraic neighborhoods of projective algebraic sets.

Definition 4.1. Let M be an algebraic set in P" and let X be an algebraic subset.

A semialgebraic rug function for A" in M is a semialgebraic function a: M -* R with

a(x) > 0 for x e M and ar^O) = X.

Semialgebraic regular neighborhoods are defined just as in the affine case, and a

uniqueness theorem similar to 3.5 is proved in the same way.

This theory can obviously be extended to (appropriately defined) projective semi-

algebraic sets, but we do not need this.

Application 4.2. Let M be a real or complex algebraic set in P" with singular locus

S cz M, and let 7" be an algebraic neighborhood of S in M. Let % : N -* M be a res-

olution of singularities. (N is a nonsingular algebraic set, it is a proper algebraic map,

it\(N - it~KS)) is an algebraic isomorphism, and N — it~x(S) is dense in N.) Assume

further that 7r_1(S) is a union 7>i (J • • • \j Dr of nonsingular codimension-one al-

gebraic sets Z>, with transverse intersections. Let T¿ be a suitably small tubular neigh-

borhood of Dj. Then the stratified sets dT' and d({jT¡) are S-isomorphic, and hence

in particular homeomorphic. In fact, dT' is diffeomorphic to d(\jT¿) with its corners

rounded (cf. [Mumford] for the case dim M = 2).

Proof. We may assume without loss of generality that each T¡ is an algebraic

neighborhood of D¡. Then \JT{ is a semialgebraic regular neighborhood of [jD{.

(If T{ is defined by a rug function a,-, then the rug function min^, ..., ar) gives

y T¡.) Also jT_1(7")is a regular neighborhood of [jD¡ in TV. By the uniqueness theorem,

{jT¡ and 7r_1(7") are isomorphic as stratified sets. Thus 9(UT,) and d(it-l(T')), which

is diffeomorphic to dT', are S-isomorphic. Furthermore, 3(y7',) with its corners
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rounded is just (a, • • • ar)-1(5), for small ö > 0. By the uniqueness theorem for al-

gebraic neighborhoods, (ai • • • ar)_1(d) is diffeomorphic to 37".

A similar argument shows the following result.

Application 4.3. Let M be a complex manifold, let

Ds = {zeC:\z\<0}

and let/: M -> D¡ be a proper analytic map with the origin as its only possible critical

value. Suppose further that /_1(0) is a union Dt \J • • • \J Dr of nonsingular codi-

mension one submanifolds with transverse intersections. Let T{ be a suitably small

neighborhood of 7>, and let T = T, U • • • U Tr. Then/"1^) for any 0 < 77 < ö is

diffeomorphic to Jwith its corners rounded.

5. A <g°° counterexample. We will find smooth algebraic manifolds K <= M and (ë"x>

functions ai, a2: M -> R with 0 as their only critical value and such that a, > 0 and

ajl(0) = K. However, aï\S) will not be diffeomorphic to a2\S) for 5 # 0.

Let K and K' be algebraic manifolds which are A-cobordant but not diffeomorphic.

Let M = K x R and let a\ : M -* R be the projection. Then aïl(S) is diffeomorphic

to K, for all 5.

The map a2 is defined as follows : By the usual trick there is a diffeomorphism of

K xRtoK' xR:

K   X   I

K'   X   I

where W is the cobordism of K to K'. This gives a diffeomorphism of Ä^ x (0, 00) to

K' x (0, 00). Extend this by reflection to a diffeomorphism of K x (R — 0) to K' x

(R — 0), and let ß: K x (R — 0) -> R be this map followed by the projection. Extend

ß to K x R by mapping Í x 0 to 0, and let a2 be a smoothing of ß [Church, pp.

95-96]. Then a2\S) is diffeomorphic to K' whenever ô # 0.

I thank Henry King for helpful comments.
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