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A CHARACTERIZATION OF BOUNDED SYMMETRIC DOMAINS

BY CURVATURE

by

J.  E. D'ATRI AND I. DOTTI MIATELLO

Abstract. This paper will prove that a bounded homogeneous domain is

symmetric if and only if, in the Bergman metric, all sectional curvatures are

nonpositive.

Introduction. It is well known that a bounded symmetric domain has nonpositive

sectional curvature in the Bergman metric. This paper is devoted to the converse,

namely, that a bounded homogeneous domain (equivalently, homogeneous Siegel

domain) which has nonpositive sectional curvature in the Bergman metric must be

a symmetric domain. The proof uses the techniques of normal j-algebras [13], as well

as results of Vinberg [16, 17], the first author [1-3], and, indirectly, Dorfmeister

[5, 6]. The body of the paper is in two sections. In the first, we derive certain relations

between the dimensions of the root spaces in an irreducible normal /algebra, which,

in the presence of the additional curvature assumption, show the equality of the di-

mensions of all root spaces corresponding to certain roots for which no multiple is

a root and the equality of the dimensions of all root spaces corresponding to roots

which are half of another root. In the second section, we show that the first dimension

result implies that the cone of the corresponding Siegel domain is self-dual while

the two dimension results together imply that the domain is quasi-symmetric. The

proof is then finished because [3] a quasi-symmetric domain with nonpositive sectional

curvature in the Bergman metric is known to be symmetric. We remark that some of

the subsidiary results mentioned above are not essentially new. However, for con-

sistency of presentation, it is necessary to have them in the language of normal j-

algebras and for that reason they are included. There is also overlap here with work

of Zelow (Lundquist) [21].

1. Throughout this paper, (s,j) will denote a normal /algebra with admissible form

to. This means that j is a finite dimensional real split solvable Lie algebra with almost

complex structure j: s -> s such that [X, Y] + j[jX, Y] + j[X, jY] = [jX, jY] and w

is a linear form on s such that the bilinear form <A", y> = a>[jX, Y] is symmetric,

positive-definite, and /invariant (note that the assumption that s is real split was

incorrectly omitted in [2]). Let n = [s, s] and let a be the orthogonal complement of

n in s. By the basic structure theorem of Pyatetskii-Shapiro [13], a is a commutative
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subalgebra and n can be written as the orthogonal (cf. [1]) direct sum of the root

spaces na = {Xen: [77, X] = a{H)X, Heg}. If ex.eR are the roots whose root

spaces are mapped into a by j, then R = dim a, the roots e1; ..., sR are linearly in-

dependent, and, with proper labelling, all roots are of the form \ek, ek,l <. k <, R;

i(em ± £n\ I <m<n< R. Further, jnSk/2 = b£j/2 and jnUm+tttV2 = n(£m_£(iV2, m<n

(note the misprint on this relation in [2]). Since each root space nCt is one dimensional,

we can once and for all fix Xk e ntk so that £k(jX,) = ok¡. We also need the following

nondegeneracy condition, proved as part of the structure theorem by Pyatetskii-

Shapiro [13].

(1) [X, Z] is nonzero for nonzero X e n(£4_£/)/2 and nonzero

Z e "¡7/2   +   Zj M(£;-£,)/2-
s>l

If 5 is a connected, simply-connected, Lie group with Lie algebra s, then < , >

induces a left invariant Riemannian metric (also denoted < , » on S which is Kahler

with respect to the left invariant complex structure induced by/ The associated Levi-

Civita connection V is computed by

(2)     2<V*X, Z> = <[AT, Y], Z> + <[Z, X], Y) + <[Z, Y], X},       X, Y,Zes.

In computing sectional curvatures, we will use

<ríy, z)z, y> = - <vzz, vYYy + <vrz, vzy>

- <V[r>2]Z, F>,       Y,Zes.

Proposition 1. Let (s,j) be a normal j-algebra.

(1.1) 7/ n(£i_£(V2 ^ 0, then dim n£(/2 á dim nH/2 for k < I and dim n(£/_£mV2 <

dim n(£t_£m)/2 for k < I < m.

(1.2) y/n(£;_£j/2 # 0, then dim n(£t_£/)/2 < dim n(£ll-£mV2 for k < I < m. If in addi-

tion, the sectional curvature of the left invariant metric induced by <, > is nonpositive,

then here we have equality of dimensions.

Proof. The inequalities are easy applications of (1). For example, (1.1) follows by

picking any nonzero X e n(£i_£;)/2 and considering the injections

ad X: n£(/2 -> n£t/2,

ad X: n(£(_£m)/2 -» nUk_tm)/2

and the inequality in (1.2) follows by picking any nonzero Z e n(£(_£m)/2 and consider-

ing the injection

ad Z: nUi_£/)/2 -> n(£4_£m)/2.

To prove equality in (1.2), consider any nonzero Y e n{c¡¡+em)l2 and compute the

sectional curvature determined by Y and Z using (3). Note that expressions such as

[[Y, Z], Z] and [Y, [Y, Z]] vanish because they would lie in root spaces corresponding
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to unallowed roots. Computing covariant derivatives from (2), one has

2 <V[r>z:Z, F> = <[[y, Z], Z], Y) + <[T, [Y, Z]], Z> + <[Y, Z], [Y, Z]>

= |[F, Z]\\2,

<yYz, vzy> = <vKz, vrz + \z, y]>

= livrzi|2 + i«[r, z], [z, y]> + <[[z, n, n z> + <[[z, y], z], y»
= livrzp - i||[y, Z]p.

Finally, as in [1], for any root a, we may define Haeg so that <77a, 77> = a(7/),

77 e a. Then for any F e na, (2) implies W V = < F, F>77a. Further,

Het = ^-,      <a-„ Xk} = u)(A-a).

Thus

<vyy vzz> = -i- <y, y><z, z><77£4+£m, t7£;_£b>

lm\nz\\2-
4.   ■  ùKXJ •

Using (3), we get

<r(y, z)z, y> = j-||y||2||Z||2-JLj + ||vrzp - ||[y, zjp.

Assuming nonpositive sectional curvature, we have [Y, Z] # 0. Thus we have the

injection

ad Z: «(ej+ej/2 -> ö(£jl+£;)/2

and

dim n(£t_£m)/2 = dim n(£4+£m)/2 < dim n(£4+£;)/2 = dim n(£t_£,)/2.

Remark. With the notation of the preceeding proposition, it is easy to see that

WZ must be in n(£4+£;)/2 from which it follows that VyZ = $[Y, Z]. Thus we have the

relation

<7<(y, z)z, y> = ^\\y\\2\\z\\2-±j - *.\\[y, zw

which is interesting since the norms involved depend only on d(Xk) and w{X,).

We now introduce notation which will be used throughout this paper, namely

(4) nu = dim n(£4_£/)/2,       nk = dim nH/2.

We emphasize that the dimensions here are over the reals and we allow the possibility

that some of these dimensions are zero. Also, we must recall two results proved in

[1, 2]:
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(5) If \(ek + £¡) is a root (i.e., nki / 0) for some pair of indices k < I and the

sectional curvature of the left invariant metric induced by < , > is nonpositive, then

cAXÙ < aiX,).
(6) The metric induced by < , > is Einstein if and only if

ÙA.XJ = c(l + xnm + T2»,»! + 7I] nm„)
\ 1 ¿Km ¿   n>m J

for some positive constant c.

Note that the Bergman metric on a bounded homogeneous domain (equivalently,

homogeneous Siegel domain) is Einstein and by results of Pyatetskii-Shapiro and

Vinberg, every bounded homogeneous domain with Bergman metric will be holo-

morphically isometric to a connected, simply-connected, split solvable Lie group 5

with left invariant complex structure and metric of the type we are considering. Hence

the Bergman metric will be equivalent to a metric on S defined by the equation in (6).

From now on, it will be convenient to assume that the domains we consider are

irreducible. Since properties such as being symmetric or having nonpositive sectional

curvature in the Bergman metric hold for a domain if and only if they hold for each

irreducible factor, this is not a real restriction. If the domain is irreducible, then

it is easy to see that the corresponding normal /algebra is also irreducible in the sense

that it cannot be decomposed as a sum of /invariant ideals. It is in this form that the

irreducibility assumption will be used.

Proposition 2. Let (s,j) be an irreducible normal j-algebra and suppose the metric

induced by < , ) is Einstein with nonpositive sectional curvature. Then there are con-

stants a and b such that

n¡ = a,        1 < i < R;        nk, = b,        1 < k < I < R.

In particular, a>(A",) is a constant, independent ofi= 1, ..., R.

Proof. The case R = 1 is trivial so assume R > 1.

We will first show that if niR = 0 for some i = 1, ..., R - 1, then s is reducible,

contrary to assumption. Clearly, if niR = 0 for all / < R, then s would decompose

into two /invariant ideals, one involving just the root eR and the other the roots

eh ..., eg-i. Thus the set 7 consisting of all indices i < R for which niR # 0 is non-

empty. By Proposition 1, niR ^ 0 implies

(7) n,- > nR,       nhi = nhR,       i el,   h < i.

For h < i with nonzero nhR, niR, we have nhi = nhR =£■ 0 and Proposition 1 gives

(8) nhi = nhR > niR,       h,iel,   h < i.

Let 7 be the complement of 7 in {1, ..., R — 1}. We will use Greek letters a, ß for

indices in 7and Roman letters h, i,j for indices in 7. From (7), we have

(9) nai = 0,       a el,    i el,   a < i.
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Fix an index i e I. Using (5), (6), and (9), the relation a>(A",) <, co(XR) becomes

or, using the second equation in (7),

-*-(",• - nR) + yj niß + JJ (n(j - njR) < 0

where each term on the left is nonnegative by (7) and (8). Thus we have

(10) niß = 0,       ßel,   i el,   i < ß,

(11) n,- = nR,       n0 = njR,       i, je I,    i < j.

If 7 is nonempty, (9) and (10) imply that s decomposes into two /invariant ideals,

one involving the roots ea, a el, the other involving the roots e¡, i e I (J {R}. This

proves our first claim.

To complete the proof of the proposition, set a = nR, b = niR. Since 7 = {1, ...,

R — 1}, (11) shows n,- = a for all i < R and (8) and (11) show that niR = n¡¡ = njR

for all i < j < R which clearly implies n,7 = b for all i < j < R.

Note that for R > 1, we showed b > 0 but a = 0 is always possible.

2. This section relies on the theory of homogeneous cones as developed by Köcher,

Rothaus, Vinberg, and Dorfmeister among others. It will be easiest for us to use

Vinberg [16,17] as a reference although some of this material was found independ-

ently by Köcher and Rothaus [8-10, 14]. Also, since the results we need are expressed

in terms of a homogeneous Siegel domain and its cone, we shall find it convenient to

fix a Siegel domain D corresponding to the normal /algebra (s, j) under considera-

tion. For this purpose, we first recall a construction of Pyatetskii-Shapiro [13].

Let (s,j) be a normal /algebra and let

L = Z¡ »., + 2 »(H+t,)/2,     U= £ 0H/2.

Let E = 2^¡Xk. Since jL is a subalgebra and L is an abelian ideal, we have for each

jXejL, a linear transformation e^'x on L. This gives us a group of linear trans-

formations, which we shall denote by exp adLjL, with Lie algebra jL. Letting Q be

the orbit of E under this group of transformations, one can show [13, pp. 66-73]

Q is a regular cone in L and that

D = {(X + iY, U):X,YeL,UeU,Y- \{jU, U] e Q}

is a homogeneous Siegel domain on which S acts simply transitively by affine trans-

formations. Further, the diffeomorphism S s g >-* g( iE, 0) e D is biholomorphic with

respect to the left invariant complex structure induced by /' on S and the natural

complex structure induced on D as an open set in Lc © U (the complex vector space

structure on U is given by j). As explained earlier, the Bergman metric on D then

corresponds to a left invariant metric on S with u> given by (6). There are two principal

results we need. First, we must compute the T-algebra associated to the cone Q which
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in turn requires the computation of the clan (left-symmetric) algebra of Q. (Compare

with [15] which computes the differential geometry of the cone starting from the

T-algebra.) Second, we need to show that the connectedness algebra structure on L

agrees with the algebra structure defined by Dorfmeister [5, 6] under the assumption

that the dimensions of the root spaces behave as in Proposition 2.

2.1. The T-algebra ofQ. According to [16, p. 360], one starts the construction of

the clan of Û by taking a simply transitive triangular affine group acting on Ü and a

base point in Ü. We will take exp ad^jL and E for this purpose. For any Y e Q, we

identify as usual the tangent space of Q at Y with the ambient vector space L. Then

any jXejL, thought of as the Lie algebra of exp adLjL, defines a vector field (jX)*

on Ü by

(jX)$ =  *       (exp ad tjX)(Y) = [jX, Y].
at  t=o

In particular, this gives a map from the Lie algebra of the transformation group to

the tangent space of the cone at E by

jX ~ iJX)*E = [jX, E) = j[X, E] - [XJE] - j[jXJE] = X

where here we have used the relations [L, L] = 0 and ad jE\L = I, ad jE\jL = 0. In

the notation of [16], this means that Dx = Lx = JX. Then one defines a product A

on L so that for X, YeL,

XA Y = (Lx)* = (JX)Ï = [jX, Y].

The algebra (L, A) is called the clan or left symmetric algebra of Q. Clearly Xk A

X, = [jXk, X¡\ = ok¡X¡ which means that each Xk is an idempotent of the clan. It is

easy to check that the decomposition

L   -   £ "U*+£,)/2
k<t

is a normal decomposition of the clan in the sense of [16, p. 373].

According to [16, p. 397], one now constructs the T-algebra corresponding to Q

as follows. For each space s(£4+£/)/2 with k < I in the normal decomposition of the

clan, pick an isomorphic vector space Akl and a fixed isomorphism X i-> X of n(£t+£/)/2

onto Au. For any X e L, let Xkl be the component of X in n(£4+£()/2. Let N be the

direct sum of the Akl, k < I, and define a product in tV by

XY=   Z   iXklA Ylmy
k<l<m

and an inner product by

it f) = iTr¿(Z H(íAy)A Z).

N with this grading, product, and inner product is called an TV-algebra, which is the

nilpotent part of the desired T-algebra A. A itself is a graded algebra ZM*; where,

for k < I, Akl is as already constructed and TV is a subalgebra. In particular, one has

(12) dim Akl = dim n(£4+£/)/2   for k ^ I.
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Since this is the only relation we need, we will not complete the construction of the

algebra structure.

2.2. The connectedness algebra ofQ. Let <f> be the characteristic function of the cone

Q [16, p. 347] (see also the A/-function, [8, p. 583]) which we may normalize so that

0(£) = 1. Let G(Q) = {g e GL(L) : g(Q) = Q}. The only property of <j> we need is that

(13) <pig(E)) = (detg)^   forgeGiQ).

Now the canonical Siegel domain D corresponding to the normal /algebra (s, j)

is determined by the cone Q and the Q-Hermitian function F: U x U -> Lc defined by

F(U, V) = \([jU, V] + i[U, V]).

Let G(Q, F) = {ge G(Q): 3geGL(U, C) with g(F(U, V)) = F(gU, ¿V) for all U,

VeU}.

Let B denote the Bergman kernel function of D. Then [5, 7,12] there is a holomor-

phic function rj on Q + iL such that

(14) B((Zi, Ui), (Z2, U2)) = ^(Zi - Z2) - F(Ui, U2)),       Z,- 6 L*,    Í7,- e U.

The basic property we need about tj is

(15) 7¡(g(E)) = (det gY^detvg^E)   for g e G(Û, F).

We emphasize that g is a complex linear transformation of the complex vector space

U and the determinant is taken accordingly.

Fix any element XeL and set

(16) g = e*A¿x,       g = ea<V*.

Then g is in G(Q, F) (with g satisfying the required relation with F) and the set of all

such transformations forms a subgroup of G(Q, F) which acts transitively on ß by

definition. Let a.jL -> Q denote projection with respect to the root space decomposi-

tion. Since

<[«(£4-£,V2> n,m/2], n£m/2> = 0

we see that

(17) Tr ad^AT = Tr adua(jX).

Similarly

<["(£*-f,y2> n(im+CnV2], «(£m+£o)/2> = <[«(£4-£,)/2, oeJ, n£m> = 0

so

(18) Tr adJX = Tr ad^/T).

But, for Heg, one computes

(19) Tr adjjH = £y£*(T7) dim n£t/2,
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(20) Tr ad£77 = ££,(77) + £ Uek + £/)(77) dim nUk+e,)/2.
k<t *.

From now on, we assume that

(21) dim n£i/2 = a,       I < i < R;       dim B(£4+£;)/2 = b,       1 < k < I <, R,

for some constants a and b. Then for H e a, (19) and (20) become

(22) Tr adrjH = i-a££*(77),

(23) Tr ad¿77 = (l + ±-b(R - l))££i(77).

Combining (16)-(18), (22), and (23) (and recalling that a = n¡ is real dimension),

we have

det g = eTr "^J* = (eSiz/WAD^d+^Ä-D/a^

|det dl2 = det g = <?Tr adw* = (eSe¿'*x))Y'2.

Thus we have

(24) i] = Tp{E)df   for some constant c.

Now one defines [16, p. 350; 8, p. 585] a Riemannian metric (,) on the cone Ü so

that in a Euclidean coordinate system x1, ..., x" on the vector space L, the metric

tensor is given by

Identify L with the tangent space to L at E and for each YeL, let Y° denote the

translation invariant vector field on L which agrees with Y at E. Then [16, p. 350;

10, p. 194] one defines a product on L, denoted □, by

(26) yiD y2=-(vroy20)^

where V is the Riemannian connection for (,). L with the product □ is called by

Vinberg the connectedness algebra of Ü (perhaps connection algebra would be a

better term). For Yh Y2, Y3 e L, one has [Yf, Y^\ = 0 and

-2(y,D Y2, YZ)E = 2(VV°n Y%h

= (yi-(yi n - Yun id + n-in rs»*
(27) = an- n- n-n- n- y°z + n- n- ïD-in <f)E

= iY\-n-Yl\n<p)E.

Now we want to compare this result with the product defined in [5, p. 14; 6, p.

539]. First define a bilinear form a on L by

a(Yi, Yz) = (n-n-In t¡)e.

Notice that under assumption (21), we have a = c(,)E by (24). The new product is
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defined by the requirement that

(28) a( Y i y2, y3) = - \( Y\. Y% • Y% ■ In V)E.

Comparing (27) with (28), it is clear that these products agree under assumption (21).

Remark. The product defined by (28) is exactly the product defined by (26) when

D is the tube domain over Û since then the metric defined in (25) is just a constant

multiple of the Bergman metric. When D is not a tube domain, the Bergman metric

on D induces a metric on the tube domain D' considered as a submanifold of D.

This induced metric is generally quite different from the Bergman metric of D'. The

point here is that under assumption (21), these two metrics on the tube domain D' do

agree up to constant multiple. Comparing results of [3 and 21], one can also see the

product defined by (28) agrees with one defined by Satake in the quasi-symmetric

case.

2.3. Conclusions.

Proposition 3. The domain D corresponding to the irreducible normal j-algebra

(s,j) is quasi-symmetric if and only if the dimensions of the root spaces of s satisfy (21).

(Compare with Zelow (Lundquist) [21].)

Proof. The notion of quasi-symmetic as used here was introduced by Satake. We

will use the formulation of Dorfmeister [5,6].

Suppose (21) holds. From (12), we know the T-algebra of the associated cone Q

satisfies dim Ak, = b for all k # /. According to [17, p. 73], this means Û is self-dual

with respect to some inner product on L. Again according to [17], this implies that the

connectedness algebra (L, □) is Jordan. By the results of (2.2), the connectedness

algebra structure on L agrees with that defined in [5, 6] which is therefore also Jordan.

This implies the domain is quasi-symmetric.

Suppose D is quasi-symmetric and irreducible. The cone is then irreducible and

self-dual so the result of Vinberg says nkl = b for k < I. But for a quasi-symmetic

irreducible domain, one knows w(Xk) = cu(X,) where oj gives the Bergman metric

[3, 21]. By (6), we have n, = a for all /'.

Theorem. Suppose the domain D has nonpositive sectional curvatures in the Bergman

metric. Then D is symmetric.

Proof. As explained earlier, we may assume D is irreducible. By Proposition 2,

assumption (21) holds. By Proposition 3, the domain is quasi-symmetric. By [3], a

quasi-symmetric domain with nonpositive sectional curvature in the Bergman metric is

symmetric.

Remarks. We would like to close with what we feel are some remaining interesting

open questions concerning the curvature of homogeneous domains.

(1) How does one characterize the homogeneous Siegel domains whose holomorphic

sectional curvatures in the Bergman metric are all nonpositive? That this is not true

for all domains seems actually to first occur in [11]; see also [2]. From [19, 20], one

knows this holds for all quasi-symmetric domains, but from [2, 3] one also knows

there are non-quasi-symmetric domains with this property.
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(2) According to [3] and (1.2) there are some conditions on the normal /algebra

(s, j) which guarantee that there is no choice of a giving a Kahler metric on the as-

sociated domain D with nonpositive sectional curvature. On the other hand, there

are normal /algebras corresponding to nonsymmetric domains in which such a

choice of a (and corresponding Kahler metric) does exist. Can one characterize the

homogeneous Siegel domains for which there exists a transitive group G of biholo-

morphic transformations and a G invariant Kahler metric with nonpositive sectional

curvature? In such a situation, how big is the isometry group?
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