WEAKENING THE TOPOLOGY OF A LIE GROUP

BY

T. CHRISTINE STEVENS

ABSTRACT. With any topological group (G, \mathcal{U}) one can associate a locally arcwise-connected group (G, \mathcal{U}^*) , where \mathcal{U}^* is stronger than \mathcal{U} . (G, \mathcal{U}) is a weakened Lie (WL) group if (G, \mathcal{U}^*) is a Lie group. In this paper the author shows that the WL groups with which a given connected Lie group (L, \mathcal{F}) is associated are completely determined by a certain abelian subgroup H of L which is called decisive. If L has closed adjoint image, then H is the center Z(L) of L; otherwise, H is the product of a vector group V and a group J that contains Z(L). J/Z(L) is finite (trivial if L is solvable). We also discuss the connection between these theorems and recent results of Goto.

- 1. Introduction. Gleason and Palais [1] have shown how to associate with any topological group (G, \mathcal{U}) a locally arcwise-connected group (G, \mathcal{U}^*) and proved that the group thus associated with a finite-dimensional metric group must be Lie. In this paper we describe the groups for which the associated locally arcwise-connected group is a connected Lie group. As we shall see in §3, this problem is equivalent to the following question: Given a connected Lie group (L, \mathscr{T}) , in what ways can \mathscr{T} be weakened and remain Hausdorff? Our principal result is that L contains an abelian subgroup H which is decisive in the sense that the ways in which \mathcal{F} can be weakened and remain Hausdorff are completely determined by the ways in which the relative topology for H can be weakened while remaining Hausdorff and keeping finitely many characters of H continuous. The nature of H depends upon a crucial distinction between (CA) analytic groups (those with closed adjoint image) and non-(CA) analytic groups. Our proof in the latter case employs a homomorphism used by Goto [3] and relies upon structure theorems of Goto [4] and Zerling [18]. The connection between the present paper and certain results which were recently obtained by Goto [5] is discussed in §8. We also note that Hudson's examination of arcwise-connected, finite-dimensional groups [7] leads him to consider, from a different perspective, questions similar to those studied here.
- **2.** Notation and conventions. A topology \mathscr{U} for an abstract group G will be assumed to make the function $f: G \times G \to G$ given by $f(x, y) = xy^{-1}$ continuous, but \mathscr{U} need not be Hausdorff. For a subgroup H of G, \mathscr{U}_H will denote the relative topology

Key words and phrases. Lie group, locally arcwise-connected group, (CA) analytic group.

Presented to the Society by abstract on October 23, 1978, and at the Annual Meeting in Biloxi on January 25, 1979; received by the editors April 28, 1980 and, in revised form, July 13, 1981. 1980 Mathematics Subject Classification. Primary 22A05; Secondary 22E15, 22E25.

induced by \mathscr{U} . Since several topologies for the same abstract group G may be under simultaneous consideration, topological statements about G will contain references to the particular topology involved. If (G, \mathscr{U}) is a topological group, then $T(G, \mathscr{U})$ will denote the collection of all Hausdorff group topologies for G which are weaker than \mathscr{U} . Analytic groups, but not Lie groups, are always connected, and Lie groups do not necessarily satisfy the second axiom of countability.

- **Z**, **R**, T^q , and Gl(V) denote, respectively, the integers, the real numbers, the q-dimensional toroid, and the linear automorphism group of a vector space V. T^q , Gl(V), and finite groups will be assumed to have their usual topologies, unless stated otherwise. The relative topology for a subgroup A of Gl(V) will be called the *full-linear-group* (flg) topology for A. The symbol \square marks the end of a proof.
- 3. Preliminary definitions and main results. Let (G, \mathcal{T}) be a topological group. According to [1, pp. 634–635], the collection of all \mathcal{T} -arc-components of \mathcal{T} -open subsets of G is the basis for a locally arcwise-connected group topology \mathcal{T}^* for G. (G, \mathcal{T}^*) is the locally arcwise-connected (l.a.c.) group associated with (G, \mathcal{T}) . For easy reference, we list here some of the properties of l.a.c. groups that are proved in [1].
- 3.1. THEOREM (GLEASON AND PALAIS [1, 3.2, 4.3, 7.3]). Let (G, \mathcal{F}) be a Hausdorff topological group. Then
 - (i) \mathcal{T}^* is stronger than \mathcal{T} , and $(\mathcal{T}^*)^* = \mathcal{T}^*$.
 - (ii) (G, \mathcal{T}) and (G, \mathcal{T}^*) have the same arcs.
- (iii) The \mathcal{F}^* -connected components of a \mathcal{F}^* -open subset X of G are the \mathcal{F} -arc-components of X.
 - (iv) If (G, \mathcal{T}) is a second-countable Lie group and $\mathcal{U} \in T(G, \mathcal{T})$, then $\mathcal{U}^* = \mathcal{T}$.
- (v) If (G, \mathcal{T}) is separable, metrizable, and of finite topological dimension, then (G, \mathcal{T}^*) is a Lie group.

Hudson observes that the assumption of metrizability in (v) may be dropped if by "dimension" one means cohomological dimension [6, p. 68]. We will say that (G, \mathcal{T}) is a weakened Lie (WL) group if (G, \mathcal{T}^*) is a Lie group and \mathcal{T} is Hausdorff. From (iv) we see that the WL groups with which a given analytic group (L, \mathcal{T}) is associated are all those of the form (L, \mathcal{U}) , where $\mathcal{U} \in T(L, \mathcal{T})$.

We now introduce the notion of "decisiveness," which is central to our main result. Let (A, \mathscr{A}) be a topological group with an abstract subgroup B, and let I(b) denote conjugation by an element b of B. (Recall that group topologies are not assumed to be Hausdorff.) If \mathscr{B} is a topology for B that makes the function $f: A \times B \to A$, defined by $f(a, b) = bab^{-1}$, $(\mathscr{A} \times \mathscr{B}, \mathscr{A})$ -continuous, then $\mathscr{A} \times \mathscr{B}$ is a group topology for the semidirect product $A \times_I B$. We define a homomorphism α of $A \times_I B$ onto A by $\alpha(a, b) = ab$, and the unique topology for A which makes α continuous and open is called the *standard extension* of \mathscr{B} to A, denoted $\mathscr{E}(\mathscr{B})$. We observe that a basis for the neighborhoods of the identity in $\mathscr{E}(\mathscr{B})$ is the collection of all PN, where P and N are, respectively, \mathscr{A} - and \mathscr{B} -neighborhoods of e. $\mathscr{E}(\mathscr{B})$ will be Hausdorff if \mathscr{A} is Hausdorff, B is \mathscr{A} -closed, and $\mathscr{B} \in T(B, \mathscr{A}_B)$.

When \mathscr{B} is weaker than \mathscr{A}_B , $\mathscr{E}(\mathscr{B})$ may be thought of as "weakening the topology

- of A by weakening that of B"; we are interested in situations where this is the *only* way in which \mathscr{A} can be weakened. If B is \mathscr{A} -closed and if $\mathscr{U} = \mathscr{E}(\mathscr{U}_B)$ for every $\mathscr{U} \in T(A, \mathscr{A})$, we will say that B is *decisive* in (A, \mathscr{A}) . We may now state our main result, the proof of which is contained in §§4-6.
 - 3.2. MAIN THEOREM. Let (L, \mathcal{F}) be a connected Lie group with Lie algebra l.
- (i) L contains an abelian decisive subgroup H of the form $\mathbb{R}^p \times T^q \times \mathbb{Z}^r \times D$, where p, q, and r are nonnegative integers and D is finite. The adjoint image of H is contained in a toroid Q.
- (ii) The WL groups with which (L, \mathcal{F}) is associated are precisely those of the form $(L, \mathcal{E}(\mathcal{B}))$, where $\mathcal{B} \in T(H, \mathcal{F}_H)$ and the restriction of the adjoint representation, Ad: $H \to Q$, is \mathcal{B} -continuous.
- (iii) If (L, \mathcal{F}) is (CA)—that is, if Ad(L) is a flg-closed subgroup of Gl(l)—then H is the center of L.
- (iv) If (L, \mathcal{T}) is not (CA), then $H = J \times V$, where V is a vector group, J contains the center Z(L) of L, and J/Z(L) is finite (trivial if L is solvable).

We conclude this section with an important lemma about standard extensions.

- 3.3. Lemma. Let (A, \mathcal{A}) be a topological group with an abstract subgroup B. Let \mathscr{C} be the collection of all topologies \mathscr{A}' for A that are weaker than \mathscr{A} and such that the function $h: A \times A \to A$ given by $h(a, g) = gag^{-1}$ is $(\mathscr{A} \times \mathscr{A}', \mathscr{A})$ -continuous. If $\mathscr{U} \in \mathscr{C}$ and $\mathscr{U} = \mathscr{E}(\mathscr{U}_B)$, then $\mathscr{A}' = \mathscr{E}(\mathscr{A}'_B)$ for every \mathscr{A}' in \mathscr{C} which is stronger than \mathscr{U} .
- PROOF. By hypothesis, the homomorphism $\alpha \colon A \times_I B \to A$ given by $\alpha(a, b) = ab$ is $(\mathscr{A} \times \mathscr{U}_B, \mathscr{U})$ -open and continuous. Let $\mathscr{A}' \in \mathscr{C}$ be stronger than \mathscr{U} , and let $\{g_i \colon i \in I\}$ be a net in A which \mathscr{A}' -converges to e. Then $\{g_i\}$ also \mathscr{U} -converges to e and thus has a subnet $\{g_{i(j)} \colon j \in J\}$ which lifts to a net $\{(a_j, b_j) \colon j \in J\}$ in $A \times_I B$ that is $\mathscr{A} \times \mathscr{U}_B$ -convergent to e. Since $b_j = a_j^{-1}g_{i(j)}$ and \mathscr{A}' is weaker than \mathscr{A} , it follows that $b_j \to e$ in \mathscr{A}' , and thus α is $(\mathscr{A} \times \mathscr{A}'_B, \mathscr{A}')$ -open. \square
- **4. Decisive subgroups.** The purpose of this section is to prove the first three parts of Main Theorem 3.2; the proof of part (iv) is reserved for §§5 and 6. We begin by proving that every WL group has a continuous adjoint representation.
- Let (G, \mathcal{U}) be a WL group, and let L be the \mathcal{U} -arc-component of the identity. By 3.1, $(L, (\mathcal{U}^*)_L)$ is an analytic group (whose Lie algebra we denote by I) and $(\mathcal{U}^*)_L = (\mathcal{U}_L)^*$. G acts by inner automorphism on L, and we denote by I and Ad the corresponding homomorphisms of G into Aut(L) and Gl(I). If Aut(I) has the generalized compact-open topology, then I and Ad are \mathcal{U}^* -continuous. We now show that they are also \mathcal{U} -continuous.
- 4.1. LEMMA. Let $\lambda: [0, 1] \to L$ be a \mathcal{U}_L^* -arc with initial point e and let $\{x_j: j \in J\}$ be a net in G which \mathcal{U} -converges to $x \in G$. Then $\{x_j \ \lambda(t)x_j^{-1}: j \in J\}$ \mathcal{U}_L^* -converges to $x\lambda(t)x^{-1}$, uniformly in t.
- PROOF. Let N be the \mathcal{U}_L -arc-component of e in a \mathcal{U}_L -open neighborhood U of e, and let U_1 be a \mathcal{U}_L -open neighborhood of e such that $U_1^2 \subseteq U$. For each $j \in J$, define

a \mathcal{U}_L -arc β_i : $[0, 1] \to L$ by

$$\beta_i(t) = x\lambda(-t)x^{-1}x_i\lambda(t)x_i^{-1}.$$

For each s in [0, 1], there exist an open neighborhood I_s of s and an element j_s of J such that

$$(1) x\lambda(-s)x^{-1}x_i\lambda(t)x_i^{-1} \in U_1$$

and

$$(2) x\lambda(-t)\lambda(s)x^{-1} \in U_1$$

whenever $t \in I_s$ and $j \ge j_s$. From (1) and (2) we see that $\beta_j(t)$ is in U if $t \in I_s$, $j \ge j_s$. By compactness of the unit interval, there is a $j^* \in J$ such that $\beta_j(t) \in U$ for all $t \in [0, 1]$ and for all $j \ge j^*$. For such j, β_j will then be an arc in U that contains the identity, and therefore β_j is in fact an arc in N. Thus $\beta_j(t) \in N$ for all $t \in [0, 1]$ and for all $j \ge j^*$, and the lemma is proved. \square

4.2. Proposition. Ad: $G \to Gl(l)$ and $I: G \to Aut(L)$ are \mathscr{U} -continuous.

PROOF. Let $\{x_j : j \in J\}$ be a net in G which \mathscr{U} -converges to e, and let W be an open neighborhood of 0 in l such that the exponential mapping exp: $l \to L$ is a diffeomorphism on 2W. To prove that Ad is \mathscr{U} -continuous, it is sufficient to show that $Ad(x_j)(w) \to w$ for any $w \in W$. From 4.1 we know that there is an element j^* of J such that, if $j \geq j^*$, then

$$\exp(t \operatorname{Ad}(x_i)(w)) = x_i(\exp tw) x_i^{-1} \in \exp W$$

for all $t \in [0, 1]$, and it follows that $Ad(x_j)(w) \in W$ if $j \ge j^*$. Lemma 4.1 also implies that, in \mathcal{U}_L^* ,

$$\exp(\operatorname{Ad}(x_i)(w)) = x_i(\exp w)x_i^{-1} \to \exp w.$$

Since exp is a diffeomorphism on W, we conclude that $Ad(x_j)(w) \to w$ in l, as desired.

To prove that I is \mathscr{U} -continuous, we simply observe that the differential operator d is a topological group isomorphism of $\operatorname{Aut}(L)$ onto a subgroup of $\operatorname{Gl}(l)$. This completes the proof of 4.2. \square

We now deduce an important criterion by which decisive subgroups of analytic groups may be identified.

4.3. Lemma. Let (L, \mathcal{T}) be an analytic group, B a \mathcal{T} -closed subgroup of L, and \mathcal{U} the weakest (not necessarily Hausdorff) topology for L that makes Ad \mathcal{U} -continuous. If $\mathcal{U} = \mathcal{E}(\mathcal{U}_B)$, then B is decisive in L.

PROOF. According to 3.1 and 4.2, every topology in $T(L, \mathcal{F})$ is stronger than \mathcal{U} . We may then apply 3.3, with A = L and $\mathcal{A} = \mathcal{F}$. \square

If (L, \mathcal{T}) is a (CA) analytic group, then Ad(L) is closed in Gl(l). If (L, \mathcal{T}) is not(CA), then Gl(l) contains a toral subgroup Q such that the flg-closure C of Ad(L) equals Ad(L)·Q. (See, for example, Goto [2, Theorem 1].) Thus in either case, $C = \text{Ad}(L) \cdot Q$, where Q is a (possibly trivial) toral subgroup of Gl(l).

4.4. PROPOSITION. Let (L, \mathcal{T}) be an analytic group with Lie algebra l, let C be the flg-closure of Ad(L), and let Q be a (possibly trivial) toral subgroup of Gl(l) such that $C = Ad(L) \cdot Q$. Then $Ad^{-1}(Q)$ is an abelian decisive subgroup of L and has the form $\mathbb{R}^p \times T^q \times \mathbb{Z}^r \times D$, where p, q, and r are nonnegative integers and D is finite.

PROOF. Let $H = \operatorname{Ad}^{-1}(Q)$. Because $d: \operatorname{Aut}(L) \to d(\operatorname{Aut}(L))$ is a topological isomorphism whose image is flg-closed and includes $\operatorname{Ad}(L)$, there is a toral subgroup K of $\operatorname{Aut}(L)$ such that Q = dK, and thus $H = I^{-1}(K)$. According to Goto [3, Lemma 4], each automorphism in K leaves H pointwise fixed. In particular, since $I(H) \subseteq K$, H is abelian and therefore has the form $\mathbb{R}^p \times T^q \times E$, where p and q are nonnegative integers and E is discrete. We now invoke Theorem 1' and the subsequent remark in Mostow [8] to show that E is finitely generated and thus equals $\mathbb{Z}^r \times D$, where r is a nonnegative integer and D is finite.

It remains to show that H is decisive in L. If $\mathscr U$ is the weakest topology for L which makes $\operatorname{Ad}(\mathscr U,\operatorname{flg})$ -continuous, then it suffices, by 4.3, to show that $\mathscr U=\mathscr E(\mathscr U_H)$. To do so, we form the semidirect product $L \otimes K$ and define a homomorphism $\psi\colon L \otimes K \to C$ by $\psi(x,k)=\operatorname{Ad}(x)\cdot dk$ for $x\in L$, $k\in K$. If $\mathscr W$ is the topology which K inherits from the generalized compact-open topology, then ψ is surjective, $(\mathscr T\times\mathscr W,\operatorname{flg})$ -continuous, and thus $(\mathscr T\times\mathscr W,\operatorname{flg})$ -open onto its image C. It follows that a basis for the neighborhoods of e in the flg-topology for C is the collection of all $\operatorname{Ad}(P)\cdot dN$, where P is a $\mathscr F$ -neighborhood of e in E and E is the collection of all $\operatorname{Ad}(P)\cdot dN$. Now for each such E and E is the fact that E do so homomorphism implies that

$$Ad^{-1}(Ad(P) \cdot dN) = P \cdot Ad^{-1}(dN).$$

Since $\operatorname{Ad}^{-1}(dN)$ is simply a \mathscr{U}_H -neighborhood of e, we have shown that $\mathscr{U} = \mathscr{E}(\mathscr{U}_H)$. \square Proposition 4.4 proves part (i) of the Main Theorem, and we may now proceed to prove parts (ii) and (iii). Let H be any abelian decisive subgroup of (L, \mathscr{T}) . We will call a topology \mathscr{B} for H allowable if $\mathscr{B} \in T(H, \mathscr{T}_H)$ and the restriction $\operatorname{Ad}: H \to \operatorname{Gl}(l)$ is \mathscr{B} -continuous. If (L, \mathscr{U}) is a Hausdorff topological group and $\mathscr{U}^* = \mathscr{T}$, then $\mathscr{U} = \mathscr{E}(\mathscr{U}_H)$, and by 4.2 \mathscr{U}_H is an allowable topology for H. On the other hand, if \mathscr{B} is such a topology then $\mathscr{E}(\mathscr{B})$ is a group topology for L which is in $T(L, \mathscr{T})$ and by 3.1(iv) (L, \mathscr{T}) is the l.a.c. group associated with $(L, \mathscr{E}(\mathscr{B}))$. To prove part (iii) of 3.2, we simply note that when (L, \mathscr{T}) is (CA) we may choose the trivial toroid for Q, so that the decisive subgroup $\operatorname{Ad}^{-1}(Q)$ will be the center of L.

5. Subgroups of $Gl(n, \mathbb{R})$. Before proving part (iv) of the Main Theorem, which is the purpose of §6, we must examine in detail the structure of the flg-closure of Ad(L) when (L, \mathcal{T}) is not (CA). The basis for our discussion is a result in Goto [4], which we now describe. Let (G, \mathcal{U}) be an analytic subgroup of $Gl(n, \mathbb{R})$ which is not flg-closed, with C denoting the flg-closure of G. Let N be any subgroup of G which is maximal among those that are \mathcal{U} -connected, flg-closed, and contain the commutator subgroup D of G. (Such groups exist because, by Lemma 7 in [2], D is flg-closed.) If T_1 is the radical of a maximal flg-compact subgroup of C, let T_2 be the flg-connected component of the identity in $N \cap T_1$ and T a toroid such that $T_1 = T_2 \cdot T$, $T_2 \cap T = \{e\}$.

In our notation, Goto's theorem may be stated as follows:

5.1. THEOREM (GOTO [4, P. 197]). $N \cap T$ is finite, $C = N \cdot T$, and G contains a \mathscr{U} -closed vector subgroup W, the flg-closure of which is T, such that $G = N \cdot W$, $N \cap W = \{e\}$. C is $(flg, flg \times \mathscr{U}_N)$ -diffeomorphic with $T \times N$.

Although the groups N and T are not in general unique, we will prove the following.

- 5.2. Proposition. If N and T are chosen in the manner described, then
- (i) the dimensions of N, W, and T are uniquely determined;
- (ii) the finite groups $N \cap T$ are all isomorphic;
- (iii) $N \cap T$ is trivial if G is solvable.

The proposition depends upon a lemma about abelian analytic groups, the straightforward proof of which we omit.

5.3. LEMMA. Let (A, \mathcal{A}) be an abelian analytic group with a dense analytic subgroup (B, \mathcal{B}) . Let C be a maximal \mathcal{B} -connected and \mathcal{A} -closed subgroup of B. Then the dimension of C equals the sum of the dimensions of the vector part of (A, \mathcal{A}) and the compact part of (B, \mathcal{B}) , and the intersection of C with the compact part of (A, \mathcal{A}) is independent of the choice of C.

PROOF OF 5.2. Let \mathscr{U}' and \mathscr{F}' denote the quotient topologies for G/D and C/D obtained from \mathscr{U} and the flg-topology. To prove (i) it will suffice to show that N/D is maximal among the subgroups of G/D which are \mathscr{U}' -connected and \mathscr{F}' -closed, for then 5.3 will assure that the dimension of N/D, and thus of N, is uniquely determined (N/D) must be \mathscr{F}' -closed because it is the inverse image of the identity under the projection $C/D \to C/N$, which is continuous if each group is given the quotient topology from the flg-topology.) That N/D is, in fact, maximal follows from the maximality of N and the \mathscr{U} -connectedness of D.

To prove (ii), we first show that the intersection $N \cap T_1$ is, for given T_1 , independent of the choice of N. For if N_1 and N_2 are two choices for N, then N_1/D and N_2/D are, as we have seen, maximal among the \mathscr{U} -connected subgroups of G/D which are \mathscr{F} -closed, and so 5.3 implies that the intersections of N_1/D and N_2/D with the image of T_1 in C/D are equal. Therefore $N_1 \cap DT_1 = N_2 \cap DT_1$, whence $N_1 \cap T_1 = N_2 \cap T_1$.

Since T_1 , as the radical of a maximal fig-compact subgroup of C, is determined up to conjugation by an element of C, and since N is normal in C, the groups $N \cap T_1$ are thus all fig-isomorphic, regardless of the choices of N and T_1 . We complete the proof of (ii) by showing that, for fixed N and T_1 , the isomorphism class of the finite group $N \cap T$ is independent of the choice of T. This follows from the fact that, for any choice of T, $N \cap T_1 = T_2(N \cap T)$ and $T_2 \cap (N \cap T) = \{e\}$.

Finally, we prove (iii). It clearly suffices to show that $N \cap T_1$ is flg-connected when G is solvable. Since G and C have the same commutator subgroup D, C also is solvable. Applying Proposition 2.4 of Van Est [17], we find that $G = B \cdot A$, where B is a flg-closed and simply-connected group containing D, the flg-closure F of A is a toroid, $C = B \cdot F$, and $B \cap F = \{e\}$. We may choose N and a maximal flg-compact subgoup

K of C in such a way that $B \subseteq N$, $F \subseteq K$. That the latter inclusion is in fact an equality follows from the easily verified equation $K = (B \cap K) \cdot F$ and the fact that B, as a simply-connected and solvable Lie group in the flg-topology, contains no nontrivial compact subgroups. We may therefore let T_1 equal F, and the proof is completed by observing that $N \cap F$ must be flg-connected, since $N = B(N \cap F)$, N and B are flg-connected, and $B \cap (N \cap F) = B \cap F$ is trivial. \square

Applying 5.1 and 5.2 to the adjoint image of a non-(CA) analytic group, we obtain the following.

- 5.4. COROLLARY. Let (L, \mathcal{T}) be a non-(CA) analytic group, \mathcal{U} the Lie topology for Ad(L), and C the flg-closure of Ad(L). If N is a maximal \mathcal{U} -connected and flg-closed subgroup of Ad(L) containing the commutator subgroup of Ad(L), T_1 is the radical of a maximal flg-compact subgroup of C, and T is a toroid in T_1 complementary to the flg-connected component of the identity in $N \cap T_1$, then Ad(L) contains a \mathcal{U} -closed vector subgroup W, whose flg-closure is T, such that Ad(L) = $N \cdot W$, $C = N \cdot T$, and $N \cap W$ is trivial. Moreover, $N \cap T$ is a finite group whose isomorphism class does not depend on the particular choices of N and T. $N \cap T$ is trivial if Ad(L) is solvable, and the dimensions of N, W, and T are independent of the choices of N and T.
- 6. The non-(CA) case. The proof of part (iv) of the Main Theorem, which is contained in this section, relies not only upon 5.4 but also upon Zerling's structure theorem for non-(CA) analytic groups [18], which says that every such group is the semidirect product of a (CA) analytic group and a vector group. More precisely, the relevant portion of Zerling's results may be stated as follows.
- 6.1. THEOREM (ZERLING [18, THEOREM 2.1]). With notation as in 5.4, let P be the \mathcal{F} -connected component of the identity in $Ad^{-1}(N)$. Then (P, \mathcal{F}_P) is (CA) and contains the center of L, and Aut(P) contains a vector subgroup V with compact closure such that, if \mathcal{V} is thevector topology for V, then P(S) V is $(\mathcal{F}_P \times \mathcal{V}, \mathcal{F})$ -isomorphic with L. If we identify L with P(S) V, then Ad(V) = W, and V and W have the same dimension.

Adopting the notation of 5.4 and 6.1, we now combine these results with 4.4 to prove part (iv) of the Main Theorem. Since $C = \operatorname{Ad}(L) \cdot T$ by 5.4, it follows from 4.4 that $H = \operatorname{Ad}^{-1}(T)$ is an abelian decisive subgroup of L. If we let J equal $P \cap \operatorname{Ad}^{-1}(N \cap T)$, a trivial computation verifies that $H = J \otimes V$. Since H is abelian, V must act trivially on J, whence $H = J \times V$. To complete the proof, we note that $\operatorname{Ad}(P)$ must equal all of N, since $N \cap \operatorname{Ad}(V) = N \cap W$ is trivial. Therefore $\operatorname{Ad}(J) = N \cap T$ and J/Z(L) is isomorphic to the finite group $N \cap T$. If L is solvable, then so is $\operatorname{Ad}(L)$, and 5.4 assures that J/Z(L) is trivial. This completes the proof of the Main Theorem. We may also note that, according to 5.4 and 6.1, the dimension of V and the isomorphism class of J/Z(L) are independent of the particular choices of N and T.

7. Examples. We now give an example of a non-(CA) analytic group whose center, in the notation of the Main Theorem, has index two in the group J. Define an action of $SU(2) \times T^2$ on \mathbb{C}^3 by letting $(A, e^{i\theta}, e^{i\psi})$, where $A \in SU(2)$, correspond to the 3×3 complex matrix in Figure 1. The semidirect product $G = \mathbb{C}^3$ (S) $(SU(2) \times T^2)$

is then a Lie group in its usual topology. If μ is some fixed irrational number, then $L = \mathbb{C}^3$ (§) $(SU(2) \times \mathbb{R})$ becomes a dense Lie subgroup of G by means of the injection α : $(z, A, t) \mapsto (z, A, e^{it}, e^{i\mu t}), z \in \mathbb{C}^3, A \in SU(2), t \in \mathbb{R}$. L has trivial center and thus cannot, by Theorem 2.2.1 of Van Est [16], be (CA).

By considering the action of G on L by inner automorphism, one verifies that G/Z(G) is, in the quotient topology, isomorphic with the flg-closure of Ad(L), so that we may regard the adjoint representation of L as the composition of α with the projection $\pi: G \to G/Z(G)$. Letting $N = \pi(\mathbb{C}^3 \times SU(2) \times 1 \times 1)$ and $T_1 = \pi(0 \times I \times T^2)$, we find that $N \cap T_1$ is a two-element group. Therefore $T = T_1$ and $Ad^{-1}(T) = 0 \times J \times \mathbb{R}$, where J is the group generated by -I.

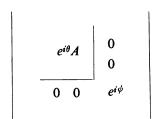


FIGURE 1

We also observe that the reduction to the abelian case which the Main Theorem effects does not prevent WL groups from having rather peculiar topologies. Although the author will undertake a systematic study of "unusual" topologies for abelian groups in a subsequent paper [15], we may note here that any sequence in \mathbb{R}^n or \mathbb{Z}^n which "goes to infinity sufficiently fast" will, in an appropriately weakened topology, converge to 0. For example,

$$d(n, m) = \inf \{ \sum |c_i|/i|n - m = \sum c_i(i! + 1), c_i \in \mathbb{Z} \}$$

defines a metric on **Z** in which $i! + 1 \rightarrow 0$. Other examples of unusual topologies for **Z** and \mathbb{R}^n can be found in [9–14].

8. Related results. After writing this paper, the author learned of related but independent results obtained by Goto [5], and in this section we will sketch the connection between his work and ours. Let (L, \mathcal{T}) and (G, \mathcal{U}) be, respectively, an analytic and a topological group, and let $f: L \to G$ be a continuous, injective homomorphism. Although the course of Goto's analysis parallels our own in certain respects, his primary interest is a description of the set $\overline{f(L)}$, while our Main Theorem can be viewed as a characterization of the topology of f(L). Changing Goto's notation to distinguish the gm-torus in [5] from our own decisive subgroup H, we can summarize his principal results as follows: If v(J) is the vector part of the gm-torus J, then $\overline{f(L)} = f(L) \overline{f(v(J))}$, and f is an imbedding (i.e., a homeomorphism of L onto f(L)) if and only if f|v(J) is. We note that the equation $\overline{f(L)} = f(L) \overline{f(v(J))}$ is a statement about sets, not topologies, and that it is trivially valid when f(L) = G.

Now our decisive subgroup H, besides revealing whether f is an imbedding, also

explicitly determines the topology of f(L) when f is not an imbedding; identifying L with f(L), we know that $\mathscr{U}_L = \mathscr{E}(\mathscr{U}_H)$. The following example illustrates the relationship among H, J, and v(J). If $L = \mathbb{R} \times T^1 \times SU(2)$, then $H = \mathbb{R} \times T^1 \times \{\pm I\}$, $J = \mathbb{R} \times T^1 \times O(2)$, and $v(J) = \mathbb{R} \times 1 \times I$. As the author will show in [15], there is a topology \mathscr{U} for L, weaker than the usual topology, in which $\{(n!, (-1)^n, I)\}$ converges to the identity. Clearly \mathscr{U} cannot equal $\mathscr{E}(\mathscr{U}_{v(J)})$, and thus v(J) is "too small" to determine the topology of L; indeed, a theorem in [15] shows that in this case H is the smallest subgroup that will suffice. On the other hand, J is "too big", because it properly contains H.

Finally, we note that Theorem 1 in [5] provides a somewhat more elegant proof of our 4.2 and that Theorem 2 in [5] is a sharper form of the theorem in [4] which we cited in §5. The latter makes possible the following improvement in our Main Theorem: When L is not (CA), we can alter the choice of Q to assure that $H = Z(L) \times V$, even if L is not solvable. The details are contained in [15].

REFERENCES

- 1. A. Gleason and R. Palais, On a class of transformation groups, Amer. J. Math. 79 (1957), 631-648.
 - 2. M. Goto, Faithful representations of Lie groups. I, Math. Japon. 1 (1948), 107-119.
 - 3. ——, Absolutely closed Lie groups, Math. Ann. 204 (1973), 337-341.
 - 4. ——, Analytic subgroups of Gl(n, R), Tôhoku Math. J. (2) 25 (1973), 197-199.
 - 5. —, Immersions of Lie groups, J. Math. Soc. Japan 82 (1980), 727-749.
- 6. S. Hudson, On connectivity properties of finite-dimensional groups, Proc. Amer. Math. Soc. 23 (1969), 68-72.
- 7. —, On the topology and geometry of arcwise connected finite-dimensional groups, Pacific J. Math. 82 (1979), 429-450.
 - 8. G. Mostow, The fundamental group of a homogeneous space, Ann. of Math. 66 (1957), 249-255.
- 9. J. Nienhuys, Not locally compact monothetic groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32 (1970), 295-326.
- 10. ——, A solenoidal and monothetic minimally almost periodic group, Fund. Math. 73 (1971/72), 167-169.
 - 11. ——, Construction of group topologies on abelian groups, Fund. Math. 75 (1972), 101-116.
 - 12. ——, Some examples of monothetic groups, Fund. Math. 88 (1975), 163–171.
 - 13. H. Omori, Some examples of topological groups, J. Math. Soc. Japan 18 (1966), 147-153.
 - 14. S. Rolewicz, Some remarks on monothetic groups, Colloq. Math. 13 (1964), 27-28.
 - 15. T. C. Stevens, Decisive subgroups of analytic groups, Trans. Amer. Math. Soc. (to appear)
- 16. W. Van Est, *Dense imbeddings of Lie groups*, Nederl. Akad. Wetensch. Proc. Ser. A 54 = Indag. Math 13 (1951), 321-328.
- 17. ——, Dense imbeddings of Lie groups. II, Nederl. Akad. Wetensch. Proc. Ser. A 55 = Indag. Math 14 (1952), 255-274.
- 18. D. Zerling, Some theorems on (CA) analytic groups, Trans. Amer. Math. Soc. 205 (1975), 181-192.

DEPARTMENT OF MATHEMATICS, MOUNT HOLYOKE COLLEGE, SOUTH HADLEY, MASSACHUSETTS 01075

Current address: Department of Mathematics and Physics, Arkansas State University, State University, Arkansas 72467