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WEAKENING THE TOPOLOGY OF A LIE GROUP

BY

T. CHRISTINE STEVENS

Abstract. With any topological group (G, V) one can associate a locally arcwise-

connected group (G, <¡tl*\ where ** is stronger than ^l. (G, ^U) is a weakened Lie

( W.L) group if (G, **) is a Lie group. In this paper the author shows that the WL

groups with which a given connected Lie group (L, &~) is associated are com-

pletely determined by a certain abelian subgroup H of L which is called decisive.

If L has closed adjoint image, then H is the center Z(L) of L; otherwise, H is the

product of a vector group V and a group J that contains Z(L). J\Z(L) is finite

(trivial if L is solvable). We also discuss the connection between these theorems

and recent results of Goto.

1. Introduction. Gleason and Palais [1] have shown how to associate with any

topological group (G, <%) a locally arcwise-connected group (G, <%*) and proved that

the group thus associated with a finite-dimensional metric group must be Lie. In this

paper we describe the groups for which the associated locally arcwise-connected group

is a connected Lie group. As we shall see in §3, this problem is equivalent to the

following question : Given a connected Lie group (L, ¿r), in what ways can <F be weak-

ened and remain Hausdorff? Our principal result is that L contains an abelian sub-

group H which is decisive in the sense that the ways in which 5" can be weakened and

remain Hausdorff are completely determined by the ways in which the relative

topology for H can be weakened while remaining Hausdorff and keeping finitely

many characters of 7/continuous. The nature of 77 depends upon a crucial distinction

between (CA) analytic groups (those with closed adjoint image) and non-(CA)

analytic groups. Our proof in the latter case employs a homomorphism used by Goto

[3] and relies upon structure theorems of Goto [4] and Zerling [18]. The connection

between the present paper and certain results which were recently obtained by Goto

[5] is discussed in §8. We also note that Hudson's examination of arcwise-connected,

finite-dimensional groups [7] leads him to consider, from a different perspective, ques-

tions similar to those studied here.

2. Notation and conventions. A topology <% for an abstract group G will be assumed

to make the function/: G x G -* G given by/(;c, y) = xy~x continuous, but <% need

not be Hausdorff. For a subgroup H of G, <^H will denote the relative topology
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induced by <rV. Since several topologies for the same abstract group G may be under

simultaneous consideration, topological statements about G will contain references

to the particular topology involved. If (G, <%) is a topological group, then T(G, <rV)

will denote the collection of all Hausdorff group topologies for G which are weaker

than °U. Analytic groups, but not Lie groups, are always connected, and Lie groups do

not necessarily satisfy the second axiom of countability.

Z, R, Ti, and G1(K) denote, respectively, the integers, the real numbers, the

a-dimensional toroid, and the linear automorphism group of a vector space V. Ti,

G1(F), and finite groups will be assumed to have their usual topologies, unless stated

otherwise. The relative topology for a subgroup A of G1(K) will be called the full-

linear-group (fig) topology for A. The symbol □ marks the end of a proof.

3. Preliminary definitions and main results. Let (G, ¡F) be a topological group. Ac-

cording to [1, pp. 634-635], the collection of all ^"-arc-components of ̂ "-open subsets of

G is the basis for a locally arcwise-connected group topology 3~* for G. (G, 3~*) is the

locally arcwise-connected (l.a.c.) group associated with (G, ff~). For easy reference, we

list here some of the properties of l.a.c. groups that are proved in [1].

3.1. Theorem (Gleason and Palais [1,3.2,4.3,7.3]). Let(G, ST) be a Hausdorff to-

pological group. Then

(i) ST* is stronger than ST, and (ST*)* = &"*.

(ii) (G, ST) and (G, ¡F*) have the same arcs.

(iii) The ff"*-connected components of a ST*-open subset Xof G are the ST-arc-compo-

nents ofX.

(iv) If(G, ST) is a second-countable Lie group and % e T(G, ff~), then <il* = ff~.

(v) If (G, ST) is separable, metrizable, and of finite topological dimension, then (G, ST*)

is a Lie group.

Hudson observes that the assumption of metrizability in (v) may be dropped if by

"dimension" one means cohomological dimension [6, p. 68]. We will say that (G, 3~)

is a weakened Lie ( WL) group if (G, 3s~*) is a Lie group and 3~ is Hausdorff. From (iv)

we see that the WL groups with which a given analytic group (L, 3i~) is associated are

all those of the form (L, oil), where % e T(L, ST).

We now introduce the notion of "decisiveness," which is central to our main result.

Let (A, si) be a topological group with an abstract subgroup B, and let 1(b) denote

conjugation by an element b of B. (Recall that group topologies are not assumed to

be Hausdorff.) If SS is a topology for B that makes the function f: A x B -* A,

defined by f(a, b) = bob'1, (si x J1, ^-continuous, then si x 3S is a group topology

for the semidirect product A x ¡ B. We define a homomorphism a of A x ¡ B onto

A by a(a, b) = ab, and the unique topology for A which makes a continuous and open

is called the standard extension of J1 to A, denoted $(!%). We observe that a basis for

the neighborhoods of the identity in S(âS) is the collection of all PN, where P and N

are, respectively, si- and ^-neighborhoods of e. S(âS) will be Hausdorff if si is Haus-

dorff, B is ¿/-closed, and 3$ e T(B, siB)-

When 3S is weaker than siB, S(âS) may be thought of as "weakening the topology
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of A by weakening that of B" ; we are interested in situations where this is the only

way in which si can be weakened. If B is .«/-closed and if °U = êifllB) for every ty e

T(A, si), we will say that 7?is decisive in (A, si). We may now state our main result, the

proof of which is contained in §§4-6.

3.2. Main Theorem. Let (L, <y) be a connected Lie group with Lie algebra I.

(i) L contains an abelian decisive subgroup H of the form RP x Ti x Zr x D, where

p, a, and r are nonnegative integers and D is finite. The adjoint image of H is contained

in a toroid Q.

(ii) The WL groups with which (L,&~) is associated are precisely those of the form

(L, $(&)), where M e T(H, STH) and the restriction of the adjoint representation, Ad :

H -» Q, is ^-continuous.

(iii) If (L, F) is (CAy—that is, if Ad(L) is a fig-closed subgroup ofGl(ly—then H

is the center ofL.

(iv) If (L, 3~) is not (CA), then H = J x V, where V is a vector group, J contains the

center Z(L) ofL, and J/Z(L) is finite (trivial ifL is solvable).

We conclude this section with an important lemma about standard extensions.

3.3. Lemma. Let (A, si) be a topological group with an abstract subgroup B. Let ^ be

the collection of all topologies si' for A that are weaker than si and such that the function

h: A x A -> A given by h(a, g) = gag'1 is (si x si', si)-continuous. Iffye <g and

°U = S(°UB), then si' = S(si'B)for every si' in <g which is stronger than <ft.

Proof. By hypothesis, the homomorphism a: A x ¡B -* A given by a(a, b) = ab

is (si x <¡UB, <?y)-open and continuous. Let si' e <g be stronger than <%, and let {g¡: ie 1}

be a net in A which ^'-converges to e. Then {g¿} also ^-converges to e and thus has

a subnet {gUj) :jeJ} which lifts to a net {(ay, bj) : j e J} in A x ¡ B that is si x %B-

convergent to e. Since b¡ = ajlgaj) and si' is weaker than si, it follows that b¡ -* e

in si', and thus a is (si x si'B, si')-open.    □

4. Decisive subgroups. The purpose of this section is to prove the first three parts

of Main Theorem 3.2; the proof of part (iv) is reserved for §§5 and 6. We begin by

proving that every WL group has a continuous adjoint representation.

Let (G, <%) be a WL group, and let L be the ^-arc-component of the identity. By

3.1, (L, (<%*)L) is an analytic group (whose Lie algebra we denote by /) and (<5¡f*)L =

(^i)*. G acts by inner automorphism on L, and we denote by 7 and Ad the corre-

sponding homomorphisms of G into Aut(L) and Gl(/). If Aut(L) has the generalized

compact-open topology, then 7and Ad are ^-continuous. We now show that they are

also ^-continuous.

4.1. Lemma. Let I: [0, 1] -+ L be a ¿Mf-arc with initial point e and let {xj-.jeJ} be a

net in G which ¿¡¿-converges tox eG. Then {x¡ X(t)xj1 :jeJ} ^-converges to xX(t)x~l,

uniformly in t.

Proof. Let N be the ^¿-arc-component of e in a ^¿-open neighborhood U of e,

and let Ux be a <&¿-open neighborhood of e such that U\ çr u. For each j e J, define
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aWL-arcßj-.[0, 1] -* L by

ßJ{t) = xX(-t)x~1xjX(t)x-j\

For each s in [0, 1], there exist an open neighborhood 7S of s and an element js of J

such that

(1) xX( - s)x~1x]k(t)xj1 e Ui

and

(2) xH-tMsyx-ieUi

whenever t els and j > js. From (1) and (2) we see that ßf(t) is in U if te Is, j 2: j,.

By compactness of the unit interval, there is aj* e J such that ßf(t ) e U for all t e [0,1]

and for all j > j*. For suchy, ßj will then be an arc in U that contains the identity,

and therefore /3; is in fact an arc in N. Thus ß,{t) e N for all t e [0, 1] and for all

j > j*, and the lemma is proved.    □

4.2. Proposition. Ad: G -» Gl(l) and T. G -+ Aut(L) are ^-continuous.

Proof. Let {x¡: j e J} be a net in G which ^-converges to e, and let W be an open

neighborhood of 0 in / such that the exponential mapping exp : / -* L is a diffeomor-

phism on 2W. To prove that Ad is ^-continuous, it is sufficient to show that Ad(;c;)(u>)

-♦ w for any w eW. From 4.1 we know that there is an element j* of J such that, if

j > j*, then

exp(/ Ad(jc;)(w)) m jc/exp tw) xj1 e exp W

for all t e [0, I], and it follows that Ad(x¡)(w) e Wifj >j*. Lemma 4.1 also implies

that, in %l,

exp(Ad(x,)(w)) = x/exp w)xjl -» exp w.

Since exp is a diffeomorphism on W, we conclude that Ad(xj)(w) -> win I, as desired.

To prove that 7 is ^-continuous, we simply observe that the differential operator

a* is a topological group isomorphism of Aut(L) onto a subgroup of Gl(/). This com-

pletes the proof of 4.2.    □

We now deduce an important criterion by which decisive subgroups of analytic

groups may be identified.

4.3. Lemma. Let (L, ST) be an analytic group, B a <?-closed subgroup of L, andqi the

weakest (not necessarily Hausdorff) topology for L that makes Ad ^-continuous. If

oil = S(fUB), then B is decisive in L.

Proof. According to 3.1 and 4.2, every topology in T(L, &) is stronger than <%. We

may then apply 3.3, with A = L and si = ST.    □

If (L,5T) is a (CA) analytic group, then Ad(L)is closed in Gl(/). If (L, if) is not(CA),

then Gl(/) contains a toral subgroup Q such that the fig-closure C of Ad(L) equals

Ad(L) • Q. (See, for example, Goto [2, Theorem 1].) Thus in either case, C = Ad(L) • Q,

where g is a (possibly trivial) toral subgroup of Gl(/).
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4.4. Proposition. Let (L, ¡F) be an analytic group with Lie algebra I, let C be the

fig-closure ofAd(L), and let Q be a (possibly trivial) toral subgroup ofGl(l) such that

C = Ad(L) • Q. Then Ad_1(0 is an abelian decisive subgroup of L and has the form

RP x Ti x Zr x D, where p,q, and rare nonnegative integers and Dis finite.

Proof. Let H = Ad-1(0- Because d: Aut(L) -> d(Ant(L)) is a topological isomor-

phism whose image is fig-closed and includes Ad(L), there is a toral subgroup K of

Aut(L) such that Q = dK, and thus H = I~l(K). According to Goto [3, Lemma 4],

each automorphism in K leaves 77 pointwise fixed. In particular, since 7(77) ç K,

H is abelian and therefore has the form RP x Ti x E, where p and a are nonnegative

integers and E is discrete. We now invoke Theorem 1 ' and the subsequent remark in

Mostow [8] to show that E is finitely generated and thus equals Zr x D, where r is a

nonnegative integer and D is finite.

It remains to show that 77 is decisive in L. If "U is the weakest topology for L which

makes Ad (ffy, flg)-continuous, then it suffices, by 4.3, to show that ^ = SifllH)- To do

so, we form the semidirect product L%K and define a homomorphism <p: L® K -* C

by (jix, k) = Ad(x) • dk for x e L, k e K. If if" is the topology which K inherits from

the generalized compact-open topology, then<¡>issurjective,(<F x if/", flg)-continuous,

and thus (F x if, flg)-open onto its image C. It follows that a basis for the neighbor-

hoods of e in the fig-topology for C is the collection of all Ad(P) • dN, where Pisa

^"-neighborhood of e in L and A7 is a ^-neighborhood of e in K, and therefore a basis

for the ^-neighborhoods of e is the collection of all Ad~1(Ad(P) • dN). Now for each

such P and N, the fact that Ad is a homomorphism implies that

Ad-i(Ad(P)-aW) = P-Ad~\dN).

Since Ad~l(dN) is simply a ^-neighborhood of e, we have shown that %=S(fllH). □

Proposition 4.4 proves part (i) of the Main Theorem, and we may now proceed to

prove parts (ii) and (iii). Let 77 be any abelian decisive subgroup of (L, &~). We will

call a topology 8& for 77 allowable if J1 e T(H, £TH) and the restriction Ad: 77-> Gl(/)

is ^-continuous. If (7,, <>U)is a Hausdorff topological group and <2r* = ¡F, then <rV =

SifUa), and by 4.2 ouH is an allowable topology for 77. On the other hand, if 38 is such

a topology then g(3f) is a group topology for L which is in T(L, F) and by 3.1(iv)

(L, &~) is the l.a.c. group associated with (L, ê(3&)). To prove part (iii) of 3.2, we simply

note that when (L, <F) is (CA) we may choose the trivial toroid for Q, so that the deci-

sive subgroup Ad-1(g) will be the center of L.

5. Subgroups of G1(t7, R). Before proving part (iv) of the Main Theorem, which is

the purpose of §6, we must examine in detail the structure of the fig-closure of Ad(L)

when (L, ST) is not (CA). The basis for our discussion is a result in Goto [4], which we

now describe. Let (G, ¿U) be an analytic subgroup of G1(t7, R) which is not fig-closed,

with C denoting the fig-closure of G. Let N be any subgroup of G which is maximal

among those that are ^-connected, fig-closed, and contain the commutator subgroup

D of G. (Such groups exist because, by Lemma 7 in [2], D is fig-closed.) If Tx is the

radical of a maximal fig-compact subgroup of C, let T2 be the fig-connected compo-

nent of the identity in N fl Tx and T a toroid such that 7^ = T2-T, T2 f] T = {e}.
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In our notation, Goto's theorem may be stated as follows :

5.1. Theorem (Goto [4, p. 197]). N f] T is finite, C = NT, and G contains a

¿¿¿-closed vector subgroup W, the fig-closure of which is T, such that G = N-W, N f| W

= {e}.C is (fig, fig x <?VN)-djffeomorphic with T x N.

Although the groups A and Tare not in general unique, we will prove the following.

5.2. Proposition. If N and T are chosen in the manner described, then

(i) the dimensions of N, W, and T are uniquely determined;

(ii) the finite groups N f| Tare all isomorphic;

(iii) A fl Tis trivial if G is solvable.

The proposition depends upon a lemma about abelian analytic groups, the straight-

forward proof of which we omit.

5.3. Lemma. Let (A, si) be an abelian analytic group with a dense analytic subgroup

(B, 38). Let C be a maximal ^-connected and si-closed subgroup ofB. Then the dimension

of C equals the sum of the dimensions of the vector part of (A, si) and the compact part

of(B,3S), and the intersection ofCwith the compact part of (A, si) is independent of the

choice of C.

Proof of 5.2. Let °U' and <F' denote the quotient topologies for GjD and C/D

obtained from ¿U and the fig-topology. To prove (i) it will suffice to show that N/D

is maximal among the subgroups of G/D which are ^'-connected and ^"-closed, for

then 5.3 will assure that the dimension of N/D, and thus of N, is uniquely determined

(A/7) must be J^'-closed because it is the inverse image of the identity under the

projection C/D -> C/N, which is continuous if each group is given the quotient topolo-

gy from the fig-topology.) That N/D is, in fact, maximal follows from the maximality

of N and the ^-connectedness of D.

To prove (ii), we first show that the intersection N f| 7\ is, for given T\, independent

of the choice of N. For if Nx and N2 are two choices for N, then NJD and N2/D are,

as we have seen, maximal among the ^'-connected subgroups of G/D which are

¡F'-closed, and so 5.3 implies that the intersections of NJD and N2\D with the image

of T1 in CID are equal. Therefore A, fl OTx = A2 f| DTX, whence A, f| 7\ = A2 fl

TV
Since Ti, as the radical of a maximal fig-compact subgroup of C, is determined up to

conjugation by an element of C, and since N is normal in C, the groups N f) Tx are

thus all flg-isomorphic, regardless of the choices of N and 7\. We complete the proof

of (ii) by showing that, for fixed N and Tx, the isomorphism class of the finite group

A f| T is independent of the choice of T. This follows from the fact that, for any

choice of T, N fl Tx = T2(N f) T) and T2 f] (A fl T) = {e}.
Finally, we prove (iii). It clearly suffices to show that A f| 7\ is fig-connected when

G is solvable. Since G and C have the same commutator subgroup D, C also is solva-

ble. Applying Proposition 2.4 of Van Est [17], we find that G = B-A, where B is a

fig-closed and simply-connected group containing D, the fig-closure F of A is a toroid,

C = B-F, and B f| F = {e}. We may choose A and a maximal fig-compact subgoup
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K of C in such a way that B ç N,F ç K. That the latter inclusion is in fact an equality

follows from the easily verified equation K = (B f| K) • F and the fact that B, as a

simply-connected and solvable Lie group in the flg-topology, contains no nontrivial

compact subgroups. We may therefore let Tx equal F, and the proof is completed by

observing that A f| F must be fig-connected, since A = B(N f| F), A and B are

fig-connected, and B f| (A f| F) = B f] F is trivial.    □

Applying 5.1 and 5.2 to the adjoint image of a non-(CA) analytic group, we obtain

the following.

5.4. Corollary. Let (L, 3~) be a non-(CA) analytic group, ¿U the Lie topology for

Ad(L), and C the fig-closure of Ad(L). If N is a maximal ¿¿¿-connected and fig-closed

subgroup of Ad(L) containing the commutator subgroup of Ad(L), Tx is the radical of

a maximal fig-compact subgroup of C, and T is a toroid in 7\ complementary to the

fig-connected component of the identity in A f| Th then Ad(L) contains a ¿¿¿-closed

vector subgroup W, whose fig-closure is T, such that Ad(L) = N-W, C = N-T, and

A f| W is trivial. Moreover, A f| T is a finite group whose isomorphism class does

not depend on the particular choices of A and T. N f| T is trivial if Ad(L) is solvable,

and the dimensions ofN, W, and T are independent of the choices ofN and T.

6. The non-(CA) case. The proof of part (iv) of the Main Theorem, which is con-

tained in this section, relies not only upon 5.4 but also upon Zerling's structure

theorem for non-(CA) analytic groups [18], which says that every such group is the

semidirect product of a (CA) analytic group and a vector group. More precisely, the

relevant portion of Zerling's results may be stated as follows.

6.1. Theorem (Zerling [18, Theorem 2.1]). With notation as in 5.4, let P be the

^-connected component of the identity in Ad_1(A). Then (P, 3TP) is (CA) and contains

the center of L, and Aut(P) contains a vector subgroup V with compact closure such

that, iff" is thevector topology for V, thenP® V is (&~ p x V, 3~)-isomorphic with L.

If we identify L with P (s) V, then Ad(F) = W, and V and W have the same dimension.

Adopting the notation of 5.4 and 6.1, we now combine these results with 4.4 to

prove part (iv) of the Main Theorem. Since C = Ad(7) • T by 5.4, it follows from

4.4 that 77 = Ad~\T) is an abelian decisive subgroup of L. If we let / equal P f|

Ad-1 (A f| T), a trivial computation verifies that 77 = J (s) V. Since H is abelian, V

must act trivially on /, whence 77 = / x V. To complete the proof, we note that

Ad(P) must equal all of A, since A f| Ad(F) = A f| IK is trivial. Therefore Ad(/) =

A f| Tand J\Z(L) is isomorphic to the finite group A f| T. If L is solvable, then so

is Ad(L), and 5.4 assures that J/Z(L) is trivial. This completes the proof of the Main

Theorem. We may also note that, according to 5.4 and 6.1, the dimension of V and the

isomorphism class of J/Z(L) are independent of the particular choices of A and T.

7. Examples. We now give an example of a non-(CA) analytic group whose center,

in the notation of the Main Theorem, has index two in the group /. Define an action

of SU(2) x T2 on C3 by letting (A, eif>, e'*), where A e SU(2), correspond to the

3x3 complex matrix in Figure 1. The semidirect product G = C3 (s) (SU(2) x T2)
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is then a Lie group in its usual topology. If p is some fixed irrational number, then

L = C3 (D (SU(2) x R) becomes a dense Lie subgroup of G by means of the injection

a: (z, A, t) >-> (z, A, eif, e'f), z e C3, A e SU(2), t e R. L has trivial center and thus

cannot, by Theorem 2.2.1 of Van Est [16], be (CA).

By considering the action of G on L by inner automorphism, one verifies that

G\Z(G) is, in the quotient topology, isomorphic with the fig-closure of Ad(L),

so that we may regard the adjoint representation of L as the composition of a

with the projection %: G -> G/Z(G). Letting A = 7r(C3 x SU(2) x 1 x 1) and Tx =

7t(0 x 7 x T2), we find that A f| Tx is a two-element group. Therefore T = Ty and

Ad-1^) = 0 x J x R, where J is the group generated by —7.

0

0   0       &*

Figure 1

We also observe that the reduction to the abelian case which the Main Theorem

effects does not prevent WL groups from having rather peculiar topologies. Although

the author will undertake a systematic study of "unusual" topologies for abelian

groups in a subsequent paper [15], we may note here that any sequence in R" or Z"

which "goes to infinity sufficiently fast" will, in an appropriately weakened topology,

converge to 0. For example,

d(n, m) = inf {£|c,|/i|ii - m = Ectfl + 1), c,eZ}

defines a metric on Z in which /! + 1 -» 0. Other examples of unusual topologies for

Z and R" can be found in [9-14].

8. Related results. After writing this paper, the author learned of related but in-

dependent results obtained by Goto [5], and in this section we will sketch the con-

nection between his work and ours. Let (L, £T) and (G, ¿¿¿) be, respectively, an analytic

and a topological group, and let/: L -> G be a continuous, injective homomorphism.

Although the course of Goto's analysis parallels our own in certain respects, his

primary interest is a description of the set/(L), while our Main Theorem can be viewed

as a characterization of the topology off(L). Changing Goto's notation to distinguish

the g777-torus in [5] from our own decisive subgroup 77, we can summarize his principal

results as follows : If v(J) is the vector part of the gm-torus /, then/(L) = f(L)f(v(Jy),

and/is an imbedding (i.e., a homeomorphism ofL onto/(L)) if and only if/|v(7)is.

We note that the equation/(L) = f(L)f(v(J)) is a statement about sets, not topologies,

and that it is trivially valid when/(L) = G.

Now our decisive subgroup H, besides revealing whether / is an imbedding, also
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explicitly determines the topology of f(L) when/is not an imbedding; identifying L

with/(L), we know that ¿¿¿L = S (¿Uù). The following example illustrates the relation-

ship among H, J, and v(J). If L = R x T1 x SU(2), then H = R x T1 x {±I},J =

R x Tl x 0(2), and v(J) = R x 1 x 7. As the author will show in [15], there is a topol-

ogy ¿Ii for L, weaker than the usual topology, in which {(n\, (— I)", I)} converges to

the identity. Clearly ¿U cannot equal S(^v(j)), and thus v(J) is "too small" to deter-

mine the topology of L; indeed, a theorem in [15] shows that in this case H is the

smallest subgroup that will suffice. On the other hand, /is "too big", because it prop-

erly contains H.

Finally, we note that Theorem 1 in [5] provides a somewhat more elegant proof of

our 4.2 and that Theorem 2 in [5] is a sharper form of the theorem in [4] which we

cited in §5. The latter makes possible the following improvement in our Main Theo-

rem : When L is not (CA), we can alter the choice of Q to assure that 77 = Z(L) x V,

even if L is not solvable. The details are contained in [15].
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