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INTERPOLATING SEQUENCES FOR QAB

BY

CARL SUNDBERG AND THOMAS H. WOLFF1

Abstract. Let B be a closed algebra lying between H°° and Lx of the unit circle.

We define QA„ = Hx n B, the analytic functions in QB = B n B. By work of

Chang, QB is characterized by a vanishing mean oscillation condition. We char-

acterize the sequences of points {z„} in the open unit disc for which the interpola-

tion problem f(zn) = a„,-h = 1,2,..., is solvable with / G QB for any bounded

sequence of numbers {a„}. Included as a necessary part of our proof is a study of

the algebras QAB and QB.

1. Introduction. Let 7700 denote the Banach algebra of bounded analytic functions

on the open unit disc D = {z:|z|<l}. Using radial limits we can identify 77°° with

a closed subalgebra of L°° = L°°(3D). An 77°° function can be recovered from its

boundary values by means of the Poisson integral formula

where

f(z)^ff(eiS)dPz(eie),

dPXeie) = ^-h^de = p2ie^)de.

We will also use this formula to define harmonic extensions of functions in

L" = LpidD),l </><oo.

An interpolating sequence is a sequence {zn} CD with the property that for any

bounded sequence of complex numbers {Xn} there exists/ £ 77°° such that/(zn) = Xn

for all n. A well-known theorem of L. Carleson [1] states that a sequence {z„} is

interpolating iff

inf n
1 — z  z

>0.

A Blaschke product

ft(o = n
\ z  \(z   — z)\    n \ \   n /

n     Z»0  - ZnZ)
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is called an interpolating Blaschke product if its zero set {zn} is an interpolating

sequence. It is easy to check that

m¥=n '•m'-n

hence a Blaschke product is interpolating precisely when infn | b'(zn) | (1 — | z„ |2) >

0.

A function/ G L'(3D) is said to be in BMO if

ll/IU = supT^//|/-7(/)|^<oo.

Here the supremum is taken over arcs 7 C 3D, | 7| denotes Lebesgue measure of 7

divided by 2m, and 1(f) — (\/\I\)f,fdB/2m. It follows from results of P. Jones in

[14] that if {z„} C D is such that infnüm^„ | (zm — z„)/(l - zmzn) | is very close to

1 and | A„ |«s 1, then the interpolation problem f(zn) = \n can be solved by an 7/°°

function whose boundary values have small BMO norm. In other words, " thinness"

of a sequence implies interpolation with functions that oscillate very little. In this

paper we prove an analogous result in which thinness of the entire sequence is

replaced by thinness only in certain regions of the disc, and small BMO norm is

replaced by small mean oscillation on certain arcs of 3D. Our result concerns

function spaces arising in the theory of Douglas algebras, which we will now discuss

briefly. For further information we suggest the reader consult [3,4,9,17,19, and 20].

A Douglas algebra is a closed subalgebra of L°° containing 77°°. It is a consequence

of the Gleason-Whitney Theorem [11] that the maximal ideal space 911(5) of a

Douglas algebra B is naturally imbedded in 911(77°°), the maximal ideal space of

77°°. In [3 and 17], S.-Y. A. Chang and D. E. Marshall proved the following result,

which had been conjectured by R. G. Douglas.

Chang-Marshall Theorem. Every Douglas algebra is generated as a closed

algebra over 77°° by a family of complex conjugates of Blaschke products.

In connection with this, we note that since a Blaschke product b is unimodular as

an element of L°°(3D), b = b'x in L°°(3D). An important part of Chang's proof is

the study of a certain mean oscillation condition connected with a Douglas algebra.

Let B be a Douglas algebra. A consequence of the Chang-Marshall Theorem is that

if U C ^t(H°°) is an open set containing 91c(t3), then U fl D contains a set of the

form

(z ED: \b(z)\>T¡},

where b is a Blaschke product in B~x and 0 < n < 1. Conversely, any set of this form

is the intersection with D of a neighborhood of 9H(t5). Hence a statement such as

"i//(z) -» 0 as z -» 911(75)" has the following obvious interpretation: given e > 0

there is a Blaschke product b E B~x and 0 < tj < 1 such that | \¡>(z) |< e whenever

| b(z) | > tj. For a point z E D we define Iz C 3D to be the arc of length 27r(l — | z |)

centered at z/| z | . We now define

QB = B fl B, the largest C*-algebra contained in B,
QAB = QBnHx=BDHx,

&'(*„) I O" I *„ |2)>



INTERPOLATING SEQUENCES FOR QAB 553

VMOB = {/E BMO: (1/|/, |)/7J/- Iz(f)\d6/2tr - 0 as z - 911(5)}.
We will also occasionally mention the space CB, which is the C*-algebra generated

by the Blaschke products in 2?1. Among other things, Chang shows in [4] that

QB = YMOB n L°°.

Before stating our result we need one more definition.

Definition. A sequence {z„} E D is thin near 911(2?) if it is an interpolating

sequence and

n
By Theorem 4.3 of [12] an interpolating Blaschke product whose zero set misses

some neighborhood of 91L(2?) is invertible in B. Using this fact it is easy to verify

that if {z„} is an interpolating sequence with associated Blaschke product b, then

{z„} is thin near 911(2?) iff for any 0 < tj < 1 a factorization b = bxb2 exists

satisfying bx E 2?"1 and | b'2(zn) | (1 — | zn |2) > tj for all n such that b2(zn) = 0.

We can now state our main result.

Theorem 1. The following are equivalent for a sequence {zn} E D:

(1) For any bounded sequence of complex numbers {\n} there exists f E QAB such

thatf(zn) = \„for all n.

(2) For any bounded sequence of complex numbers {\n} there exists f E VMOB such

thatf(zn) = \nfor alln.

(3){z„} is thin near 911(2?).

Moreover if condition (3) is met we can find P. Beurling functions yielding (1). That

is, there are functions <$>n E QAB such that <t>n(zk) — 8nk and for any bounded sequences

{\n},ln\n<t>„£QAB.

The proof of Theorem 1 will occupy the rest of this paper. The implication from

(1) to (2) is of course trivial, and the implication from (2) to (3) is shown in §7. The

main difficulty is in showing that (3) implies (1). This involves quite a few auxiliary

results and is done in §§3-5.

We will now give a brief outline of the paper.

§2: This is a study of some basic facts about VMOB.

§3: We assume the interpolating sequence z„ satisfies a certain technical condition

called Afl. Let {A„} be a bounded sequence and assume there is g0 E QB such that

| g0(zn) - A„ | -+ 0 as z„ -* 9H(2?). We perturb g0 to obtain a function g E C°°(D)

such that g(z) = A„ when | (z — z„)/(l — znz) \ < tj, where tj is a small number, and

such that the measures | Vg(z) |2(1 — \z \2)dxdy and | Ag(z) | (1 — | z \2)dxdy

satisfy a condition which we call a 2?-Carleson condition. Let b be the Blaschke

product with zeros {z„}. Using results of §2 and the condition AB we show that

there is q E QAB such that qb E QAB, and such that | vg |2(1 — | z |2) dx dy/\ q |2

and | Ag | (1 — \z\2)dx dy/\ q \ are still 7?-Carleson measures. We now set f — g +

qba, where a is to be chosen so that/ E QAB. This is done by solving the 3-equation

3a/3z = -(dg/dz)/qb; results in §2 imply that this equation can be solved by a

function a with boundary values in QB. Together with the above condition on Vg,

this implies that/ E QAB. Clearly f(zn) = Xn for all n.

I — z  zm   n

1    asz„^9H(2?).
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§4: Using a construction due to J. Garnett and P. Jones we show that if (z„) is

thin near 91t/J, then {z„} satisfies the condition AB.

§5: We complete the proof that (3) implies (1) by showing that for any bounded

sequence {X„} there is g0 E QB such that | g0(zn) — Xn | -> 0 as z„ -> 911(2?). This is

done by an explicit construction related to, but somewhat easier than, the Garaett-

Jones construction.

§6: Using a method due to N. Th. Varopoulos we construct the P. Beurling

functions which give (1). In order to assure that the desired linear combinations of

these functions are in QAB it is necessary that the estimates in the preceding sections

depend only on the sequence {z„}; this requirement unfortunately forces all our

proofs to be more complicated.

§7: This is the proof that (2) implies (3).

Remarks. (1) If the interpolating sequence {z„} is such that its associated

Blaschke product is in B~l, then certainly {zn} is thin near 911(2?). In this case the

proof of the 77°° interpolation theorem due to J. P. Earl [5] yields an interpolating

function in CB n 77°°.

(2) The existence of P. Beurling functions solving the 77°° interpolation problem is

shown in [2]. Jones, in [15], has obtained explicit formulas for such functions. These

formulas as written do not answer the present question, but it seems possible that

some alteration of them might yield our results.

(3) Because of the quantitative nature of our methods we actually show a stronger

result than (3) implies (1). The alert and patient reader will be able to see that our

methods establish the following

Theorem 2. Let {zn} CD be an interpolating sequence. Then there exist functions

<í>n E 27°° such that <t>n(zk) = Snk,'ZllXn<j)n E 27°° for any bounded sequence {X„}, and

such that the following statements are true. Let e > 0 be given. There then exists

0 < tj < 1 such that if a Blaschke product b and a number 0 < p < 1 are such that

nm^„ | (zm - z„)/(l - zmzn) |> tj whenever \ b(z„)\> p, then

TTT /   2AA - 7z  2AA
\1z\Jh„ V   „ /

<£
277

whenever |2>(z)|>p', // {Xn} is any sequence for which |A„|< 1 for all n; here

0 < p' < 1 depends only on e and p.

In particular, the result mentioned at the beginning of this section about inter-

polating with functions of small BMO norm follows from our proof. An explicit

proof of Theorem 2 would seem to be too cumbersome to write down.

We now list some notations that will be used throughout this paper.

Definitions. The letters C, C',CX, etc. will denote constants, not necessarily the

same at each occurrence.

If 7 = {eiB: a<6<a + 1} is an arc, then S, = {reie: ei0 E 7,1 - l/2ir «s r < 1}

and Tj = {re,e E Sr: 1 - l/2ir < r < 1 - {-l/2-n}; i.e., T, is the " top half of S,.

If z E D, then 7Z is the arc of length 2(1 — | z |) centered at z/\z\; we then denote

by Sz and Tz respectively the sets Sj and T¡. If 7 is an arc then z, is the point in D

such that 7 = 7,.
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If z, w E D the pseudo-hyperbolic distance between them is p(z, w) —

| (z — w)/(l — zw) I . For a E D we denote by La the linear fractional map La(z) =

(z + a)/(l + 5z). It is well known that p(La(z), La(w)) = p(z, w).

If 7 is an arc and q is a positive integer, then ql is the arc with the same center as 7

and length q times that of 7 (if q times the length of I is greater than 277, set

ql = 3D). We will also use the notations 7 = 37 and 7 = 57.

A dyadic arc is an arc of the form {e": 2irk/2" < 6 < 27r(/c + l)/2"} for tj > 0

andO«fc<2B- 1.

If 2? E 3D we denote by | 2? | the Lebesgue measure of E divided by 2w. If 7 is an

arc and/is a function on 3D, then

t/)"17î7/g.

J«/)- tjt/,!/-«/) l£.

W) = s»p{|/(e"') -A«"')I :«"'.«"■ e '}■

Thus 11/11, =sup,M,(/).
A Carleson measure is a measure /x on D for which

II ft II* = sup{| p\ (S,)/\I\ : 7an arc} < oo.

It is well known (see Chapter 6 of [9]) that the norm Hull* is equivalent to the norm

sup{/(l - |z|2)/| 1 - û\2d\p\(ï):z E D}.

We will denote by 77^, 1 <p < oo, the usual Hardy spaces of analytic functions,

and set Hf¡ = {/ E Hp: /(0) = 0}. We will write Lp for L'(9D). The orthogonal

projections of L2 onto 772 and (H2)1 = 2702 will be denoted respectively by P and Q.

For/ E L2, we will denote the harmonic conjugate (Hubert transform) of/by/.

Finally, we state a well-known consequence of Hall's Lemma that we will use

repeatedly. For a proof see Chapter 8 of [9].

Lemma 1.1. 7/0 < tj < 1 and e > 0, then there is 0 < k < 1 such that if a G D and

f E 7700, || /1| x < 1, is such that there exists z E Ta satisfying \ b(z) \ > k, then the set

{w E 5a: | b(w) |< 7)} is contained in a union of squares Sw E Sa with 2,(1 — | Wj |) <

e(l-\a\).

2. Basic facts about VMOB. In this section we will study analogues for VMOB of

various well-known facts about BMO. The main result is Theorem 2.14.

Theorem 2.1. Let f E BMO, II / II* < 1, and let I < p < oo. Then the following are

equivalent:

(i)/EVMOB,

(ii) (1/1 Iz \)fh\f - Iz(f) | dB/2h - 0 as z - 911(2?),
(iii) ((1/1 Iz \)fh |/- /(/) f de/2m)]/p - 0 asz - 911(7?),
(iv)/|/-/(z)|¿Pz-0aíz-91t(7?),

(y)(í\f-f(z)fdPzy/"^Oasz^^i(B),

(vi) /(l - I z |2)/(| 1 - fz |2) | V/(D |2(1 - | f |2) ¿Í du - 0 A5 z - 911(2?), w/7er<?

f = | + /tj Û77É? V/ denotes the gradient of the harmonie extension off.
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Remark. This theorem is mostly known, but we will need more precise informa-

tion than existing proofs seem to give. Our proof will establish, for instance, that

there is a constant C depending only on p such that if e > 0,11/11* < 1, b is a

Blaschke product, and 0 < tj < 1 are such that (1/| 7Z \)fh \f- Iz(f) \ dd/2-n < e

whenever | b(z)\> tj, then «1/| 7Z \)},z \f - Iz(f) f de/2m)x/p < Ce whenever

| b(z) |> ?]', where 0 < 17' < 1 depends only on e, p, and tj. The other implications in

the theorem can be similarly rephrased.

Proof of Theorem 2.1. (i) ■=> (ii) is the definition of VMOB, and (iii) =» (ii), (v) =>

(iv) are immediate consequences of Holder's inequality. Once we have established

the equivalences of (ii)-(v), (vi) can be proven equivalent to the others by showing it

to be equivalent to (v) for the case p — 2. This latter equivalence is shown by Chang

in [3 and 4]; we now sketch her argument for the sake of completeness. A calculation

based on Fourier series establishes that

l/|S-,(0)|2^<¿/D/|v8({)|M.-|fP)¿U,

</L-*«»rf
for any g E L2; replacing g by / ° Lz yields

i/|/-A2)P<<¿/D/^^|vAnP(i-lfl!)"{^

<f\f-/(z)fdP„

which easily gives the desired equivalence.

It remains to show that (iv) =» (ii) => (iii) => (v). In the remainder of the proof, C

will denote a constant depending at most only on p, and not necessarily the same at

each occurrence.

(iv) => (ii): Let e > 0. Choose b E Bx and 0 < tj < 1 such that f\f-f(z)\dPz<e

whenever | b(z) |> tj. We have Pz(eiB) > C/\ Iz \ if e" E 7Z. Hence if | b(z)\> tj,

]hf,if-f{z)i^<ylif-/iz)i'"'-
1     z 1     iz iz

This easily gives (1/| 7Z \)jI¡ \f - Iz(f) \ d6/2tr < 2e/C.

(iii) => (iv): The proof is an adaptation of the argument used to establish the

analogous BMO result in [19, Chapter 5]. Let e > 0 and choose b E B'x and

0 < tj < 1 such that ((1/| 7Z \)f \f - Iz(f) f d0/2ir)x^ < e whenever | b(z) \> tj. Set

In = 2"7Z for n = 0,1,..., A - 1, where A is the smallest integer such that 2N\IZ\> 1,

and set 7„ = 3D. Now Pz(eie) *£ C/\ Iz \ for all e,e, and Pz(ew) ^ C/22" \ Iz \ for

ei9 E 7„. Hence

/|/-7Z(/)^PZ=/|/-7Z(/)^PZ+   2 /        \f~Izif)fdPz

<cJ¡-jif-,,(f)r^ + c''Í,-^TJL-f   \f-U!)yäp,.
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Now we note that if 7 is any arc then

|(27)(/)-7(/)|<Tiy^|/-(27)(/)|^<2M2/(/).

Hence | /„(/)- Izif) |< 22j=xMIj(f), and so

(\èrd lf~IAf)^î/P<\ù\l \f-^(f)r^+2 2Mrjif).

Since U/H* < 1, we have M¡(f)< 1 for all j. It also follows from the John-

Nirenberg Theorem [13] that

Wp

[¿ÂLy-'^m %c
Choose K so high that

(2.2)
N-\ 1 1 r Añ °° 1

2  2^x\h\t V-UNj;* 2  -¿T(c + 2(77 + i)r<^.

g Schwarz's Lemma, choose 0 < k <

if w E Tj for any y < K + 1. Then using

^f)<[w\l}f~IÁf)r^)l/P'

n = K+\

Using Schwarz's Lemma, choose0 < k < 1 so that | b(z) \> k implies that \b(w)\>r¡

Vp

M,

we have

(2-3)     Í^rr-TÍ    \f-IÁf)r^<Ízhíe + 2(n+l)eY<Cep.

Combining (2.2) and (2.3) with the fact that ((1/| 7Z |)//z \f - Iz(f) f dd/2m)x/p < e,

we see that (/ \f - 7Z(/) p» dPz)x/p < Ce if | ¿(z) |> «.'Hence (/ \f- f(z) f dPz)x/p

< 2Ce for such z.

(ii) => (iii): Our proof is similar to the proof of the John-Nirenberg Theorem [13].

Let e > 0 and let a Blaschke product b E B'x and 0 < tj < 1 be such that M,(f) < e

whenever | b(z) \ > tj. We first note that if 7 is an arc and E Ql, then

<C(\E\/\I\)V2p,

where the last inequality follows from the John-Nirenberg Theorem and the fact that

|| /1| * < 1. Choose y > 0 so that if | E \ < y \ I \ , this last quantity is less than e.

For an arc 7 denote by ÓD(7) the dyadic decomposition of 7, i.e., the collection of

arcs obtained from 7 by successive halvings. Using Lemma 1.1, choose 0 < k < 1

such that \b(z)\> k implies

|U (7E6D(7z):3w£ T, such that | ¿>(w) |< tj}| < y \ Iz \ .
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Now let z E D satisfy | b(z) | > k. Let

{J,} = {7EöD(7z):3wE 7)suchthat|&(w)|<i)}.

We note that our choice of y and k guarantee that

(aLv-wzr*-
We want to estimate the measure of En = {eie E 7\ U J,: \f(eie) - Iz(f) \> 4ne}.

To this end, set 7 = 7Z and denote by {Ik}k the maximal arcs in 6))(7) satisfying

Ik¡ 1 J, for any / and (1/| Ik¡ |)/, \f - 1(f) | dB/2v > 2e. Then by maximality,

(1/1 Ik¡ \)f,k |/- 7(/) | d6/2w < 4e. For each kx, denote by {Ik¡kJk2 the maximal

arcs in k(Ik\) satisfying /Mj g J, for any / and (1/| /Mj 1)/,^ I/1 7fc|(/) | d0/2n

>2e. Continuing this process, we obtain a set of arcs {Ik ...k }. Now the inequahties
|/c2 *'J*/Cik2 '

}     '

de
rr^Ti/,   |/-/„.,,-,(/)|f<4«,    /=•..

together with Lebesgue's differentiation theorem imply that, except for a set of

measure zero, En E Uk kIk....k- Since Ik¡...k <¿ J¡ for any /, we have

Mj        (/)<e, hence

■IV-*,-.!*/,      l/-4,...v,(/) 277

■2/    l/-V-^.(/)l^>2.2|/*
tr .     h_It. k.

Iterating this inequahty, we obtain 1k t   ¿ \Tk ...k |<| 71/2", hence | En |<| 71/2".

This easily implies that if Fa = {<?''' G J\"U /,: \Reie) - 7(/) |> a}, then | Fa |<
2 | 7 |/2a/4c for a s* 4e. This yields

M/l/-'(/)r"fhï7ï/     l'-^^ + TTí/   l/-^/)^I7!-7/ 2,r       |2|-'/\u// ¿7r       l'KU/| 2tr

<— /   I {e" E 7\ U J,: |/(e'fl) - /(/) |> «} \pap~xda + ep
Il I •'o

<(4£r + 2^(r^);'r(^)^ + ̂ .

Thus ((1/1 7Z |)//; |/- 7Z(/) \p de/2-ïï)x/p < Ce if | ¿(z) |> k, as desired. This com-

pletes the proof of the theorem.    D

Corollary 2.4. Let /E VMOB. Then \f(z) - Iz(f) |-» 0 or z -* 91L(2?). More

precisely, given e>0 there exists e' > 0 making the following statement true. If

f E BMO w/fA II / II * < 1 and a Blaschke product b and a number 0 < rj < 1 are such

that M,(f) < e' whenever \ b(z) |> tj, then \f(z) — Iz(f) |< £ whenever \ b(z) |> k,

where 0 < k < 1 depends only on e and tj.
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Proof. The proof that (iii) implies (iv) of course also works for p = 1, and this

proof actually establishes a bound on / | / — 7Z( / ) | dPz > | /( z ) — 7Z( / ) | .    D

Recall that P, Q denote respectively the orthogonal projections of L2 onto 272 and

(H2)±= H2. It is implicit in the work of Chang that 7? = {/ E U°: Qf E VMOB},

hence in particular that this latter set is an algebra. Our next result provides a direct

proof of this fact.

Theorem 2.5. Let f, g E L°° with ll/ll«, < l.llgll < 1, let e > 0, let b be a
Blaschke product, and let 0 < tj < 1. Say that (/ | Qf- Qf(z) |2 dPz)x/1 < e and

ii I Qg - Qgiz) I2 dPz)x/1 < £ when \ biz) |> tj. Then there is 0 < k < 1 such that

(/

1/2

\Qifg)-Qifg)iz)\2dPzj      <Ce

whenever \ b(z) |> k, where k depends only on e and tj, and C is a universal constant.

Proof. For z E D define 77z2 = {/ E 272: f(z) = 0}. We have

f\Qifg)-Qifg)iz)\2dP,

= sup :hEL- ,f\h\2dPz

sup

sup

\J[Qifg)-Qifg)iz)]hdPl

fiQifg) - Qifg)iz)]hdPz:hEH2,f\h\2dPz^l^

fQifg)-hdPz:hEH2,f\h\2dPz<l

since fh dPz — h(z) = 0 for h E 27z2. For brevity we write sup{ ■} for

supj-:/!E77z2,/|/7|2dPz<lJ.

Continuing our chain of equalities:

supj/o(/g)-A¿P

< sup

j = sup j ffgh dP2

jU-fiz^ghdP..

f[Qf-Qf(z)]ghdP2

fgh dP2

+ sup||/(z)|

+ sup

fgh dpz J

f[Pf-Pf{z)]ghdP^

T-SUp

Now | ¡[Qf- Qfiz)]gh dPz |< (/ | Qf- Qfiz) \2 dPz)x'2 < e and

fgh dPz = ¡[Qg - Qgiz)]hdPz < (/log - Qg(z)\2 dPz)      < £
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if | b(z)\> tj. The middle integral can be rewritten as

f[Pf-Pfiz)][Qg-Qg(z)]hdPz.

By the extended Holder inequality this is bounded by

J (f\Pf- Pfiz)\4 dPz)[/*(f\Qf- Qfiz)\4 dPz)l/4(f\h\2 dP2)V2. I

The third factor is of course bounded by 1. The analogue for BMO of the

implication from (ii) to (v) in Theorem 2.1 is well known—see Chapter 4 of

[19]—and together with the boundedness of the projection P on BMO, implies that

the first factor is bounded by a constant C,. By Theorem 2.1 there is k such that

tj < k < 1 and C2 such that if | o(z) | > k, then the second factor is bounded by C2e.

Hence if | b(z) \ > k, then

[f\Qifg)-Qifg)iz)\2dPz]      <C3£.    D

Corollary 2.6. Let Abe a positive integer and letfx,... ,/„ E L°° with II / II ̂ < 1.

Suppose b is a Blaschke product and 0<tj< 1,£>0 are such that

{f\QfJ-Qfj{z)\2dPz}     <£

for j = 1,..., A whenever \ b(z) \ > tj. Then there is 0 < « < 1 depending only on e, tj,

and N, and there is CN depending only on N such that

(/|e(/, • • -TV) - Ô(/, • • -/tfX^r dPz)      < CNe

whenever \b(z)\> k.

Proof. Induction on Theorem 2.5.    D

In [4], Chang shows that VMOfl = CB + CB. Of course this implies that VMOB =

Qb + Qb- Our next result shows that this decomposition can be done in a uniform

way.

Theorem 2.7. Let 0 < C0 < 1 be a number such that iff E BMO with /(0) = 0 and

II / II* < C0, then f can be written as f — /, + f2 where II /, II x < 1, || f2 \\ x =s 1 (such a

number exists by C. Fefferman's Duality Theorem [6,7]). 77ie7j // 11/II* < C0 and

f(0) = 0 we can write f = /, + f2 with \\ /, || M < 6,11 f2 \\ x < 6 and so that the following

will be true. Given e > 0 there exists e' > 0 depending only on e such that if

(J \f — f(z) \2 dPz)x/2 < e' whenever \ b(z) \> tj, where b is some Blaschke product

and 0<tj<1, then (f \fx - fx(z)\2 dPz)x'2 < e and (f \f2~ f2(z)\2 dPz)x/2 < e

whenever \ b(z) |> tj', where 0 < tj' < l depends only on e and tj.

Proof. Our proof is a combination of the proof of the decomposition VMOB =

CB + CB in [9, Chapter 9] with our Corollary 2.6. Assume / is real and write

/= v + w, where \\v\\x < 1 and II wll^ < 1, and define g = j(t> + iw). Since v + w

— v + iw + w — iw, we have Qg — 3Qf. By Nevanlinna's Theorem [9, Theorem 4.3,
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Chapter 4], there is a unimodular function u such that g = u — h for h £ 27°° and

d(u, Hçf) = 1. Since ||« —A||00<f it follows as in the proof of [9, Lemma

4.3, Chapter 9], that | h(z) | > ^ for all z E D. We have || 1 - üh \\ x < §, so

¿7/7 E 5, = {re'e: i<r<$,|0| sin"1 § }•

Therefore

uA" (SA)"1 6S2= {re'*: f ^ r ^ 3, | 6»|^ sin"1 f }.

So 111 - to"^"'!!» < to. hence we can write 10mA = 2"=n(l - TfjMA"1)", or ¿7 =

(10A)-'2^=0(1 - T7j«A"')".   Now  let  e > 0  be  given   and  choose  A  so   that
3 i
10'^S^at+i^)" < ie. We now have

1

10A 2J1_ lïïM/rl) = ?„c-"(iöä)    "
n = 0

SO

/|0¿7-0«(^)| dP,

n=0
e((râp")(z)

2 \ 1/2

dPA + i-

Let e' > 0 be very small and suppose that a Blaschke product b and 0 < tj < 1 are

such that iS\Qf- Qfiz) |2 dPz)x/2 < e' when | b(z) \ > tj. Since Qu = Qg = 3ß/", if

e' is small enough we can find by Corollary 2.6 a number tj', tj < rj' < 1, such that if

|6(z)|>tj'then

2kj(/|fl((
1

10A "»"M(T5*r»"
1/2

¿p. <
4'

Thus (/1 ßö - Ô"(2) |2 dPz)x/1 < e/2 if | b(z) |> tj'. Since Qü = Pu - Pu(0), this

shows that (/ | u - u(z) \2 dPz)x/2 < e if | b(z)\> tj'.

Now since k — ik = 0 for any analytic & and f = 3u — 3h + w — iw, we have

/— i/ = 3« — î3û. Thus/= Re(/— ;/) = Re(3u — i3ü), and since

(/|!J-I3(z)|2dPz)1/2=(/|M-U(z)|2úÍPz)'

1/2

for any z E D our proof can be completed by setting/, = 3 Re u, f2 — 3 Im u.    D

We next give a method (Theorem 2.14) for solving certain 3-equations with

boundary values in QB.

Definition. Suppose F is a function on D and « is a function on 3D. We say F

has Ü boundary function u if lim_, / | F(rew) - u(ei9) \ dO/2-n = 0.

Theorem 2.8. Let <¡>x, $2: D -» R+ satisfy 0 < $„ $2 < A7 and let g be a function

on D such that

f f\goLa\2\L'a\2{l-\z\2)dxdy^4>xia)
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and

u 9g
3z

°L. \L'a\\l-\z\2)dxdy<<i>2ia).

Then there is a function F onD with dF/dz — g, having an Lx boundary function u for

which f\u- JudPa |2 dPa < C(0,(a) + M$2(a)) for all a ED.

Proof. The conditions imply that | g ° La |2 | L'a |2(1 — | z |2) dx dy

and | 3g/3z ° La\\L'a |2(1 — | z |2) dx dy are Carleson measures with Carleson norms

at most CM. Define

and

dp=\g\2\z\logil/\z\)dxdy

dvg=\dg/dz\\z\loèil/\z\)dxdy;

pg and vg are then Carleson so W/dz = g has a solution and any solution U must

satisfy

(2.9) to ¡U(re*)H(,e»)g = f (j(*l + *|f ) k«^**

when A E 27Ô (see [9, Chapter 8]). The area integral converges absolutely. Let P0 be

the orthogonal projection of 2/ onto 2702, and define a linear functional ¥ on L2 by

(2.10) ^(/)=f/D/[(^o/)'g+(^o/)|f logy—¡dxdy.

Lemma 2.11. suP|l/l,2<11 *(/)|< C(pg(B?/2 + \\Vg\\y2vg(D)x^2).

Proof. By Schwarz's inequality,

«'>"*|jUü^^H"(#l*p|,|*rc**r
77 \JDJ

Pof 9g
3z

\z\iogjjvdxdy

1/2

u 9g|
3z

z | log-j—.-dxdy
1/2

The four integrals are bounded respectively by C, Mg(D), CII vg II *, and vg(D).    G

Let p E L2 be the function on 3D such that ¥(/) = //« ¿0/2 w for all/ £ L2. By

Lemma 2.11 we have

(2.12) |M||2<c(,ig(D) + ||,g||*^(D)).

Lemma 2.13. (a) m E 2702.

(b) There is a continuous function F on D such that F has Lx boundary function u and

df/dz = g.
(c) u and F are determined by (a) and (b).

Proof, (a) follows from the fact that ^(/) = 0 when / E 272. To prove (b), set

«(f)
Fiz) = ̂ -.f   f^dî+^f /log

\-tz

?
^dtdii.
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F has Lx boundary function u by (a) and well-known facts about Green's potential

(e.g. [21, §IV. 10]). To prove dF/dz = g let V be any function with dV/dz = g.

F — V is obviously harmonic, so

KF^nM = üm/-^—(F(^) - ***))£.
^lJ (1 -we,e)2 2"dz

û, E 77,o

Since e,v/(l - we'") E H¿, (2.9) and (2.10) prove the limit is zero.

To show (c), assume (ux, Fx) and (u2, F2) satisfy (a) and (b). Then ux

and m, — u2 is the boundary function of Fx — F2, which is analytic and therefore

zero.    G

We will call m the canonical boundary function for the equation dV/dz — g. By

Lemma 2.13 it is conformally invariant: if u is the canonical boundary function for

dV/dz = g then u ° La — ¡u dPa is the canonical boundary function for Wßz =

g o La ■ Ua. It follows that
2

uoLa- fudPa 2<c(í»,.v¿;(D) + il»f.v£;«tiV.v/i(D))

< C($,(a) + M*2(a)).

Equivalently, J\u- fudPa \2 dPa < C($x(a) + M<P2(a)), proving Theorem 2.8.    G

Remark. The functions u and F may be obtained without using duality. Given g

satisfying the conditions of Theorem 2.8, let

G(z)=-log
i-Kz

S Bf
dtdri.

Then g — 3G/3z is conjugate analytic; let W = /0z(g — dG/dz)dz be a primitive

vanishing at the origin and take F = W + G and u(e'e) — W(e'e).

Theorem 2.14. Suppose g is a function on D such that

fJ\goLa\2\L'a\2il-\z\2)dxdy<<í>(a),

\L'f(\-\z\2)dxdy<$ia),u ôz       '

where $ is a bounded positive function on D with $(a) -> 0 as a -> 91L(7?). TAeTj rAere

is a function F on D swcA íAaí dF/dz — g, having an Lx boundary function u E <2b-

Moreover, u satisfies estimates of the form \\u\\œ< M, f \u — fu dPa |2 dPa < ^(a),

where ^ is a bounded function on D vvz'iA ̂(a) -> 0 as z -» 911(2?), a/zt? M and *

depend only on 0.

Proof. Immediate from Theorems 2.7 and 2.8.

Corollary 2.15. The Corona Theorem is true in QAB: if /,,...,/„ E QAB and

infzmaxy|/¡(z)|>0, then there are gx,... ,g„ E QABwithfxgx + ■■■ +f„g„ = 1.

Proof. Mimic the proof in the appendix of [16] or Chapter 8 of [9].    G

Our next lemma is a technical result relating various shrinking conditions on

measures. It is needed only for the proof of Corollaries 2.18 and 2.19.
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Lemma 2.16. If p is a positive Carleson measure on D then the following are

equivalent.

(i) /dO ~~ | o |2)/| I - az\2 dpiz) < 0(a), where 0 ¡is bounded and $(a) -» 0 as

a -> 9H(2?).

(ii) /i(5a) < (1 - | a \)^(a), * bounded and *(a) -* 0 as a -> 91L(2?).

(iii) For each e > 0 there is a neighborhood U of 9H(2?) such that IIxt/MH* < £>

vvAere x<y ** ̂ e characteristic function of U.

Remark. (1) If dp = | g | (1 — | z |2) dx dy for some function g then (i) is equivalent

by the change of variables formula to

/ \goLa\\L'£il-\z\2) dxdy <$(")■
•'D

(2) When dp=\ V/|2(l — \z\2)dxdy with / harmonic, then (i)-(iii) are all

necessary and sufficient for / E VMOB [3]. That the conditions are equivalent in

general is undoubtedly known to many people, but there is no proof in print. We

thank D. Marshall for the proof that (ii) implies (i).

Proof of Lemma 2.16. We show (i) => (ii) => (iii) => (ii) => (i). The implication from

(i) to (ii) follows from the inequality 1/(1 - | a |) < C(l - | a \2)/\ 1 - oz |2 for

z E Sa, while the proof that (ii) => (iii) given in [3, Lemma 5] for the case p =

| V/|2(l — | z |2) dx dy goes over verbatim.

(iii) => (ii): Use induction to choose Blaschke products bj E B~x,bj\bj+X, the

numbers 8-, 0 < 8j < 1, such that the following statements are true. For each n > I,

(8n, 1/2", 8n+x) plays the role of (tj, e, k) in Lemma 1.1. |lxG «II* -» 0 as n -> oo,

where Gn — {z: \ bn(z) |> 8n}. If a ED, let n — n(a) be an index such that

I K+\ia) I-3* K+\> we can make n(a) go to oo as a -» 91L(2?). We have then

p(Sa) = p(SanG„) + p(Sa\Gn)

<p({zESa:\bniz)\>8n}) + p({zESa:\bn+xiz)\<8„})

<(i-|«!)(llxo.MlU + ¿lli»lu)

= o(l-|a|)    as a -^911(2?).

(ii) => (i): Fix a E D and define a sequence {zj} by zy = a(l — l/2y)/| a | . Let A

satisfy | zN | < | a \ < a„+, ; write

Jo\l-az\z JStN | 1 - az |2 y=0 7^ | 1 - az |2

In these integrals,

1 -lal2
-]—L- < C2^   for z E D
| 1 - äz |2

and

1 — | « I2 ,.    „
-x—h-<C-22j2'N
\l-az\2
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whenz E D\SZ. So

I
l-|a|2 ' *"»

dp(z) < C2"" 2N*izN) +  2 22>2-"¥(z,)  ,
•'d I 1 - az |2 \ y=0

proving

(2.17) / IzM-dp(z) < CVN 2 2J*(*j)-
Jo | 1 - az |2 7=0

If 0 < tj < 1 and A7 is a positive integer, then by Schwarz's Lemma there is

0 < 5 < 1 such that whenever | zN \ < \ a \ < \ zN+, | and b is a Blaschke product with

| b(a) | > 8 we have | b(zj) \ > tj for A — M <j < A. To prove (i), fix £ > 0. We need

0 < 8 < 1 such that | b(a) | > 8 implies /D(l - | a \2)/\ 1 - äz \2 dp(z) < e. Let M be

some integer with 2~M < e[C(2 + sup^^^w))]'1 with C as in (2.17). Find a

Blaschke product b E B'x and 0 < tj < 1 such that |A(z)|>tj implies ^(z) <

e[C(2 + supweD^(H'))]"1. Use the remark following (2.17) to choose 0 < 5 < 1

corresponding to tj, M. Then if | b(a) |> 5, (2.17) gives

,  _ i     |2 / N (N-M)+-\ \

/m     l^|2a-»(z)<C2-^|       2       2^(z,) +       2       2>*(z,)|
0\l - az\ \j = {N-M)+ 7 = 0

<C2~Nle2N+x + 2N-Msup*(w)
wED j

CÍ2 + sup *(w))
wëD

<£.   a
Definition. We will call a measure u satisfying (i)-(iii) of Lemma 2.16 a

B-Carleson measure.

Corollary 2.18. If p is a B-Carleson measure then there is a nonnegative function t

077 D ímcA íAaí t(z) -> oo as z -» 911(2?) a/7d tu w í//// B-Carleson.

Proof. Choose a sequence {o„} of Blaschke products in B'x such that bn \ bn+ x and

an increasing sequence of positive numbers {8n} such that 8n -» 1 as n -> oo and

2T-illXe.Mll. < oo, where G„ = {z E D: | ¿7„(z) |> «„}. Then G„ D G„+1 and n„G„
= 0. Let {i„} be a sequence of positive numbers such that tn -* oo as n -» oo and

2"=i'JIXg„HU< oo. Define t(z)= 1 if z E G, and t(z) = i„ if z 6G„\C„+1,«>
1. Then tu is Carleson and HxGTwll*^Oas77^oo, hence (iii) of Lemma 2.16 is

satisfied.    Q

Corollary 2.19. Suppose {z„} is an interpolating sequence for H°°, 0 < tj < 1, pj is

a measure supported on (z E D: p(z, z,) < tj}, and the total variation of pj, \ pj | (D),

is bounded as j varies and tends to zero as Zj -* 91L(2?). Then (1 — | z \)1pj is a

B-Carleson measure.

Proof. This follows immediately from (iii) of Lemma 2.16 and the fact (see

[9, Chapter 7]) that 26/(1 — | z, |) is a Carleson measure.    G

3. Turning approximate interpolation into actual interpolation. In this section we

prove that if {z„} is an 27°° interpolating sequence satisfying an auxiliary condition

AB, then any bounded sequence of numbers that can be approximately interpolated
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by a QB function at {z„} can be interpolated by a QAB function. The condition AB is

a technical condition needed for the construction of certain analytic functions which

multiply the Blaschke product with zeros {z„} into QAB. We will show in §4 that any

sequence which is thin near 911(2?) satisfies AB.

Definition. Let 2? be a Douglas algebra. A sequence {z„} ç D is said to satisfy

AB if the following holds: whenever a is a function on D such that a > 4 and

a(z) -» oo as z -> 911(2?), there is v E VMOB with 0 < v(z) < a(z) for all z E D

and v(zn) -* oo as z„ -» 9H(2?).

Theorem 3.1. Suppose B is a Douglas algebra and {z„} is an 77°° interpolating

sequence satisfying AB. Then if {A„} is a bounded sequence of complex numbers and

u E QB with | u(z„) - X„ | -> 0 as z„ -> 911(2?), íAere « A E QAB with h(zn) = A„ for

all n.

Remark. We mentioned in the Introduction that we will need specific estimates to

carry out the linearization argument in §6. Because of the estimates in §2 it will be

clear from the proof that the following version of Theorem 3.1 is in fact true.

Suppose {z„} satisfies AB. Suppose en > 0 is a bounded sequence with £„ -» 0 as

z„ -» 911(2?) and $ is a bounded nonnegative function on D such that 4>(z) -* 0 as

z -» 911(2?). Then there exist O 0 and a bounded nonnegative function tonD

with *(z) -> 0 as z -> 9H(2?), such that if \\u\\x < 1, M¡(u) < *(z7) for all arcs 7,

and | u(zn) — Xn\< en for all 77, then there is A E 7700 with A(z„) = Xn for all 77 and

IIA || „ « C, Mj(A) « $(z7) for all arcs 7.

Proof of Theorem 3.1. The first step is to modify u slightly to obtain a function

constant on small hyperbolic discs around the points z„. Let {z„}, u, {X„} be as in

the hypothesis and let tj > 0 be some number small enough so that the discs (z E D:

\z — zn|<4i)(l — \zn\)} are disjoint and contained in D. Let y be a smooth

function on [0, 00) such that 0 < y < 1 and y(t) = 0 when t < 1, y(t) = 1 when

7 > 2. Define a function g by

*(*)
l[X-\"z\)Yu{Zn)~K)+K   'ú\z-z»\^(\-\zn\),

u(z)    if I z — z„ |> 2tj(1 — I z„ I) for all tj.

Let £„ = max{|M(z)-X„| +(1 - \zn\)\vu(z)\: |z-z„|<2tj(1 -|z„|)}. Since

u E VMOB and | u(zn) — Xn |-> 0 as z„ ^> 9H(2?), easy computations show that the

£„ are bounded and tend to zero as zn -> 911 (2?), and that

|Vg(z)|<C£„/(l-|zJ),     |Ag(z)|<C£„/(l-|z„|)2,

with C independent of 77, whenever | z — z„ |< 2tj(1 — | zn \). These facts

together with Theorem 2.1 and Corollary 2.19 show that

I Vg|2(l — \z\2)dxdy and |Ag|(l — \z\2)dxdy are 2?-Carleson measures. Also

note that g(z„) = X„ when | z - z„ |< tj(1 - | z„ \).

Next use Corollary 2.18 to choose a function a on D such that o s* 4 and

a(z) ^00 as z^ 911(2?), such that e2o(z) | Vg(z) \2(l - | z |2) dx dy and

eo(z) I Ag(z) I (1 — I z |2) dx dy are still 2?-Carleson measures. By condition AB there
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is v E VMOB such that 0 < v(z) < a(z) for all z E D and ©(*,)_"* oo as z„ ^ 9H(2?).

Let b be the Blaschke product with zeros {zn} and consider the 3-equation

(3.2) ¿(g + Ae-<"+'e>«) = 0

for the unknown function a.

Lemma 3.3. 7/A is an interpolating Blaschke product with zeros {z„}, \p E QAB has

no zeros, and ^(z„) -» 0 as zn -» 91L(2?), then \pb E QAB.

Proof. We may assume II ̂ II » * !• We ^rst show that if 0 < p < 1 and £ > 0 are

given we can find a neighborhood V of 911(2?) such that z E V and | A(z) |< 1 — p

imply |^(z)|<e. Let M be a number such that sup„|\„|< 1 implies there is

A E 27°° with A(z„) = Xn for all n and || A || x < M. We may assume e is so small that

Me + (1 +Me);1 ~ P\ < 1.

Choose A so that

Me + (1 + Me) (1-P)
N

<£.

(1  "IP)

Let U be a neighborhood of 911(2?) such that z„ E U implies that | ̂ (z„) |< e^, and

let bv be the Blaschke product with zeros {z„: z„ E Í7}. Then b/bv E B'x, hence

V = {z E U: | (b/bv)(z) \ > 1 - ^p} is a neighborhood of 911(2?). Now say z E V is

such that | A(z) |< 1 - p. Then | A^z) |< (1 - p)/(l - j-p). Let/ E 2700, ||/|| « Me

be such that/(z„) = \l>(zn)x/N for z„ E £/. Then bv divides/ - 4>X/N, hence

I/O) - ^(z)I/JV| = |((/-^>/^)//3t/)(z)| M*>|< (Me + 1)(1 - p)/(l - ¿p).

Thisimphes|^(z)|1/,V<ME + (ME+ 1)(1 - p)/(l - j-p), so | ̂ (z) |< e.

Now let e > 0 be given. Write

/ | # - (#)(z) |2 07>z = / | * |2 o7>z - | *(z) |2 | A(z) |2

= /|^|2a-Pz-|^(z)|2 + |^z)|2(l-|A(z)|2)

< / |^ - ^(z) |2 dPz + max(| ^(z) |2,1 - | A(z) |2).

Since ^ E QAB, we are done by Theorem 2.1.    G

Now equation (3.2) is equivalent to

We claim there is a solution a of (3.4) with L1 boundary function in QB. Supposing

this to be true, Theorem 3.1 follows by letting A be g + be'^v+w)a; then 3A/3z =

0, A(z„) = Xn for all n, and A E QAB since g, a, and e'{v+w)b (by Lemma 3.3) all

have boundary functions in QB.
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To  prove  the  claim  let  Q = (e"    /A)(3g/3z).  Theorem  2.14  will  give  a

provided | Q |2(1 — | z |2) dx dy and | 3Q/3z | (1 — | z |2) dx dy are 2?-Carleson mea-

sures. We only show that | dQ/dz | (1 — \z\2)dxdy is 2?-Carleson; the proof for

| Q \2(l — | z |2) dx dy is simpler. First of all,

(3.5)
30
3z^ = V^ + 2J

3d 3g 3A 3g
A  3z 3z   ¿2 3z 3z '

Since A is interpolating and g is constant on small hyperbolic discs around the points

{z„}, | A | has a positive lower bound on the set where dQ/dz ^ 0 [12, Lemma 4.2].

By definition, | ev+w |< e". Applying Schwarz's inequality to the last two terms in

(3.5), we obtain

l/lf(>-M!>11 — az

a\
rrr,dxdy

<C fJe°^\Ag(z)\±-U-   r^

l/<2o(z) 3g
3z

| 1 - äz |2

(l-|a|2)(l-|z|2)
1/2

az
dxdy

X Í f\^v\
7D7 | 3z

(l-|a|2)(l-|z|2)
1/2

1 — az7¡„a
dx dy

+ JJ'2„U) 9g
3z"

(l-|a|2)(l-|z|2)
1/2

az

X U
3A
3z

(i-M2)(i-M2)

|i az

= c[i + n1/2iii'/2 + iv1/2v1/2].

We know that e" \ Ag | (1 - | z |2) dx dy and e2a

1/2

dxdy

Vg |2(1 — | z |2) dx dy satisfy (i) of

Lemma 2.16; let 0(a) be the function given there. Then the integrals I, II, III, IV, V

are bounded by 0(a), 0(a), ||u||¿, 0(a), 1, respectively; since 0(a) + 0(a)1/2||t>||*

+ 0(a)1/2 ^ 0 as a ^ 91L(2?), Theorem 3.1 is proved.    G

We now give an example showing that Theorem 3.1 becomes false if the condition

AB is not assumed to hold. We will work in the upper half plane. Let BUC denote

the algebra of bounded uniformly continuous functions on R. Then [18] 72°° + BUC

is a Douglas algebra and QH~+m}C = VMOR n L°°, QAH^+XiV¡c — VMOR n 27°°.

Here VMOR = {/ E L'loc(R): (1/| 7\)f, \f - 1(f) \ dx ̂  0 as 171 -» 0}, where 7 runs
through all intervals of R.

Example. There is an interpolating sequence {wn} for 77°° and a function

u E BUC such that no v E VMOR n 27°° satisfies v(wn) = u(w„) for all n.

Construction of the Example. For each positive integer Ac let xk and tk be positive

numbers satisfying xk + tk< xk+x and tk -» oo as k -> oo. Let {zj*'} be the finite
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sequence {xk + j/2k + i/2k}0<j<2*lk. Let {w„} = U^=1{zf>}. Then {wn} is an

interpolating sequence for 77°°. Let A be the Blaschke product with zeros {7 +j:

j E Z}, and let u = b E BUC. Suppose there were v E VMOR n 27°° satisfying

v(wn) = u(wn) for all n. The function/= vb would satisfy/E VMOR fl 27°°, /(w„)

-» 1 as n -» 00, and/(/' + /) = 0 for ally E Z. The first two of these would show that

for any e > 0,

sup{|(A, A+ 1) n {x: \f(x) - 1|>e}|: AE ixk,xk + tk- I)} -> 0   as k -> 00.

This would imply by Poisson's formula that

lim |/(i + n) — 1 |= 0,   a contradiction.    Q

n-* oo

There are Douglas algebras 2? (e.g. 27°° + C and 77°° + L;°DMi}) such that any 27°°

interpolating sequence satisfies AB. Certain questions which are open for general

Douglas algebras can be answered for these algebras using Theorem 3.1; for

example, the analogue of Theorem 2 of [22] is true.

4. A construction. In this section we show that if the interpolating sequence {z„} is

thin near 91LB, then it satisfies Aß. Our construction is based on that of Garnett and

Jones [10].

Definition. Let 7 be an arc and / be a Lipschitz function on 3D. We say / is

( a, b )-adapted to I if / is supported in 7, | /1 < a, and | df/dd | < b/\ I \ .

Lemma 4.1 [10]. Suppose í = {I/} is a sequence of arcs satisfying 2/ CJ \ I} \ < M \ J \

for all arcs J. Let a¡ be (a, b)-adapted to 7y, 0770" let /= 2yay. Then f E BMO and

||/||*<CM(a + A).    G

Garnett and Jones state Lemma 4.1 for dyadic 7y, but there is no difficulty in

modifying their proof to cover the nondyadic case. We give two variations on

Lemma 4.1.

Definition. Let í be a family of arcs and J an arc. The density of i in J, D$(J), is

|U/6Mc/7|/|/|.

Lemma 4.2. With í = {7y}, {ay}, /, and (a, A) as in Lemma 4.1, suppose L is an arc

for which LD fj^ 0 implies | /-\<\ L | . Then ML(f)< 2L(\f\) < CaMD^L).

Proof. The first inequality is trivial. The function ay vanishes identically on L if

L n 7y. = 0. If L n ïj. ̂  0 then 7y C L. Let E = VIqL°Ij, and let E = U En be the

decomposition of E into disjoint open arcs. Then

¿(l/l) «TTT 2   ̂ l=m^   2   lIj^f^îlE^aMDsiL).   G
\L\IjQL \Li-»IjCEa W   n

Lemma 4.3. With 9 = {7y}, {ay}, /, (a, A) as in Lemma 4.1, let L be an arc and

suppose that Lil/^0 implies \ I}• | ̂ = | L \ . Let y — supLc;s | L \/\ 7y | . Then ML(f)

^VL(f)<CMby.
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Proof. Again the first inequality is trivial. If a does not vanish identically on L,

thenL E 7*. For« > 1, let

\ = {7y: L Q I] and 3"~x <\Ij \/\L\< 3"),

and let dn be the cardinality of i„. Then dn = 0 if 3"" > y. For any 77 we have

U_,7,E 10- 3"L. Therefore

dn\L\-3"-x<   2   |7y|<C10-3"|L| ,   or   dn < 30C.

If 7y E in, then the variation of ay on L is at most A/3"   '. So

^l(/)<       2      30CA/3"-1 <45MAy.    G
{«:3-"<y}

Corollary 4.4. With {I/} and {ay} as in Lemma 4.1, suppose there is a Blaschke

product b E B'x and a number 0 < tj < 1 such that \ b(z) |< tj when z E U T¡. Then

f E VMOfl.

Proof. Given e > 0 we will find 0 < p < 1 such that \b(zL)\> p implies ML(/)

< Ce. Make p large enough so that \b(zL)\> p implies

(4.5) D9(L) < E/aA7.

(4.6) If I 7y I > I LI and L Q 7y., then | L |/| 7y | < e/bM.

In fact, (4.5) follows from Lemma 1.1 and (4.6) from Schwarz's Lemma, provided p

is sufficiently large. Now use Lemmas 4.2 and 4.3.    G

We now give the main construction of [10] in the form we will use.

Theorem 4.7 (Garnett-Jones [10]). Let N < 00 and e>0 be given. Then there is

p > 0 such that the following will be true.

Let <3l and 9> be two collections of distinct dyadic arcs satisfying mi^D^L), D<%(L))

< p for all arcs L. Then there exist collections of distinct dyadic arcs GC$l) D tfl and

G(%)D%, with G(<Sl) n G(% ) = 0, and functions ay which are (2,160 • 33)-adapted

to arcs 7y E <7(<3l) U (7(íB), ímcA that the following will hold withf= 2ay:

(i) 2/.6G(ÍÍI)ug(í&),/7c/ I h \< 3111 f°r aU arcs 7> h Q L
(ii)0</^A.

(iii)7(/)>A-£7/7E<3l.

(iv)7(/)<£i/7E®.

(v) There isd>0 such that 2\,uS(7y) > dfor all Ij E G(<31) U G(%).

In particular, II / II* < C Ay Lemma 3.1.    Q

Remarks. (1) Theorem 4.7 is proved, though not stated explicitly, in [10].

Statement (v) follows from the fact that only a fixed finite number of generations is

used in the construction in [10]. See [14] for further discussion.

(2) The function / belongs to VMOB if the following additional condition is

satisfied: there exist a Blaschke product b E 2?"1 and a number 0 < tj < 1 such that

7 £ % U 'S implies | A(z) |< tj whenever z E T¡. To see this, note that by (v) and

Lemma 1.1 there is 0 < tj' < 1 such that J E G(<31) U G(<S) implies | A(z) |< tj' for

all z E Tj, and use Corollary 4.4.



INTERPOLATING SEQUENCES FOR QAB 571

Another important step in our construction is the following lemma.

Lemma 4.8. Let u > 0 aTid 0 < tj < 1 be given. Then there are numbers 0 < 8 < 1

a77a"0 < 6 < 1 making the following statements true.

Letf E H°° with II / II ̂  = 1 and let {zn} be a Blaschke sequence. Suppose

(i) nm#„p(zm, z„) > 6 for alln,

(ii)\f(zn)\>8foralln.
Let 91 = {7: 7 is a dyadic arc and 3z„ E T¡}, % — {I: I is a dyadic arc and

3zET„\f(z)\<V}.
Then min(D%( J), D^(J)) < pfor all arcs J.    Q

Proof. If <f> is any 27°° function define &^ = {7: 7 is a dyadic arc and

3z E Tj, I 0(z) |< tj}. By Lemma 1.1 there is 0 < p < 1 such that if 11011 „< 1 and
| <j>(zj) | > p, then Dg (/) < u. Let A be the Blaschke product with zeros {z„}. Using

Lemma 4.2 of [12], choose 6 large enough so that there exists 0 < to < 1 satisfying:

(i) and | A(z) |< p force inf„|(z — zn)/(l — znz)\< u>. Then use Schwarz's Lemma

to choose 8 large enough so that (ii) and \f(z) |< p force inf„ | (z — z„)/(l — z„z) |

> w.

Let J be any arc. If inf„ | (zy — z„)/(l — ZjZn) |< w then |/(z/)|>p; if

inf„ | (zj — z„)/(l — ZjZn) |> w then | A(zy) | > p. In either case

min(D^iJ),D%(j)) « min(D&J J), D^J)) < p.    G

We now give the main result of this section.

Theorem 4.9. Suppose {zn} is thin near 9tt(2?). If a is a function on D satisfying

a>4 and o(z) -» oo as z -* 9H(2?), then there is u E VMOB such that 0 < u(z) <

a(z) for all z ED and u(zn) -» oo as zn -> 911(2? ).

Proof. By Schwarz's Lemma and the BMO analogue of Corollary 2.4, which can

be established by a similar proof, there is a number X > 0 with the property that if

/ E BMO satisfies || /1|* < X, then |/(z) -/,(/) |< 1 for any arc 7 and any z E 7}.

Let {e } be a sequence of positive numbers such that 2ey < X. We will construct u as

a sum of VMOB functions wy, each of which satisfies II « ■ II* < e,.

By Theorem 4.7 there are uy > 0 such that the following statements will hold. Let

<3ly and <$y be collections of distinct dyadic arcs satisfying min(D^(L), D^{L)) < uy

for all arcs L. Then there exist families of distinct dyadic arcs G(6ly) D 31., G(%j)

D %j, and a function t/y such that

(4.10) H«/l*<£7   and   0 « h, «/,

(4.11) 7(My)>;-l/2>   if7E3ly.,

(4.12) 7(wy)<l/2>   if7E®y,

(4.13) «y is a sum of functions ( aU), bU) )-adapted to arcs in G ( 3ly ) U G ( ®y ),

(4.14) there is dy > 0 such that 2>a.uS,.(7) > o"y for all 7 E G(<3ly) U G(%).

We will inductively choose Blaschke products Ay E 2?"1 such that Ay | Ay+1, and

numbers 0 < tj ■ < 1 with Tjy+, > ijy., such that the following will hold.
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Forj> 1, if

91° = (7: 7is a dyadic arc and 3z„ E T,, | Ay(z„) |> Tjy},

%j = {7: 7 is a dyadic arc and 3z E T,, | Ay_,(z) |< Vj-i),

then min(z>aq(L), /^(L)) < uy for all arcs L.

|A(z)|>tj     imphesa(z) > 4 +j2.
J J

Start by setting A0 = 1, rj0 = 0. Now let 7 > 1 and suppose Ay_, and Tjy_, have

been chosen. Let 5 and 0 be such that (ih_,, uy, ô, 0) plays the role of (tj, u, 5, 0) in

Lemma 4.8.

Choose Ay and Tjy so that 4.16 holds and

(4.17) 7ij>8,

(4.18) inf ¡I
ln:\bjUm)\>Vj} m^„

We have used the fact that {z„} is thin near 911(2?) to get (4.18) and the condition

a(z) -» oo as z -* 91L(2?) to get (4.16). We can assume Ay_, | Ay, since we can replace

Ay by Ay_,Ay if necessary. Letting Ay play the role of / in Lemma 4.8, and using

| bj_x(z)\>\bj(z) | , we see that (4.15) holds. This completes the induction.

Next set

9iy={7EgiO:3z„Er/,|Ay+1(zJ|<T,y.+ 1},    %. = <&».

Since 91. C 91°, (4.15) imphes min(7>a (L), D%(L)) < py for all arcs L. Let wy be a

function satisfying (4.10)-(4.14) with respect to 9ty and 9Jy, and set u = 2wy. We

claim that u satisfies the requirements of the theorem.

We first show that u E VMOB. Fix j > 1. For every arc 7 E 9ly U 9J- there is

z E Tj with | Ay+1(z) |< Tjy+1. By Remark (2) following Theorem 4.7, My E VMOB. So

u E VMOfl because 2wy converges in BMO norm.

To show that u(zn) -> oo as z„ -» 91L(2?), we assume | Ay(z„) |> rjy and prove

u(zn)^j - 1/27 - 1. If 7 is the dyadic arc with z„ E T¡ then 7 E 91° and therefore

7 E 91, for some i >j. Hence u(z„) > I(u) - 1 > 7(w,) - 1 > i - 1/2' - l>j -

1/27 — 1, where the first inequality follows from ||m||* < A and the third from

(4.11).
Since u is clearly positive it remains to prove u(z) < a(z). Fix z E D and let

A > 0 be the largest integer for which | A^(z) |> tj^. Let 7 be the dyadic arc with

z E Tj. Then 7 E 9Jy. forj > N + 2, hence /(«,) « 1/2' if; » A + 2. For; « A + 1
we use the trivial estimate 7(m ) «s II « Il ̂  </. Summing over;', we obtain

/(»)=  l/(.J)<(Ar+1f + 2)+-^<^ + 3..(2)-1.
2=1 2

Another apphcation of the estimate II «II* =£ A gives u(z) < o(z), completing the

proof of the theorem.    G

(4.15)

(4.16)

z„ — z„



INTERPOLATING SEQUENCES FOR QA 573

5. Another construction. We complete the proof of the implication from (3) to (1)

in Theorem 1 with the following approximate interpolation result.

Theorem 5.1. If {z„} is thin near 911(2?) and {Xn} is a bounded sequence of

complex numbers, then there is f E QB such that \f(zn) — A„ | -» 0 as zn -* 911(2?).

More precisely, we can find f satisfying:

(a)||/||00<Msup/|X/|,

(b)|/(zB)-Aj<aBsup,|A,|,

(c)A/L(/)<0(zt)suPy.|Xy|

where M, {8n}, and O depend only on {z„}, O and {8„} are bounded by constants

depending only on {z„}, and 8n -* 0 as zn -> 911(2?), 0(z) -* 0 as z -> 91L(2?).

Proof. The proof of this theorem will occupy the rest of this section. It will be

clear from our construction that the function / will depend linearly on {Xn},

although we will not need this fact.

Definition. We will say that a sequence of arcs {7y} is thin near 911(2?) if the

sequence of points {z¡} is thin near 91L(2?).

We construct / as a linear combination of functions a„ which equal 1 on IZn and

vanish off a suitable fixed multiple qnIz. In the first part of this section we choose qn

so that q„ -* oo as zn -» 911(2?), {q„IzJ is thin near 911(2?), and certain technical

conditions are satisfied. The main construction begins with (5.14).

For future reference we note the following facts about the pseudo-hyperbolic

metric.

(5.2) If z ED, z, and z2 are in Sz, andpy > 1 withpy(l — | z, |) < Í —| z \, j — 1,2,

then | (z, — z2)/(l — z,z2) |< 1 — l/100p,p2; this follows easily from

2_ (l-|*,|2)(l-|*2|2) ^  l-|z| l-jz| 1

|1-Z,Z2|2 Pi 2>2 |1-Z,Z2|2'

(5.3) Fix £ > 0. If z,, z2 E D with \(zx - z2)/(l - zxz2)\< I - e, then

|(z-z2)/(l-z2z)|>|(z-z,)/(l-z,z)|2/E provided \(z - zx)/(l - zxz)\ is

sufficiently large; one way to see this is to use the conformai invariance of the

pseudo-hyperbolic metric to reduce to the case z = 0 and z, > 0, where it follows

easily.

Lemma 5.4. Suppose (z„} is thin near 91L(2?). Then there are numbers 0 < p„ < 1,

0 < y„ < 1, with inf„ yn > 0, p„ -» 1 aTzd yn -» 1 as zn -> 911(2?), such that whenever

{£,} C D with p(zn, f„) < pn for all n we will have IIm^np(?m> f„) > yn for all n. In

particular, {fn} will be thin near 911(2?).

Proof. We inductively define a sequence of neighborhoods Uk of 911(2?), such

that Uk D Uk+X and D n (DkUk) = 0. Let a > 0 be such that Um^„p(zm, z„) >

e-"/2 for all n.

Set Ux — 911(27°°). For k > 2, if f7fc_, has been chosen then choose Uk so that the

following statement is true. If {fy} satisfies p(z}, f.) < 1 — l/(/c + 2) and if

£ = {zy: zy E D\Uk.t},       E' = {fy: zy E D\[/,_,},

7-={zy:zyEÍ4}, f'={fy:zyE{4}

1 -
1 — z,z2



574 CARL SUNDBERG AND T. H. WOLFF

then, using the notation bc for the Blaschke product with zeros G,

(5.5) |A£,(z)|>e-a/2*   when piz, Uk) < 1 - l/k,

(5-6) inf     n  P(^^>e-^2k+',

(5.7) |M*)I> e~a/2k   when p(z,D\i7Jt_1)< 1 - l//c.

Justification. Since bE E B'x we can choose Uk so that

\bE(z)\> exp(-a/ (2* + 4)2*)

when p(z, Uk) < 1 — l/k. We do this, and using (5.3) make p(Uk,D\Uk_x) large

enough so that | bE,(z)\>\bE(z) \2k+4 when p(z, Uk) < 1 - l/k. This gives (5.5). By

(5.3) and Lemma 4.2 of [12],(5.6) and (5.7) will both be satisfied if o(Uk,D\Uk_x)

and infz GUkUzeUk¡¥,jp(z¡, zf) are sufficiently large. Since {zy} is thin near 911(2?)

we can make these quantities as large as we like by shrinking Uk further. This

completes the induction.

Now define py and Yy by py = 1 - l/k, yy — exp(-3a/2k) for zy E Uk\Uk+x. We

show that if {fy} satisfies p(zjy fy) < py, then

(5.8) II p($j,L)>ym-

For each j define k(j) = k if z¡ E Uk\Uk+x. Fix m and write II^mPG}, fm) =

2v5,II/t>/t(m)+27/i, where 2Î is the product over those y for which k(j) < k(m) — 2, S

is the product over those j ¥= m for which k(m) — 1 < £(y) < &(m) + 1, and for

k > k(m) + 2 Tk is the product over those j for which /c(y') = k. We have 2? >

exp(-a/2k(m)) by (5.5) with Â: = k(m), S > exp(-a/2*(m)) by (5.6) with k = k(m)

- 1, and Tk > exp(-a/2k) by (5.7) since when k > k(m) + 2,

pttm,D\£4_,) < p(îM>D\(/t(B)+1) ̂ ptfm, O < 1 - 1A(«) < 1 - l/k.

Multiplying the estimates on R, S, and Tk now gives (5.8). This completes the proof

of Lemma 5.4.    G

For the rest of this section, {z„} is a fixed sequence which is thin near 91L(2?). We

will denote 7Z by 7„. A consequence of Lemma 5.4 is

Corollary 5.9. There exist an s* 1, an -> oo as zn -» 9H(2?), such that 1 < tn ^ an

implies {tnIn} is thin near 911(2?). In fact, iím^„p(ztj¿ z, r ) > yn where yn is as in

Lemma 5.4.

Proof. By shrinking the neighborhoods Uk in the proof of Lemma 5.4 we can

assure that \zj\> Pj. An easy calculation then shows that p(zn, z, , ) < pn if 1 ^ tn

< 0„ = (1 + p„)/(l — | zn | pn), hence the corollary follows from the lemma.    Q

For any such {/„} we will have

(5.10) 2       \tjIj\<Á\L\    for all arcs L.
U-tjIjZL)

Here A — Cmaxylog(l/yy) is independent of the particular choice of {tn}. We now

choose a specific such sequence {q„}, which should satisfy the following conditions.
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(5.11) 1<<72^*„    and   q„ - oo    asz„ -* 91t(7?),

(5.12) For any n with p„ > f^g and for any/ =?*= a¡, the condition

qjlj £ £X   imphes ay | 7y | < | 7„ | .

(5.13) For any arc L there is at most one n such that

2499 «
Pn>2500'     /"-Z"      and     i»l/»l>lLl-

Both (5.12) and (5.13) follow from Lemma 5.4 provided a„ is sufficiently small in

comparision to 1/(1 — p„). In fact, we can take a„ = max(l, [2500(1 — p„)]"1/4). We

show (5.13) is then satisfied; the proof for (5.12) is similar. Fix L and suppose 7m

and In both satisfy the conditions of (5.13). By (5.2),

p(,-'-) * ' - ^kd "H1 - A,:'1 - **¿\=max(p-',-)'

This contradicts Lemma 5.4.

For eachy = 1,2,... define a function ay by

(5.14) ajie")

1 ¡îe"EIj,

i     /     s\-i      3e,- - 2w I /.-1 ^~—
(log(3ay))   log  2|,_g.| ife"Eay7y\7y,

o h^'eTX

where e,9> is the midpoint of 7y. Then ay is (l,2/log(3ay)) adapted to ay7y and

||ay||**£2/log(3ay).

We will show that an infinite linear combination of the {ay} with bounded

coefficients belongs to VMOfl and then use an appropriate choice of coefficients to

prove Theorem 5.1.

Lemma 5.15. If {/3y} is a bounded sequence of complex numbers andf = 2/3-a-, then

/£ VMOB. 777 fact, ML(f) < ^(zL)supy |/3y | , where ¥ depends only on {z„} and

*(z) ^Oasz^ 911(7?).

Proof. Write 2.Í for the set of all arcs {ay7y.} and let wn — zqI. Given £ > 0,

choose a Blaschke product A E B~x and fgf» < tj < 1 such that

(5.16) \Hw„)\>V   implies 2/log(3a„)<£.

Then, using Lemma 1.1 and Schwarz's Lemma, choose 0 < to < 1 such that

(5.17) | A(zL) |> a   implies D[t¡jIj. ¡b(Wj)^n](L) < e,

(5.18) |A(zL)|>w   imphes supj-j—j-r : | A(wy) |< tj andL Q qjlX < e.
[ I Qjlj I J

Fix an arc L. We will show that if | A(zL) | > w, then ML(/) < de supy | ßjd | with d

independent of {/3y} and L; this will prove the lemma.
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We can assume supy | /3y | = 1. Split / into four pieces according to the following

decomposition of 2.Í:

9,il = {qJIj:\qJIJ\>\L\aaâ\b(wj)\<i},

S42 = {ay7y: |ay7y.|<|L| and I A(wy) |< „},

2.Í3 = [qjly. I qjIj\>\L | and | A(»vy) |> tj},

ai4={ay7y.:|ay7y.|<|L|and|A(wy)|>T,}.

Set/, = Sü-^ettüftfy; *«/ = /i + /a + /s + /«•
Estimation for /,. Assume <¡ry7y E Si, and ay does not vanish identically on L.

Since I A(zL) |> u and | A(wy) |< tj, (5.18) implies | L \/\ ay7y. |< £. Now Lemma 4.3

shows that ML(fx) < CAe.

Estimation for f2. By (5.17), D%4(L) < e; Lemma 4.2 then shows that ML(f2) <

CAe.

Estimation for f. For ay7y E Si3 we have by (5.16) that ßjüj is (1, e) adapted to

qjlj. Lemma 4.3 then gives ML(f) < CAe.

Estimation for /4. From (5.13) we have that with at most one exception, the arcs

qjlj E âi4 such that'll"! L 1= 0 must satisfy | q2I]r|*S L, hence q)lj £ L.

If an exceptional arc qkIk exists, then ML(ßkak)< \\ßkak\\* < 2/log(3aJt) by

(5.16).
For the nonexceptional arcs we use (5.10) with tk = qk. In fact,

2     \4jIj\<Ce    2     \qjIj\<CAe\L\,

q¡l¡E:<í\ ?/yea94

where the first inequahty follows from (5.16) and the second from (5.10) and the fact

that ql*Zok. So ML(f4) < Ce^42 + e, by Lemma 4.2.

Combining the estimates for/,, /2, /3, /4 proves Lemma 5.15.    Q

We now prove Theorem 5.1. Suppose {Xy} is a bounded sequence. We will find

{ßj} (which will depend linearly on {Xy}) such that/ = 2/3yay satisfies (a),(b) and (c)

of the statement of the theorem. We can assume supy | Xy | *£ 1.

Renumbering, we may assume that {ay7y.} are Usted in decreasing order of size.

There is a positive sequence {e„}, bounded and tending to zero as zn -» 9H(2?), such

that for any numbers £„... ,|„_i we will have

(5.19) F^V^.J^^^maxJ^I.

To^ see this, take e„ = CA'x(l - yn) with yn as in Lemma 5.4. If / < n then

9j¡j nqnIn^0 implies

\qJn\/\9jij\< c{\ - IK - «j)/(i - >vO I) < c(i - yj,
so (5.19) follows from Lemma 4.3.

We now define {/3y} inductively as follows. Set ßx = X,. If tj > 2 and /3y has been

defined for 1 *£y < 77, we set /„_, = l"Zxxßjaj and define ßn — 0 if e„ > \ and

& = A„ -/„(/„-,) if «*„< i
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Claim. | ßn | < 4 and || /„ || x < 3 for all n.

The proof of the claim is by induction on n. The inequalities are obvious if n = 1.

Let tj > 1 and assume the inequalities hold for n — 1. Then | ßn | < | X„ | +1| fn_, || <

1 + 3 = 4. If e„ > \ the second inequahty follows since /„_, =/„. If en < \ and

iEa„7„,(5.19)impUes

(5.20) |/n_,(0 -/„(/„_,) |<4e„<1.

If we write/, in the form

/,(0 =[/,-i(0 - /.(/.-i)K(0 +/-i(0(i - *«(')) + M.(0
and use (5.20) and the estimates || /„_, II x < 3, | X„ | < 1, we obtain

|/„(0 |< a„it) + 3(1 - an(t)) + a„it) = 3 - a „it) < 3.

This proves the claim.

We now set/= 2°°=1/3yay = limn^xfn. Clearly/satisfies (a) of Theorem 5.1 with

M = 3, and (c) follows from Lemma 5.15. Instead of proving (b) directly we show

that | In(f) - X„ | < 8'n, with 8'n independent of {Xy} and %-* 0 as z„ -» 91L(2?); this

is equivalent by Corollary 2.4.

Suppose n is such that e„ < ¿. Then I„(f„) = Xn by construction. We estimate

0/17n D//„ 1/ ~~ fn\ dO/2iT under the additional assumption that p„ > |fg. By (5.12),

/ > ti and ^¡fy2y n I„ ¥= 0 imply | ay7y | < 11„ \ . Applying Lemma 5.4 with fy = wy (j ¥=

n) and ?„ = z„, we see that IIy>Bp(wy, z„) > y„. Hence D(gjlj. j>n](!n) < C(l - y„).

Since/ — /, is a sum of functions (4,8) adapted to arcs ay7y withy > 77, Lemma 4.2

implies (1/11„ \)i,n |/-/„ I O-0/27T < CA(l - y„) -» 0 as z„ -> 91L(2?). So we can

take 8^ = 10 if £„ > j or p„ < fj^, and 5ñ = CA(l — yn) otherwise. This completes

the proof of Theorem 5.1.    Q

6. Per Beurling functions for QAB. In this section we prove the last statement of

Theorem 1, by a method due to Varapoulos [23,24].

Proposition. Let {zn} CD be thin near 9H(2?). Then there exist functions

<j>nE QAB, n> I, such that <¡>„(zk) — 8kn and such that 2°°X„^„ E QAB whenever

{Xn} is a bounded sequence of complex numbers.

Proof. We have shown in §§3-5 that there exist M < 00 and a bounded function

O on D satisfying O > 0 and O(z) -> 0 as z -» 911(2?), such that for any bounded

sequence {Xk} there is a function/£ 27°° satisfying/(z„) = X„ for all n,\\f\\x <

Msup„ I X„ I , and ( / |/ - f(z) \2 dPz)x/1 ̂  O(z) sup„ | X„ | for all z E D.

Fix a positive integer A and let w be a primitive Ath root of unity. For each

j=l,...,N choose / as above with fj(zk) = uJk. For 1 < 77 < A set gn(z)

= ji^%^'jnfj and A„ = g2. We claim

(6.1) hn(zk) = 8kn   for 1 < k, n < A,

N

(6.2) 2 \h„iz)\^M2   for allzED,
n=\

N

(6.3) 2 / I hn - hn(z) I2 dPz < 4A720(z)2   for all z E D.
n=\
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To prove (6.1), write

gnizk)=^î--JnfA^) = ^-(k-")J = 8^

To prove (6.2), write

N N N       ,       N

2 IM*)I= 2 \gÂz)\2
«=1 n=\

2
n=i iy   y=:A3

2 «-'"/yUK"/^)

TV

2
n=l

,V

=  2 ¿//*)/*(*) 2^--°" = ̂ 2l/yWP<^-
y,*=i

Finally,

N

2 /|A„-A„(z)|2dPz = 2 /|g„ + g„(z)|2|g„-g„(z)|2dPz
n=l

<4A/22 /|g„-g„(z)|2a-Pz

•^   «=iy,jfc=l

= 4M2^ 2 /|/-/;.(z)|2dPz<4M20(z)2,
y=i

proving (6.3).

Now letting A tend to oo and taking weak limits, we obtain functions <¡>n E 27°°,

ti = 1, 2.    satisfying   <¡>„(zk) = 8kn, 1™=X  | <i>„(z) |< M2   all   z E D,   and

2"=i I <f>„ - tffc(z) |2 dPz < 4M20(z)2. It clearly follows that

and

/

2 AA
n=\

2Kt>n- 2K<t>Áz)
n=\ n=l

=s M2 sup | Xj. |
k

dPz<4M20(z)  sup|Xt|2,
k

hence 2"=iX„</>„ E QAB for any bounded sequence {X„}.    Q

7. Completion of the proof. We prove (2) implies (3) in Theorem 1. Let {z„} Q D

be a sequence for which (2) holds. Since VMOs Q BMO, a theorem of Garnett [8]

implies that {z„} is an 77°° interpolating sequence. Hence there is A < oo such that

2z„e/,(l — | zn |) < ^ | 71 for all arcs 7. Denote 7Z^ by 7„. We first prove

Lemma 7.1. Assume condition (2) of Theorem 1 holds, and let N > 1 a77d e > 0 be

given. Then there is a neighborhood U of 911(2?) satisfying the following: if zn E U,

then 2m¥t„,Zm<Esmil -\zm\)<e\I„\.
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Proof. Suppose this is false, i.e. suppose we have A > 1 and e > 0 such that for

all neighborhoods U of 911(2?) there is znE U such that 2m^n,z esOT0 ~ \zm\)>

For 2? E N+ we say that E has property (P) if the following holds.

(7.2) For any neighborhood U of 911(2?) there is n E E such that z„ E U and

2      (l-[*J)>ie|/„|.
m¥=n

zmesmnu

We will now show that N+ has property (P). Let U be a neighborhood of 911(2?)

and let bvc be the Blaschke product with zeros (z„: z„ £ Í7}. Since buc E B'x there

are neighborhoods of 911(2?) in which | bVc | stays arbitrarily close to 1. So there is a

neighborhood V C U such that z E V implies that 2Z e UtM es (1 — | zn |) < ^e | 7z | .

Choosen withz„ E Fand 2m*„,lmesm(l ~ \zm\)> e\Jn\ • ThenznEUand

2    (i-|*J) =   2   0-KD-    2    (i-|i«|)
zmesNIiinu zmesNIii m    W"N

>£|7„|-i£|7„|=i£|7„|.

We now recall a result due to K. Hoffman [12, Corollary to Theorem 3.2]: Let A

be a Blaschke product with zeros {an} and define 5(^4) = inf„(l — | an \2) \ A'(an) \ .

Then A has a factorization A = AXA2 such that 8(Aj) > 5(^4)1/2, j = 1,2. This

result, together with the easy observation that if E has (P) and E — Ex U E2 then

either Ex or E2 has (P), shows that there are sets E with (P) such that

inineEWmibnmeEp(zm, zn) is arbitrarily close to 1. So there is E with (P) such that

for all n E E,

(7-3) 2    (l-kJ)<ie|/J.
m¥=n
mEE

By hypothesis there is/ E VMOB such that f(zn) — 1 when n E E and /(z„) = 0

when t? E E. Let tj = e/(24^4A + e). There is a neighborhood U0 of 911(2?) such that

z E U0 implies

rnf\f-f(z)\!£<* and  rnvvr/   l/-/(*)l€<T»-
I 7Z | Jiz 2m | 2/V2z | J2NI¡ Lm

Let 77 be as in (7.2) for the neighborhood U0. By the "first generation" construction

[9, Chapter 7] we can choose from the set

{zm:zmEU0nSNIit,m<£E}

a subset (zm } with {Im } pairwise disjoint and

2(i-KJ)>¿     2     0-KI)>-¿7KI-
k m&E

:„es„,n(4



580 CARL SUNDBERG AND T. H. WOLFF

'>pferJLi/-MS>15fer2/j/-iiS
>——sd/ \-( \f\-\>A^Li\i i>e(1~T')|2A7„|f   lm*'     7,   m277 |2A7„|flm'1       24.4A   '

contradicting the definition of tj. This completes the proof of Lemma 5.1.    Q

We now continue with the proof of the theorem. Choose a small £ > 0 and a large

A. By Lemma 5.1 there is a neighborhood U of 911(2?) such that

2    (1-|zJ2)<e|7„|    iîz„EU.
m=£n

Set 8 = infm#„p(zm, z„). Then for z„ E U, we have

-log    [I   P(zm>zn)2=     2   -l0gp(zm,Z„)2
m¥=n m¥=n

1

1-S2    ° 82
lOgTY    2    I1  -P(zm,z„)2]

m¥=n

1      i      ]
T^2ÍOe¥ +   2

m¥=n zn&SN,

zj2

1 — z  z*        "m   n

(1-KI2)-

The first sum is clearly bounded by 47te. To estimate the second sum, write it as

00 1    —   I   7     I2

(7-4) 2 2 ,    _i"'|2(l -UJ2)-

One easily checks that for z E S^/v/ we have (1 — | z„ |2)/| 1 — zmz„ \2 < C/2kN.

Together with the fact that 2Z 6S(1 — | zm |) < A \ I\ for all arcs 7, this easily

implies that (7.4) is bounded by C4/A. Hence -logIIm7t„p(zm, z„)2 is bounded by

C(e + 1/A), which can be made as small as we like by picking £ small enough and

A large enough. This shows that {z„} is thin near 911(2?), and completes the proof of

Theorem 1.    Q
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