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THE DERIVED FUNCTORS OF THE PRIMITD7ES
FOR BP^(ÇiS2n+x)

BY

MARTIN BENDERSKY1

Abstract. Formulas for the Hopf invariant, and the P map in the Novikov double

suspension sequence are derived. The formulas allow an effective inductive computa-

tion of the £2"term °f tne unstable Adams-Novikov spectral sequence. The 3

primary £2-term through the 54 stem is displayed.

1. Introduction. The unstable Adams-Novikov spectral sequence for a (simply

connected) space X is a sequence of groups Er(X), r = 2,3,..., which converge to

the homotopy groups of X. It is often convenient to localize at a prime p in which

case the spectral sequence converges to the homotopy groups of X localized atp, and

the F2-term depends on the Brown-Peterson homology of X. If the (ordinary)

homology of X is p-torsion free, the F2-term is Ext in a nonabelian category. If, in

addition, the cohomology of A1 is a free algebra the F2-term may be simplified to an

Ext in an abelian category [6,7].

An important feature of this spectral sequence is the presence of EHP and double

suspension long exact sequences on the E2 level [8]. There are two single suspension

sequences

^F2í(S2")^F2í(S2"+1)"F2í(S2'n+1)^F2s+,(S2n) -> ,

-> E¡iS2n~x) ^E¡(S2") ^E¡-x(S2p"-x) ^E2s+x(S2n^x) -*

and a double suspension sequence

-► EiiS2n-y^EiiS2n+x)^Ext^iWin))^E^xiS2H-1) -» •■•

(S2n and Win) are defined in [8] and §4.)

All three sequences are derived in [8] by homological methods in a nonabelian

category. As a consequence it is difficult to compute the maps in the above

sequences or the coaction on W(n).

In this paper we study the double suspension sequence. In §4 we compute the first

derived functor of the primitives of BPjf(ÇlS2n+x) in the category of BP^ (BP)-

coalgebras. This determines the coaction of W(n). In §5 we use a form of the
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600 MARTIN BENDERSKY

composite functor spectral sequence for BP^.(QS2n+x) in order to describe 272 and

F2. Consequently we obtain information about the single suspension sequences as

there are commutative diagrams relating them to the double suspension sequence.

With these results the double suspension sequence becomes an inductive method for

computing the E2 for an odd sphere. A table of the resulting computation appears in

the appendix. Further applications will appear.

Throughout this paper a prime p is fixed, and BP^(X) is the (reduced) BP

homology of X at the prime p. In any category under consideration 7 stands for the

identity functor. The ring of integers is denoted by Z, the rationals by Q and the

integers localized at p by Z(p).

2. Derived functors. We recall some of the definitions in [7]. A cotriple (F, 8, e) on

a category Q is a functor F: Q-> Q together with natural transformations 8: F -> F2,

e: F -» 7 such that the following diagrams commute.

F      -*      F2

Si ISF

FS

= \      eF U Fe
F2       ->       F3 F

An F-coalgebra is an object Y of 6 together with a map \p: Y -» FY such that the

following diagrams commute

<l>
* Y      -»      FY

Y      -»      FY

= \       leY

Y

4>l iFip

FY     -»      F2Y

A map of F-coalgebras /: (Y', $') -» (Y, i/>) is a map /: y -» Y such that

•p ° f= Ff° \p'. Let S(F) denote the category of F-coalgebras. When the category 6

is understood we denote (3(F) by 5F. The definition of a cotriple guarantees Fy G <5

for y G S. With structure map 8Y.

A triple (27, p, tj) on a category ^consists of a functor 27: ®i -* <$ together with

natural transformations u: 272 -> 27, tj: 7 -> 27 such that the following diagrams

commute.

m      „i      *H      „ H3      -»     772
27      -      272       «-

= \      in     i/

H

pH i, lu

H2       -»      27

Let (F, 5, e) be a cotriple on 6. The adjoint of the cotriple (F, 8, e) is a triple

(HF, pF, nF) on f (= 6(F)) defined by 77,-y = FY for y G f, pF = Fe, tj,. = ^Y.
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As in [7] a cotriple F determines a functor HF from ÍF to the category of

cosimplicial complexes over S\ Explicitly

HF(Y)" = 27"+1(y),       d' = Hii\Hn~i: H" -> 77"+1,

s' = 27'u77""': 77"+2 -» 77',+ 1,

where (27, u, tj) = (27F, u,,, tif).

HF with the augmentation omitted will be denoted Hf. A cosimplicial group

(K", d'n, s'n) is acyclic if the homotopy of the chain complex (K", 2,-(-l)'¿¿) is zero.

Let <91t C <ÏÏbe the full subcategory of objects of the form F(C) with C E 6. Let 6B

be an abelian category.

Given a functor 7: 911 -> 6£, ch 7HF(y) is the cochain complex with

(ch7HF(y))" = 7HF(y)",       n>0,   and   8 = 2(-l)'r¿'.

If F is a cotriple on 6 the F-derived functors of 7 are defined by

2?!7(y) = 77?(ch7HF(y)).

In the situation when the functor Hom9(A, -) is an abelian group we use the

customary notation of Ext for the derived functors of rIom<$(A, -).

3. Unstable BP. We begin by reviewing the necessary facts about BP (see [2] and

[7]). Fix a prime p. There is an associative ring-spectrum BP with homology algebra

HJ(BP; Z) = Z(p)[mx, m2,...] for canonical generators mn, \mn\= 2(p" — 1). Let

A = vJiBP), Y = w¿BP A BP). Then (A, T) is a "Hopf algebroid", i.e. there are

structure maps consisting of a product «ri: T <8>A T -> T, left, and right unit maps r¡L,

r¡R: A -» r, a counit map e: T -> A, and a diagonal \¡/: T -> V ®A T. The notation

M <8>A N requires that M be a right A -module, and that N be a left A -module. T is a

right y4-module by tjä and a left yl-module by tjl [1].

The Hurewicz homomorphism A -* HJ(BP; Z) is a monomorphism and a ra-

tional isomorphism. We consider m„ as being in A <8> Q, and let log be the formal

power series in Af Xj 0 Q defined by

logX= SmjJT1.

Let exp be the formal power series inverse to log characterized by exp log X = X.

The formal group law for BP is given by the formal power series in A\X, YJ,

FiX,Y) = ^a.jX'YJ = exp(log X + log Y)

where the coefficient atj belongs to A2i+2 ,_2.

Elements z¡ from T may be substituted for the indeterminates and we write lFz¡

forF(z„F(z2,...)).

There is a canonical anti-isomorphism c: T -» T which satisfies ctjl = -qR and

ctjr = tjl. This gives a formal group law F* conjugate to F defined by the formula

2^z, = c(^c(z,)).
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Let v¡ G A2(pi_ X) be the element defined by Araki [3].

pmn=    2   m,iv„_i)p;       v0=p.

Let h¡ E r2(/,,_,) be defined by h¡ = ct¡ where {/,} are the generators defined in [2].

The

A = zo,)[üi'ü2>---L       T = A[hx,h2,...].

The right action of A on T is related to the left action of A on T by the integral

form of Ravenel's Formula [13]

(3.1) 2***? •* = !** tf-k,.
t// is determined by

(3.2) 2F**(ki) = 2F'kk>J®kj.

For each finite sequence of nonnegative integers 7 = (ix, i2,.. .,/'„) let h1 = h\ti22

■ ■ ■ h'¿. The length of 7 is the integer 1(1) = ix + i2 4- • • • +/„.

Definition 3.3. For each nonnegatively graded free left ^4-module M let U(M)

(V(M)) be the sub-A-module of T 0A M spanned by all elements of the form h' ®A

m where 2/(7) < degree m (2/(7) < degree m).

For an arbitrary left A -module M let F, ->F0 -* M -» 0 be exact, with F0 and F,

free. Then define U(M) = Coker U(f) (V(M) = Coker Vif)).

The definitions of U(M) and V(M) are independent of F,, F0 and/.

Remark 3.4. The natural maps from U(M) or V(M) to T ®A M are not injective

if M has p-torsion. For example if M is the free A 0 (Z/pZ) module on a generator

t of dimension 3, then ph2 0 t is nonzero and is in the kernel of the map

U(M) ->Y®AM.

There is a T-comodule structure on T ®A M by the map ^ 0 1 : T 0^ M -> T 0^

T 0,, M. From (3.2) it follows that i// 0 1 takes U(M) to Í72(M) and V(M) to

V2(M), inducing maps

8U: U(M) -* U2(M),       8V: V(M) -* F2(M).

There are also counit maps e17: U(M) -» M and e*': V(M) -> M induced by the

counit map in T. (U,8u,eu) and (F, 5K, e1') are cotriples on the category of

nonnegatively graded left .4-modules and, by §2, define categories % and T. By

construction %- and Tare abehan categories.

Since r2n+, =0 there are isomorphisms

UiA(2n)) » t/(i4(2» - 1)) * F(^l(2« - 1)),    tf(¿(2n + 1)) « K(í4(2/i)),

where ^4(m) is a free A -module on a generator of dimension m (with trivial

coaction). Hence for M a free /I-module the basis of [7, §8] provides a basis of

V(M).

Definition 3.5 x E V(M) desuspends if it is in the image of the map. a:

U(M) -* V(M).

Let C(M) = Coker(a). Then C(M) is free over A 0 Z/pZ if M is v4-free [7, p.

245]. Some information about p torsion in C(M) is provided by the following.
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Proposition 3.6. h"k 0 i2n has order pk in C(A(2n)).

Proof. Let BPn be the 2/ith space in the ß-spectrum for BP. Then by [15]

Ht(BPn; Z(p)) is a bipolynomial Hopf algebra with indécomposables isomorphic to

V(A(2n)) and primitives isomorphic to U(A(2n)). By [14] H^(BPn; Z(p)) admits a

decomposition

(*) H„(BPn; Z(p)) ^ <g) B{p)[x,,dt\
i

where B(p)[x¡, d¡] is the universal bipolynomial Hopf algebra constructed in [10].

The lowest-dimensional term in Hj(BPn; Z(p)) is i2„ G H2n(BPn; Z(p)) (denoted b°"

in [15]). Hence there is a factor B(p)[i, 2n] in (*). It follows from [10, (6.1)] that there

is an element of orderp* in C(A(2n))2pkn.

Using (3.1) we inductively show that prh" 0 t2„ = 0 in C(A(2n)). It suffices to

show that prhr 0 i2 = 0 in C(A(2)).

For r = 1 we have the relation phx 0 i2 = vx 0 i2 — 1 0 vxi2, which is zero in

C(.4(2)).

We examine the terms in dimension 2(p' — 1) in relation (3.1):

2*y-.,= iF*vfh,   iv0=P).
i,j<r ij^r

Multiplying both sides by pr~x and using the inductive hypothesis we obtain

pr~xhr -p 0 t2 =pr~x •p"'hr 0 t2   in C(,4(2)),

or

pr(l-pP'-x)hr®i2 = 0   inCiA(2)),

completing the induction.

For dimension reasons it follows that the only element in dimension 2pkn which

can have order pk in C(^4(2t7)) is hnk 0 ¿2„, proving (3.6).    D

Remark 3.7. The indecomposable functor applied to (*) gives

Indécomposables (27t(2?P2n; Z(/>))) =* ® (indécomposablesB(p)[x¡, d¡\).
i

The components are invariant under the Verschiebung [15], so [10,(6.1)] determines

C(A(2ny) completely.

Referring to the basis in [7, §8] we have the following.

Corollary 3.8. {pk~xhnk 0 i2„\k — 1,2,...} C C(/l(2«)) is a set of elements

independent over A 0 (Z/pZ).

Proof. Let U'(2n) = PH¿BP2n; Z(p)), V'(2n) = QH¿BP2n; Z(p)), and C'(2t3)

= Coker(i/' ^ V). Then from (3.6) the elements {pk~xhnk 0 i2n \ k = 1,2,...} C

C'(2n) are nonzero elements in different degrees of C'(2n) 0 Z/pZ. Filter U and V

by powers of the ideal (vx, v2,...), and let E0U, E0V, E0C denote the graded groups

associated to the filtration. Then E0U ~A®U', E0V ̂  A 0 V and E0C - A 0 C.

Therefore the elements h" 0 i,ph2 0 ¿,... are linearly independent overol 0 (Z/pZ)

in E0C and, therefore, also in C.    D
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A cotriple G on the category of (-l)-connected free A -modules is constructed in

[7, §6]. The associated category § is the category of unstable T-coalgebras with

coalgebra structure defined in [7,(6.10)]. Finally there is the cotriple 5 defined on

the category of positively graded free /1-modules. S is the free commutative coalgebra

functor. The category § is the same as the category of free A coalgebras (without

unit). For a coalgebra with diagonal map A: M -* M ®A M the submodule of

primitives is defined by

P{M) = ker(A: M -» M ®A M).

As PG(M) =* U(M) as a coalgebra [7], the G-derived functors of F he in %. For

M = Ain), GiM) is isomorphic to SU(M) as coalgebras [7, (7.8)]. If M ^^A(n¡),

G(M) a <g> G(A(n,)) « <g) SUiAin,)) » SU( © t/(.4(«,)) » Si/(M))

where the first isomorphism follows from the definition of G [7,(6.7)]. Hence we

have

(3.9) R'$PjC - R'êPC

as ,4-modules for C E§, and/: § -» § the forgetful functor.

The derived functors of Hom^,-) (f = S, %,T) will be abbreviated Ext(-).

For W E %, Ext^Ii^) may be computed by the cobar complex {CS(W), d} defined

in [7, §9].

The following isomorphisms relating the various Ext groups to the unstable

Adams-Novikov spectral sequence are proven in [7].

(3.10) ExtqL(A(2n + I)) - E2(S2n+x)

and

Exts{BP,(X)) ^ E2(X)

when BPm(X) is A-free.

4. Derived functors of the primitives. Our objective is to compute R'sPBP^(í¡S2n+ ' )

(which we will abbreviate R'§P in the sequel). The .¿-module structure has been

determined in [8, (3.3)].

\A(2n)     for 7 = 0,

(4.1) Ä'sF7iFit(ßS2"+1) = W(n)     for 7=1,

0 for/>l,

where A(2n) is the free y4-module on a generator i2n of dimension 2n, and W(n) is a

free A 0 Z/pZ module on generators {y¡ \ i > 0} with | j, | = 2p'n.

Consider the augmented S-cosimplicial complex constructed in [8, §6]:

(4.2) 0 - BP*(QS2n+x) - G(Ai2n)) =» G(K(^(2n)))

In [8,(6.1)] (4.2) is proven to be acyclic. As (4.2) is a cosimplicial resolution of

BPç(SlS2n+x) by G-models, a standard double complex argument shows that (4.2)

may be used to compute R'SP. Explicitly R'SP is the homology of the complex.

K: UiA(2n))^U(V{A(2n)))tuiV2iAi2n)))^ ■■■
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where 8^ is the restriction of the differential in the stable cobar resolution of ^4(2«)

to U(V*(A(2n))).

Proposition 4.3. Let yk E UVA(2n) be defined by

yk = pk-\*{K)-hnk®i)®l2n.

Then

R\PiAi2n))^(A®Z/pZ){yx,y2,...}.

Proof. Let H be the complex with H" = Vn+x(A(2n)) with differentials as in §2.

HI is acyclic in dimensions > 0 being the (unaugmented) »'-cobar resolution of A(2n).

The inclusion U(A(2n)) -* V(A(2n)) induces a short exact sequence

O^K-^H ^H/K ^0.

It follows that 3: 27'~'(IH1/IK) -* Ä'gP is an isomorphism for / > 0. (3 is the

boundary homomorphism of the induced long exact sequence.)

The differential 80: H° -> H1 is given by 80(z) = (\¡,(z) - z 0 1) 0 t2„. From the

definition of 3 it follows that

dix) = rx(Ux) - x 0 1) 0 i2„

for x a cycle in H/IK and x a lift to H.

We shall show that {pk~xhnk 0 i2„} is a set of cycles in U/K and therefore

represent elements in 270(H/IK) in dimensions 2npk, k= 1,2,_By (3.8) these

elements are independent over A 0 (Z/pZ). From (4.1) 77°(IHI/K) s R\p s W(n).

So {pk~xh"k® i2n} generate H°(H/K), and yk (= d(pk~xhnk 0 t2„)) generate

R\P( A(2n)).

To see thatp* xh"k 0 t2„ G H projects to a cycle in H/IK we note that >p(hk) = 1

0 hk + hk 0 1 + 2y¡ 0 y,", y¡, y," G 2?FJ/i„ h2,...,hk_x] C T. As a consequence

in the product

Hhnk) = *ihky = 10 h\ + K 01 + 2«; ® <

each term a\ has a factor h, with t < k — 1. From (3.6) pk~xh„ and therefore a'¡

desuspends. Hence7r30(p*-1/i2 0 i2n) = 0.    □

In order to compute the U structure on R\P we need a more detailed description

otyk-

From (4.1) HX(K) s 271(K 0 Z/pZ). As observed in the proof of (4.3) the factor

h,(t *£ k — 1) in the presence ofpk~x produce a desuspension of a'¡. In a similar way

a factor of h, with t < k — 1 in the presence of pk~2 will produce a desuspension of

ct'j. The remaining factor of p will then kill a'¡ in IK 0 Z/pZ. So the only terms in

(3.2) which can contribute a nonzero term to j~x80(pk~xh"k 0 t2„) 0 Z/pZ are those

in the formal sum

h{_x 0 hx +F.hk 0 1 +F,hk_x 0 1 = /?£_, 0 /i, + hk 0 1

in dimension 2 p* — 2. So we have in K 0 Z/pZ,

(4.4) yk =/>*-'((** 0 1 + Af_, 0 A,)" - ^ 0 l) 0 t2„.
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By definition the U structure on yk is given by applying ^ to the left factors in

(4.4). So we have the following formula for the U structure on W(n):

(4.5)    t(yk) =pk-x({*ihk) 0 1 + Hkk-i)P ® hx)" - ^hk)n 0 l) 0 t2n

in U(UV(A(2ny) 0 Z/pZ). In order to express this in terms of yx, y2,... we first

compute the coefficient of v,.

Lemma 4.6. \¡/(yk) = p*~'A£", ®yx mod v2, v3,....

Proof. Let e: T -» A be the counit (see §3). The map e 0 id restricts to a map

e': UV(A(2n)) 0 Z/pZ -> VÍA(2n)) 0 Z/pZ.

We have from (4.4):

■      <47» '^=ir"" ÏÎ;,1, I10 if A: > 1.

Since Im(50) C i/(t/(y4(27j))), where 50 is the differential in K, we must have

-1*ä + +(ä)

= 2 y,.®v,. G t/(l/K(yl(2n)) 0 Z/pZ)mod t/(t/T/(¿(2/i)) 0 Z/pZ).

From (4.5) and (4.7) we have

Y, ® A, ® <2„ = tf(«')(*(**)) =Pk~XH-x ® A" ® i2flmodl/t/(^(2»)) 0 Z/pZ

and (4.6) follows.    □

We can now describe Jí^w) as an unstable T-comodule.

Theorem 4.8. ̂ (yk) = 2pk~'K-i® X-

Proof. Let d be the differential in the stable cobar complex for W(n) [7].

-diyk) = tiyk) - \ ®yk-

By (4.6) this is equal to

k-\

Pk-xhPkn_x®yx+ 2 y,-®*     (y,er).
¿=2

By (4.6) again the coefficient of v, in d2(yk) is

2Y<®y_1Af-n.-2'*~^(A^i)-

The only terms in (3.2) which can make a nonzero contribution topk~xd(h^l,) are

in the sum 2a+ft=A._,A^* 0 Afc. In the product

Pk~x(      1      hf®hbYn®yx=pk-x      2      h"/+'®h%"®yx
\a+b=k-\ ' a+b=k-\

+pk~ '(mixed terms) 0 y,

a dimension argument shows that

pk~'(mixed terms) 0 v, = 0mod p.
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As¿2(v,) = 0,

2 Y, 0 pj~ xhfHx='2pk-xh"kP/j® hfl,

and (4.8) follows.    D

5. The double suspension sequence. Let D** be the double complex defined as

follows:

(5.1) D'-J'= U'VJ(A(2n)),       i>0,j>0,

dH: DiJ -» DiJ+x,       dv: DiJ -» Di+XJ,

where dH is (-l)'U'~x8 (8 is the differential in the complex IK of §4), and dv is the

coboundary in the unstable cobar complex for UVj(A(2n)).

By first taking vertical, then horizontal, homology we obtain Extcy(v4(2n))

(t= ExteIL(A(2n + 1))) concentrated in filtration zero. By taking homologies in the

opposite order we obtain a spectral sequence

Ext%(2v'§F2?P„(ßS2"+')) =>ExtetL(A(2n + 1)).

After identification, this is equivalent to the 2?F-double suspension sequence

(5.2) ••• -F2s''-'(52"-1)-F2i-'+1(52"+1)-Ext^'''-'(lT(7j))

Sf2í+,''-'(s2"-'H •••

where a2 is the double suspension, and H2 is the double suspension Hopf invariant.

(5.2) is easily seen to be equivalent to the double suspension sequence in [8].

However (5.1) is constructed from additive functors, and does not involve the

functor G. This enables us to describe the maps in (5.2).

Proposition 5.3. (i) Let z E Ext^Win)) be represented in the unstable cobar

complex by lyk ®yk,ykE Cs(W(n)). Then

P2iz) = (-i)'2y* ® d{pk-xh"k) 0 t2„_, + 2¿(y*) ®Pk-xK 0 i2„_„

where d is the differential in the stable cobar complex.

(ii) Let x E E2(S2n+x). Then x is represented in the unstable cobar complex by a

cycle of the form

2y* ®/>*-'AZ ® i2n+x,       yk E C*{A(2Pkn - l) 0 Z/pZ)

modulo terms which desuspend.

(iii)H2(x) = lyk®yk.

Proof. This is a consequence of a standard diagram chase and the description of

W(n) in §4.

Let S2n be a space with 27*(^2") * Z[i2n]/(ip) [8,§1].
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Proposition 5.4. There is a commutative diagram

-»     £|.'^52"~')      i £|-'(S2") "     £2I-|•'-1(,S•2'",-|)      Í.     £|+1.'(S2""')     -*

II la lr ||

_     E|,«-i(S2»-i)     'U     £|.'+'(52»+>)      J      Ext^'-'i^n))       4     £|+1.'(52"-')

where /Ae rop row is exact, a is the suspension, and r is the composite

Eï<S2p»-\) ~ Ext%(^l(2p« - 1)) - Ext%U(2p«))

-> Ext%(v4(2p7i) 0 Z/pZ) -» ExtcaxWin)).

Proof. Let S2n -» S2S2"+I be the inclusion. By naturality there is an induced map

of composite functor spectral sequences [7] and, therefore, of the equivalent long

exact sequences. The only point which has to be checked is the fact that the map

induces the asserted maps of derived functors. This follows from the map induced

on the injective extension sequences used to compute the derived functors. See [8] for

details.    □

Corollary 5.5. (i) P: E2(S2p"-x) -* E2(S2"-X) is given by

P(y ® t) = ±y ® d{hnx) ® i2n_x,

i.e. P is composition with the (mod p) Whitehead product.

(ii) Let x E E2(S2n+x). x desuspends to E2(S2") if and only if x can be represented

in the unstable cobar complex by y ® h" ® i2n+x (y E C*(A(2pn — 1))) modulo terms

which desuspend to EX(S2"~X).

(iii) Let x' E E2(S2n) be a desuspension of x. Then, in the notation o/(ii),

H(x') = y ® l2pn^x    (mod/;).

It follows that P commutes with the differentials in the unstable Adams-Novikov

spectral sequence (see [6, (4.9)]).

Remark 5.6. To see that 27 commutes with the differentials in the unstable

Adams-Novikov spectral sequence we consider the spectral sequence for ñS2".

There is an isomorphism

E2iQS2n) as F2(S'2""') e E2iSlS2pn-x)

with a non trivial d2,

d2: E¡''iQS2pn-1) -» £2i+2''+1(52"-'),

determined by

rfa(*2^.-a) = **(*?)•» *2»-i

where x2p„_2 generates BP2pn_2(ÜS2pn~x), t2„   , generates BP2n   ,(S2""') and

rf(*í) = 2(D*í®*r'-

d2 is the "F-map" in the EHP sequence induced in F3.
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*     F2(S2"-')     -     F3(ßS2")      i     F2(fiS2^-')      í

l( /I ^ le

F3(52"-') F^S2'"-')

where the top row is the consequence of the definition of F3 as the homology of

(E2, d2), and A is induced by a map of spaces and therefore commutes with

differentials.

For a space X the natural map BP(£IX) -* QBP(X) induces a map of spectral

sequences

ux: Er*-*~X(SIX) -* Fr*'*(Z).

By [8, (6.1)] <oS2„ i is an isomorphism.

For X = S2" u£2n induces a nonfiltration preserving map w. « is determined by

»(*2«-l) = »2B> w(-«2„»-2) = Aí ® *2»

where i2„ generates BP2n(S2").

« occurs in the middle column of the following commutative diagram

E2(S2"-X)      ^      E2iS2")       "      E2iS2p"-x)       '•■■

li It

B F3(S2") F3(S2'"-')

î n

F3(52"-')      -»     F3(fiS2")      ^     E3iQS2p"-x)        -i

It follows from the 5-lemma that w is an isomorphism of spectral sequences (for

r > 3), and 27 therefore commutes with unstable Adams-Novikov differentials.    D

Remark 5.7. (i) E^'(S2n+ ') is modp meta-stable if

Í2(p- l)pk + 2p2n + 2, s = 2k+\,

[2ip- l)ipk+ I)+ 2p2n +2,    s = 2k + 2.

In the mod p meta-stable range there is a commutative ladder of exact sequences

E2(S2")        ^ E2(S2"+') "      E2(S2p" + l)     ^      ■••

l H IH2 ||a2

-    £2(S2"""')     -^     Ext%(.4(2/>/! - 1) ® Z/pZ)     i     £2(S2í"!-')     ^      •••

where the bottom row is the Bockstein sequence, and 27' is induced by the James

map [8]. 27' is therefore computed by (5.3) and the Bockstein differential (in the

meta-stable range).

(ii) There is a spectral sequence

0 ExtcIL{A(2pin - 1) 0 Z/pZ) •+ Ext%(h/(tz))
¿>i
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with differentials given by (4.8). Together with the universal coefficient theorem and

the results of §5 we have an inductive method for computing E2(S2n+x) which is

similar to the computation in [16].

(iii) (5.3) is not useful for some infinite computations. For example, in order to

compute the Hopf invariant of the stable elements constructed in [12] it is conveni-

ent to introduce an unstable version of the chromatic filtration (see [4]).

Appendix. With the formulas of §§4 and 5 the unstable Adams-Novikov spectral

sequence becomes a powerful tool for computing the homotopy groups of odd

spheres (at least for p > 2). Following is a table of the 3-primary unstable Adams-

Novikov F2 term through the 54-stem. (The classical unstable Adams spectral

sequence has approximately 3 times as many elements.)

Notation, (i) Elements in the table are listed by leading term in the sphere of origin

filtration.

(ii) (xh") .„ denotes an element on the 2« + 1 sphere which is killed or made

homologous to another class on the 2m + 1 sphere. If the condition of (5.3)(ii) is

satisfied x and y are the Hopf invariants (see Remark (i) below).

(iii)

X

Y

denotes an extension.

(iv) For x a cycle, x denotes a cochain with dx = 3x.

(v) In filtration 2, {a„A5"}An+m denotes the tower

iàn + m-\h\)vrXh1+i

(«■■HÄr'W-'

where äk is the generator of the image of the J homomorphism in the 2(p — l)k — 1

stem in filtration 1.

(vi) We adopt the notation of [12] for the stable elements in filtrations 1 and 2.

Their Hopf invariants are given by

am/n = V"~mh"     («»/l=«m)> /?, = a,A2,

(vii) The class a2h\* ° A2 in the 29 stem survives to ß2ax.

The class ß2h3 suspends to /33/3a, (= e') in the 37-stem.

The class /33/3 ° A3 in the 45-stem survives to the element <j> in homotopy.

In the 48-stem the class /33/3a,A3 does not suspend to zero in homotopy from S9.

In fact the class jumps filtration and suspends to ß\axhAx.
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In a similar way the class /33/3i>,A3 in the 49-stem suspends to ß2axß2. The class

/33/3ü,A| in the 53-stem suspends to ß\vxh\.

Remarks, (i) For elements in the tower defined in (v) above, one must be careful

when reading the Hopf invariants of elements not in the meta-stable range (see 5.7).

For example a9/3A, G F2'43(S3) is not in the form required by 5.3(h) (a9/3 £

C*(A(5) 0 Z/pZ)). We use the relation a9/3A, = asa2 to compute 272(a9/3A,) =

asvx. This is the first example of an unstable element in filtration two which is born

on an odd sphere. A complete description of the unstable elements in filtration two

will appear elsewhere.

(ii) If y = a28 then H2(yx) = yH2(x) (see 5.3(h)).

Low-dimensional computations. For convenience we desuspend the generators y¡ of

W(n) and use the isomorphism Ext qi(W(n)) — Ext^a"'^«)). We denote a'xy¡ by

x2P'n-\ and> by abuse of notation, denote a'xW(n) by {x2pn_x, x2pin_x,...} where

the only generators to be indicated will be those which are relèvent for the range of

computation being considered. For stem i-swe compute the following part of the

double suspension sequence:

(6.1) Exts-2',+2"-x({x2pn_x,...}) -F2i''+2"-'(S2'1-').

Both terms are inductively known. Elements in the image of P suspend to zero on

S2n+X. Elements in the kernel of P produce elements on S2"+' in the s — / + 1 stem.

The stem of Exts^(a~xW(n)) is defined to be t — s — (2pn — 1). As « increases to

n + 1 in (6.1) the stem of Ext%(ff~'W(n)) decreases by 2(p — I). P increases the

stem by 2n(p — 1) — 2.

Finally we note that E£'(SX) = 0 if (s, t) ^ (0,1).

The first stem greater than zero where there can be a nonzero group in (6.1) is the

3-stem with n — 1,5 = 2.

There is an element produced in the 3-stem on S3. The leading term of the

generator is given taking the inverse of the map 272. In this case we produce the

generator A,, which we denote by a,.

For dimension reasons there are no other elements in this stem.

The next nonzero groups occur in the 6-stem. For 77 = 1 the P map increases stem

by 2. By induction the domain of the F-map is generated by a,, and we have an

element a2 in the 6-stem on S3.

In stem 6 the domain of the F-map for 77 = 1 is the 4-stem which is generated in

filtration zero by t>, (= ä,). This produces an element with leading term vxhx in the

7-stem which we call a2.

For 7i = 2 the F-map shifts dimension by 6, d(xxx) = a2 (up to a unit). So a2 dies

onS5.

The next interesting stem is the 10-stem. For n = 1 F(«2) = 0, producing a2ax on

S3 in the 10-stem.

The stem shift for n = 2 is 6. So we need to compute P(axxxx) — a] = 0.

Therefore an element /3, with leading term a, A2 is produced in the 10-stem on S5.

Furthermore 3 • a,A2 = A, • u,A, = u,A, • A, = a2ax modulo terms which desuspend,

hence we obtain the extension indicated in the table.
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The method of computation described thus far is sufficient to complete the table

through the 12-stem. In the 13-stem there is the possibility of the first differential 8X

in the spectral sequence (5.7(h)).

For 72 = 1 we have

8X: Ext°-xl{A(n) 0 Z/pZ) -* Ext'-'7(.4(5) 0 Z/pZ) « Z/pZ{a3/2, 'c72Vx }

(the computation  of Ext1,17(^4(5) 0 Z/pZ) is   inductively determined from the

table).

With d the differential in the unstable cobar complex of W^l) we have from (4.5),

8x(xxl) = ph\ 0 x5 = a¡a¡ 0 x5

(to see this we compute, using the table, d(ph\) = p(a2ax)). We now have

ExtM7(W(l)) - Z/pZ{a3/2}, and an element with Hopf invariant a3/2 is bora on

the 3-sphere in the 14-stem. (It is convenient to observe that the action (4.8) is

unstable, so S,(.x,7) cannnot be a3/2.)

Computations support the following conjecture (also observed by H. Miller):

Conjecture 6.2. The spectral sequence (5.7(h)) collapses at E2, and the natural

map Exts¡L(A(2pn — 1) 0 Z/pZ) -» Ext^W^)) is surjective.

6.2 is a useful "working principle" which can help motivate differentials in 5.7.

Partial results relating to 6.2 will appear elsewhere.

It is convenient to use the stable Novikov spectral sequence [11] to simplify the

computations on large stems. For example, in the 52-stem, (ß2)2 generates a stable

Z/pZ. In order to get the correct result P(ß2vx) must be <¡>h2 or <f>A2 — ß2 on S13. A

stable computation mod p shows that it is the latter.

Differentials. Differentials are determined by pulling back stable differentials,

the multiphcative properties of the spectral sequence [6, (4.9)] or by 5.6.

As a consequence of 5.6 the d2 in the spectral sequence for QS2n satisfies

d2(x) = P(H(x)) for x E F2(ñS2"). We conjecture the same remark is true for the

unstable higher differentials in the spectral sequence for AS2", and by 5.6 for the

unstable higher differentials in the spectral sequence for Sk.

For example the element </> (= /33/3A3) in the 45-stem is born in homotopy on S9.

The target of the differential is P(ß3). The conjecture would imply that 27(<f>) = ß]

in homotopy.

This may be seen from the table. The Hopf invariant is in the 30-stem in filtration

3 or more. The only possibihty is ß3.

If d5(ß3/J) were zero, and not ßxax, then the double suspension sequences in

homotopy and in Ext would be the same through the range of the table. A

computation through the 52-stem which assumed /33/3 is a stable homotopy element

was made by Brayton Gray [9].
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