A CORRECTION AND SOME ADDITIONS TO
 'FFUNDAMENTAL SOLUTIONS FOR DIFFERENTIAL EQUATIONS ASSOCIATED WITH THE NUMBER OPERATOR"

BY
YUH-JIA LEE

Abstract

Let (H, B) be an abstract Wiener pair and \Re the operator defined by $\Re u(x)=-\operatorname{trace}_{H} D^{2} u(x)+(x, D u(x))$, where $x \in B$ and (\cdot, \cdot) denotes the $B-B^{*}$ pairing. In this paper, we point out a mistake in the previous paper concerning the existence of fundamental solutions of $\mathscr{\Re}^{k}$ and intend to make a correction. For this purpose, we study the fundamental solution of the operator $(\Re+\lambda I)^{k}(\lambda>0)$ and investigate its behavior as $\lambda \rightarrow 0$. We show that there exists a family $\left\{Q_{\lambda}(x, d y)\right\}$ of measures which serves as the fundamental solution of $(\mathcal{(}+\lambda I)^{k}$ and, for a suitable function f, we prove that the solution of $\mathscr{\pi}^{k} u=f$ can be represented by $u(x)=$ $\lim _{\lambda \rightarrow 0} f_{B} f(y) Q_{\lambda}(x, d y)+C$, where C is a constant.

In our previous paper [2,§3], we have shown that the solution of the equation $\Re^{k} u(x) f(x)\left(f \in \mathcal{L}_{0}\right)$ is of the form $G^{k} f(x)+$ a constant, where $G f(x)=$ $\int_{0}^{\infty}\left[\int_{B} f(y) o_{t}(x, d y)\right] d t$ and $G^{k} f=G\left(G^{k-1} f\right)$ with $G^{0} f=f$. Viewing the representation of $G^{k} f$, we then intuitively claimed that the family $\{Q(x, d y)\}$ of k-fold convolution of $G(x, d y)=\int_{0}^{\infty} o_{t}(x, d y) d t$ forms rigorously the "fundamental solution" of $\mathscr{\Re}^{k}$. Unfortunately, the "fundamental solution" is only formal. The mistake is caused by the fact that $G^{k} f(x)$ may not equal $\int_{B} f(y) Q(x, d y)$ when $f \in \mathcal{L}_{0}$ (though $G^{k} f(x)=\int f(y) Q(x, d y)$ for all $f \geqslant 0$). In order to obtain a correct representation of $G^{k} f(x)$ by an integral with respect to certain measure, we study the fundamental solution of the differential operator $(\mathscr{\pi}+\lambda I)^{k}$, where $\lambda>0$, and then investigate its behavior as λ goes to zero. We show that the fundamental solution of $(\mathscr{N}+\lambda I)^{k}$ exists in the sense of measure, which means that there exists a family of measures, say $\left\{Q_{\lambda}(x, d y)\right\}$, so that, for any member f of a certain reasonable large class of functions, the integral $Q_{\lambda} f(x)=\int_{B} f(y) Q_{\lambda}(x, d y)$ exists and $(\mathscr{T}+\lambda I)^{k}\left(Q_{\lambda} f\right)(x)=f(x)$. As λ goes to zero, we show that $\lim _{\lambda \rightarrow 0} \int_{B} f(y) Q_{\lambda}(x, d y)=G^{k} f(x)$ for any f in \mathcal{L}_{0}.

Definitions and Notation. We give in the following some new definitions and notations which did not appear in the previous paper. For the others, we refer the reader to [2].

For each x in B and for each Borel set A in B, we define

$$
G_{\lambda}(x, A)=\int_{0}^{\infty} e^{-\lambda t} o_{t}(x, A) d t \quad(\lambda>0)
$$

[^0]$$
R_{\lambda}(x, A)=\int_{0}^{\infty} e^{-\lambda t}\left[o_{t}(x, A)-p_{1}(A)\right] d t
$$
and let
\[

$$
\begin{aligned}
& G_{\lambda} f(x)=\int_{0}^{\infty} \int_{B} e^{-\lambda t} f(y) o_{t}(x, d y) d t \quad \text { (if it exists) } \\
& R_{\lambda} f(x)=\int_{0}^{\infty} \int_{B} e^{-\lambda t} f(y)\left[o_{t}(x, d y)-p_{1}(d y)\right] d t
\end{aligned}
$$
\]

Evidently, $G_{\lambda} f$ and $R_{\lambda} f$ exist when f is bounded and continuous. Furthermore, we have

Lemma 1. (a) $G_{\lambda}(x, \cdot)$ and $R_{\lambda}(x, \cdot)$ are Borel measures with total variation λ^{-1} and $2 \lambda^{-1}$, respectively.
(b) If $f \in \mathcal{L}$, then $R_{\lambda} f \in \mathcal{L}$ and $G_{\lambda} f \in \mathcal{E}$; and, if $f \in \mathcal{L}_{0}$, then $R_{\lambda} f(x)=G_{\lambda} f(x)$ and $G_{\lambda} f \in \mathfrak{E}_{0}$.
(c) If $f \in \mathcal{L}$, f is integrable with respect to $R_{\lambda}(x, \cdot)$ and $G_{\lambda}(x, \cdot)$. Moreover, we have:

$$
\begin{align*}
& R_{\lambda} f(x)=\int_{B} f(y) R_{\lambda}(x, d y) \tag{1}\\
& G_{\lambda} f(x)=\int_{B} f(y) G_{\lambda}(x, d y) \tag{2}
\end{align*}
$$

Proof. (a) follows from the fact that $o_{t}(x, \cdot)$ and $p_{1}(\cdot)$ are mutually singular probability measures.
(b) follows by arguments similar to [2, Proposition 3.1].

It remains to prove (c). First of all, we observe that $R_{\lambda} f(x)=G_{\lambda} f(x)-$ $\lambda^{-1} \int_{B} f(y) p_{1}(d y)$ and $R_{\lambda}(x, \cdot)=G_{\lambda}(x, \cdot)-\lambda^{-1} p_{1}(\cdot)$, so it suffices to verify (2).

Next, noting that if f is in \mathcal{L} then f^{+}, f^{-}and $|f|$ are also in \mathcal{L}; it suffices to prove that any nonnegative member f in \mathcal{L} is integrable with respect to $G_{\lambda}(x, \cdot)$ and (2) holds. But, by the definition of $G_{\lambda}(x, \cdot)$, it is easy to see that (2) holds when f is a simple function and so, by the monotone convergence theorem, (2) holds if f is a nonnegative function. Now the integrability of a nonnegative member in \mathcal{L} follows immediately from (b).

Proposition 1. For each x in B and each Borel set E in B, define

$$
\begin{equation*}
Q_{\lambda}(x, E)=\int_{\substack{ \\(k-1 \text { times })}} \ldots \int_{B} G_{\lambda}\left(y_{k-1}, E\right) G_{\lambda}\left(y_{k-2}, d y_{k-1}\right) \cdots G_{\lambda}\left(y_{1}, d y_{2}\right) G_{\lambda}\left(x, d y_{1}\right) \tag{3}
\end{equation*}
$$

We have:
(a) The total variation of $Q_{\lambda}(x, \cdot)$ is λ^{-k}.
(b) $\mathcal{L} \subset L^{1}\left(Q_{\lambda}(x),\right)$ for each x in B and $\lambda>0$ and

$$
\begin{equation*}
G_{\lambda}^{k} f(x)=\int_{B} f(y) Q_{\lambda}(x, d y) \tag{4}
\end{equation*}
$$

(c) If f is a function in \mathfrak{L}, then $u(x)=G_{\lambda}^{k} f(x)$ satisfies the equation $(\mathscr{N}+\lambda I)^{k} u=f$ (cf. [1]).

Proof. (a) follows from Lemma 1(a).
(b) Using the same idea as in the proof of Lemma 1(c), we see that f^{+}and f^{-}are integrable with respect to $Q_{\lambda}(x, d y)$ and $G_{\lambda}^{k} f^{+}(x)=\int_{B} f^{+}(y) Q_{\lambda}(x, d y), G_{\lambda}^{k} f^{-}(x)=$ $\int_{B} f^{-}(y) Q_{\lambda}(x, d y)$, which yield the identity (4).

Finally, imitating the proof of [2, Theorem 3.5], (c) follows immediately.
Remark. Proposition 1 shows that the fundamental solution of $(\Re+\lambda I)^{k}$ exists in the sense of measure which is given by the family $\left\{Q_{\lambda}(x, \cdot)\right\}$.

Proposition 2. Let $\left\{f_{\lambda}: \lambda \in R^{+}\right\}$be a net of functions in \mathcal{L} satisfying the following conditions:
(C-1) There exist constants c, c^{\prime} such that

$$
\left|f_{\lambda}(x)-f_{\lambda}(y)\right| \leqslant c \cdot e^{c^{\prime}\|x\|} e^{c^{\prime}\|y\|}\|x-y\|
$$

for all $x, y \in B$ and $\lambda \in R^{+}$.
$(\mathrm{C}-2) \lim _{\lambda \rightarrow 0} f_{\lambda}(x)=f(x)$.
Then we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} R_{\lambda} f_{\lambda}(x)=\int_{0}^{\infty}\left[o_{t} f(x)-p_{1} f(0)\right] d t \tag{5}
\end{equation*}
$$

In particular, if $f \in \mathcal{L}$, then $\lim _{\lambda \rightarrow 0} R_{\lambda} f(x)=R f(x)$, where $R f(x)$ is defined by the limit function of (5).

Proof. Write out the expression of $R_{\lambda} f_{\lambda}(x)$ and use Lebesgue's dominated convergence theorem.

Corollary 1. Assume $f \in \mathfrak{E}_{0}$. Then

$$
G^{k} f(x)=\lim _{\lambda \rightarrow 0} \int_{B} f(y) Q_{\lambda}(x, d y)
$$

Proof. Noting that the net $\left\{G_{\lambda} f\right\}$ satisfies (C-1) and (C-2) of Proposition 2, the Corollary follows immediately.

Remark. To correct the previous paper, we should change properly all the statements concerning the fundamental solution of \mathcal{J}^{k} according to the above results. In view of Corollary 1. Theorem 3.5(b) of [2] should read:

Assume f is a function in \mathscr{L}_{0} and $Q_{\lambda}(x, \cdot)$ is defined as in (3). Then $G^{k} f(x)=$ $\lim _{\lambda \rightarrow 0} \int_{B} f(y) Q_{\lambda}(x, d y)$ exists, $G^{k} f \in \mathcal{L}(k)_{0}$ and $\Re^{k}\left(G^{k} f\right)(x)=f(x)$.

Remark. It is not known so far if the fundamental solution of \mathscr{T}^{k} exists in the sense of measure. When $k=1$ and $f \in \mathfrak{L}_{0}$, we see that $p_{1} f(0)=0$ and

$$
G f(x)=R f(x)=\int_{0}^{\infty}\left(o_{t} f(x)-0\right) d t=\int_{0}^{\infty} \int_{B} f(y)\left[o_{t}(x, d y)-p_{1}(d y)\right] d t
$$

Since the last integral exists for all $f \in \mathcal{P}$, one might conjecture that the the set function $R(x, A)=\int_{0}^{\infty}\left[o_{t}(x, A)-p_{1}(A)\right] d t$ could define a measure and the family $\{R(x, A)\}$ might form the fundamental solution of \mathfrak{R}. Unfortunately, if one takes $A=$ the concentrated set of p_{1}, then $R(x, A)=-\infty$ and $R\left(x, A^{c}\right)=+\infty$, thus
$R(x, \cdot)$ fails to be a measure. From this observation, we conjecture that the fundamental solution of $\mathcal{\Re}$ does not exist in the sense of measure and neither does that of \Re^{k}. However, a proof is lacking.

References

1. H.-H. Kuo, Potential theory associated with Uhlenbeck-Ornstein process, J. Funct. Anal. 21 (1976), 63-75.
2. Y.-J. Lee, Fundamental solutions for differential equations associated with the number operator, Trans. Amer. Math. Soc. 268 (1981), 467-476.

Department of Mathematics, National Cheng-Kung University, Tainan, Taiwan 700

[^0]: Received by the editors January 8, 1982.
 1980 Mathematics Subject Classification. Primary 35K15, 35K30; Secondary 28A40, 60J45.
 Key words and phrases. Abstract Wiener spaces, fundamental solution, number operator.

