A CORRECTION AND SOME ADDITIONS TO "FUNDAMENTAL SOLUTIONS FOR DIFFERENTIAL EQUATIONS ASSOCIATED WITH THE NUMBER OPERATOR"

BY YUH-JIA LEE

ABSTRACT. Let (H, B) be an abstract Wiener pair and $\mathfrak N$ the operator defined by $\mathfrak N u(x) = -\mathrm{trace}_H D^2 u(x) + (x, Du(x))$, where $x \in B$ and (\cdot, \cdot) denotes the B- B^* pairing. In this paper, we point out a mistake in the previous paper concerning the existence of fundamental solutions of $\mathfrak N^k$ and intend to make a correction. For this purpose, we study the fundamental solution of the operator $(\mathfrak N + \lambda I)^k$ ($\lambda > 0$) and investigate its behavior as $\lambda \to 0$. We show that there exists a family $\{Q_{\lambda}(x, dy)\}$ of measures which serves as the fundamental solution of $(\mathfrak N + \lambda I)^k$ and, for a suitable function f, we prove that the solution of $\mathfrak N^k u = f$ can be represented by $u(x) = \lim_{\lambda \to 0} \int_B f(y) Q_{\lambda}(x, dy) + C$, where C is a constant.

In our previous paper [2, §3], we have shown that the solution of the equation $\mathfrak{N}^k u(x) f(x)$ $(f \in \mathcal{L}_0)$ is of the form $G^k f(x) + a$ constant, where G f(x) = $\int_0^\infty \left[\int_R f(y) o_t(x, dy) \right] dt$ and $G^k f = G(G^{k-1} f)$ with $G^0 f = f$. Viewing the representation of $G^k f$, we then intuitively claimed that the family $\{Q(x, dy)\}\$ of k-fold convolution of $G(x, dy) = \int_0^\infty o_t(x, dy) dt$ forms rigorously the "fundamental solution" of \mathfrak{N}^k . Unfortunately, the "fundamental solution" is only formal. The mistake is caused by the fact that $G^k f(x)$ may not equal $\int_B f(y)Q(x,dy)$ when $f \in \mathcal{L}_0$ (though $G^k f(x) = \{f(y)Q(x, dy) \text{ for all } f \ge 0\}$). In order to obtain a correct representation of $G^k f(x)$ by an integral with respect to certain measure, we study the fundamental solution of the differential operator $(\mathfrak{N} + \lambda I)^k$, where $\lambda > 0$, and then investigate its behavior as \(\lambda\) goes to zero. We show that the fundamental solution of $(\mathfrak{I} + \lambda I)^k$ exists in the sense of measure, which means that there exists a family of measures, say $\{Q_{\lambda}(x, dy)\}$, so that, for any member f of a certain reasonable large class of functions, the integral $Q_{\lambda} f(x) = \int_{\mathcal{B}} f(y)Q_{\lambda}(x, dy)$ exists and $(\mathfrak{N} + \lambda I)^k (Q_{\lambda} f)(x) = f(x)$. As λ goes to zero, we show that $\lim_{\lambda \to 0} \int_{\mathbb{R}} f(y) Q_{\lambda}(x, dy) = G^k f(x)$ for any f in \mathcal{L}_0 .

DEFINITIONS AND NOTATION. We give in the following some new definitions and notations which did not appear in the previous paper. For the others, we refer the reader to [2].

For each x in B and for each Borel set A in B, we define

$$G_{\lambda}(x, A) = \int_0^{\infty} e^{-\lambda t} o_t(x, A) dt \qquad (\lambda > 0),$$

Received by the editors January 8, 1982.

1980 Mathematics Subject Classification. Primary 35K15, 35K30; Secondary 28A40, 60J45. Key words and phrases. Abstract Wiener spaces, fundamental solution, number operator.

$$R_{\lambda}(x,A) = \int_0^{\infty} e^{-\lambda t} [o_t(x,A) - p_1(A)] dt;$$

and let

$$G_{\lambda}f(x) = \int_{0}^{\infty} \int_{B} e^{-\lambda t} f(y) o_{t}(x, dy) dt \quad \text{(if it exists)},$$

$$P_{\lambda}f(x) = \int_{0}^{\infty} \int_{B} e^{-\lambda t} f(y) \int_{B} f(x, dy) dt \quad \text{(if it exists)},$$

$$R_{\lambda}f(x) = \int_0^{\infty} \int_B e^{-\lambda t} f(y) \big[o_t(x, dy) - p_1(dy) \big] dt.$$

Evidently, $G_{\lambda}f$ and $R_{\lambda}f$ exist when f is bounded and continuous. Furthermore, we have

LEMMA 1. (a) $G_{\lambda}(x, \cdot)$ and $R_{\lambda}(x, \cdot)$ are Borel measures with total variation λ^{-1} and $2\lambda^{-1}$, respectively.

- (b) If $f \in \mathcal{L}$, then $R_{\lambda} f \in \mathcal{L}$ and $G_{\lambda} f \in \mathcal{L}$; and, if $f \in \mathcal{L}_0$, then $R_{\lambda} f(x) = G_{\lambda} f(x)$ and $G_{\lambda} f \in \mathcal{L}_0$.
- (c) If $f \in \mathcal{L}$, f is integrable with respect to $R_{\lambda}(x, \cdot)$ and $G_{\lambda}(x, \cdot)$. Moreover, we have:

(1)
$$R_{\lambda} f(x) = \int_{R} f(y) R_{\lambda}(x, dy),$$

(2)
$$G_{\lambda} f(x) = \int_{R} f(y) G_{\lambda}(x, dy).$$

PROOF. (a) follows from the fact that $o_t(x, \cdot)$ and $p_1(\cdot)$ are mutually singular probability measures.

(b) follows by arguments similar to [2, Proposition 3.1].

It remains to prove (c). First of all, we observe that $R_{\lambda} f(x) = G_{\lambda} f(x) - \lambda^{-1} \int_{R} f(y) p_{1}(dy)$ and $R_{\lambda}(x, \cdot) = G_{\lambda}(x, \cdot) - \lambda^{-1} p_{1}(\cdot)$, so it suffices to verify (2).

Next, noting that if f is in \mathcal{L} then f^+ , f^- and |f| are also in \mathcal{L} ; it suffices to prove that any nonnegative member f in \mathcal{L} is integrable with respect to $G_{\lambda}(x, \cdot)$ and (2) holds. But, by the definition of $G_{\lambda}(x, \cdot)$, it is easy to see that (2) holds when f is a simple function and so, by the monotone convergence theorem, (2) holds if f is a nonnegative function. Now the integrability of a nonnegative member in \mathcal{L} follows immediately from (b). \square

PROPOSITION 1. For each x in B and each Borel set E in B, define

(3)
$$Q_{\lambda}(x, E) = \int_{B} \dots \int_{B} G_{\lambda}(y_{k-1}, E) G_{\lambda}(y_{k-2}, dy_{k-1}) \dots G_{\lambda}(y_{1}, dy_{2}) G_{\lambda}(x, dy_{1}).$$

We have:

- (a) The total variation of $Q_{\lambda}(x, \cdot)$ is λ^{-k} .
- (b) $\mathcal{L} \subset L^1(Q_{\lambda}(x, \cdot))$ for each x in B and $\lambda > 0$ and

(4)
$$G_{\lambda}^{k} f(x) = \int_{R} f(y) Q_{\lambda}(x, dy).$$

(c) If f is a function in \mathcal{L} , then $u(x) = G_{\lambda}^k f(x)$ satisfies the equation $(\mathfrak{N} + \lambda I)^k u = f(cf. [1])$.

PROOF. (a) follows from Lemma 1(a).

(b) Using the same idea as in the proof of Lemma 1(c), we see that f^+ and f^- are integrable with respect to $Q_{\lambda}(x, dy)$ and $G_{\lambda}^k f^+(x) = \int_B f^+(y) Q_{\lambda}(x, dy)$, $G_{\lambda}^k f^-(x) = \int_B f^-(y) Q_{\lambda}(x, dy)$, which yield the identity (4).

Finally, imitating the proof of [2, Theorem 3.5], (c) follows immediately. \Box

REMARK. Proposition 1 shows that the fundamental solution of $(\mathfrak{N} + \lambda I)^k$ exists in the sense of measure which is given by the family $\{Q_{\lambda}(x,\cdot)\}$.

PROPOSITION 2. Let $\{f_{\lambda}: \lambda \in R^+\}$ be a net of functions in \mathcal{L} satisfying the following conditions:

(C-1) There exist constants c, c' such that

$$|f_{\lambda}(x) - f_{\lambda}(y)| \le c \cdot e^{c' ||x||} e^{c' ||y||} ||x - y||$$

for all $x, y \in B$ and $\lambda \in R^+$.

(C-2)
$$\lim_{\lambda \to 0} f_{\lambda}(x) = f(x)$$
.

Then we have

(5)
$$\lim_{\lambda \to 0} R_{\lambda} f_{\lambda}(x) = \int_{0}^{\infty} \left[o_{t} f(x) - p_{1} f(0) \right] dt.$$

In particular, if $f \in \mathcal{L}$, then $\lim_{\lambda \to 0} R_{\lambda} f(x) = Rf(x)$, where Rf(x) is defined by the limit function of (5).

PROOF. Write out the expression of $R_{\lambda} f_{\lambda}(x)$ and use Lebesgue's dominated convergence theorem. \square

COROLLARY 1. Assume $f \in \mathcal{L}_0$. Then

$$G^k f(x) = \lim_{\lambda \to 0} \int_R f(y) Q_{\lambda}(x, dy).$$

PROOF. Noting that the net $\{G_{\lambda}f\}$ satisfies (C-1) and (C-2) of Proposition 2, the Corollary follows immediately. \Box

REMARK. To correct the previous paper, we should change properly all the statements concerning the fundamental solution of \mathfrak{N}^k according to the above results. In view of Corollary 1. Theorem 3.5(b) of [2] should read:

Assume f is a function in \mathcal{L}_0 and $Q_{\lambda}(x, \cdot)$ is defined as in (3). Then $G^k f(x) = \lim_{\lambda \to 0} \int_B f(y) Q_{\lambda}(x, dy)$ exists, $G^k f \in \mathcal{L}(k)_0$ and $\mathcal{R}^k(G^k f)(x) = f(x)$. \square

REMARK. It is not known so far if the fundamental solution of \mathfrak{N}^k exists in the sense of measure. When k=1 and $f\in\mathcal{L}_0$, we see that $p_1f(0)=0$ and

$$Gf(x) = Rf(x) = \int_0^\infty (o_t f(x) - 0) dt = \int_0^\infty \int_B f(y) [o_t(x, dy) - p_1(dy)] dt.$$

Since the last integral exists for all $f \in \mathcal{L}$, one might conjecture that the set function $R(x, A) = \int_0^\infty [o_t(x, A) - p_1(A)] dt$ could define a measure and the family $\{R(x, A)\}$ might form the fundamental solution of \mathfrak{N} . Unfortunately, if one takes A = the concentrated set of p_1 , then $R(x, A) = -\infty$ and $R(x, A^c) = +\infty$, thus

624 YUH-JIA LEE

 $R(x, \cdot)$ fails to be a measure. From this observation, we conjecture that the fundamental solution of \mathfrak{N} does not exist in the sense of measure and neither does that of \mathfrak{N}^k . However, a proof is lacking. \square

REFERENCES

- 1. H.-H. Kuo, Potential theory associated with Uhlenbeck-Ornstein process, J. Funct. Anal. 21 (1976), 63-75.
- 2. Y.-J. Lee, Fundamental solutions for differential equations associated with the number operator, Trans. Amer. Math. Soc. 268 (1981), 467-476.

DEPARTMENT OF MATHEMATICS, NATIONAL CHENG-KUNG UNIVERSITY, TAINAN, TAIWAN 700