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SMOOTH TYPE III DIFFEOMORPHISMS OF MANIFOLDS

BY

JANE HAWKINS

Abstract. In this paper we prove that every smooth paracompact connected

manifold of dimension > 3 admits a smooth type IIIX diffeomorphism for every

0 « A < 1. (Herman proved the result for A = 1 in [7].) The result follows from a

theorem which gives sufficient conditions for the existence of smooth ergodic real

line extensions of diffeomorphisms of manifolds.

1. Introduction. Let / be a nonsingular ergodic automorphism of a Lebesgue space

(A', S, u). The problem of describing the conditions under which u is equivalent to

an /-invariant measure has been the subject of much study [2, 3, 4, 6, 11, 13].

Herman and Katznelson have constructed examples of diffeomorphisms of the circle

which do not admit any invariant measure equivalent to Lebesgue measure [8, 11]. In

[6], some relationships between the rotation number of a diffeomorphism of Tx and

its measure theoretic properties are studied further. In [8] Herman proves the

existence of smooth type III, diffeomorphisms of every paracompact connected

manifold of dimension m > 3.

In this paper we study the more pathological types of non-measure-preserving

diffeomorphisms of manifolds. In particular we construct examples of smooth type

III0 and IIIX, 0 < X < 1, diffeomorphisms of C°° manifolds. The main theorem of

the paper is the following.

Theorem 5.5. Every smooth paracompact connected manifold of dimension > 3

admits a type IIIX diffeomorphism for every 0 < X < 1.

We prove the theorem in a sequence of steps, following a general method

introduced by Anosov in [5] and used by Herman to construct type III, diffeomor-

phisms. In order to obtain a type III0 diffeomorphism on an m-dimensional

manifold M, we construct a flow with the desired property on Í2 X R*"2 and

extend it to a globally defined flow with the same property on M.

§2 supplies some necessary definitions and notation. In §3, we prove that starting

with a type III0 diffeomorphism of the circle (which we know exists by [11]) we can

obtain a type III0 flow and diffeomorphisms on higher dimensional tori. We prove

the following slightly more general assertion: if X is any smooth manifold which

admits a type III0 diffeomorphism/, then the diffeomorphism of A" X Tx given by

(x, y)y+(fx,y + /(mod 1)), x E X,y ETX, is of type III0 for m-a.e. / E (0,1).
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§4 offers a proof that we can obtain real line extensions of type III0 diffeomor-

phisms which preserve the ratio set (cf. §2). This result is not always true in the

measure-preserving case. In fact it is well known that for most irrational numbers a,

the diffeomorphism of the circle given by rotation through a admits no ergodic real

line extensions of the form: ( y, z) h» ( v + a, z + \¡>y), where ^: Tx -> R is smooth.

(Using Fourier coefficients the equation \p(y) = <p(y) — <p(y + a) has a C°° solu-

tion for m-a.e. a, hence the extension by tp is not even ergodic.) However, Theorem

4.13 states that every type III0 diffeomorphism of a paracompact manifold (and type

IIIX, 0 < X < 1, as well by a small modification) admits weakly equivalent real line

extensions.

The last section, §5, then applies the methods of Anosov and Herman to extend

the type IIIX flows we have constructed on T2 X Rm~2 to arbitrary paracompact

connected manifolds of dimension m.

The contents of this paper form a part of the author's Ph.D. thesis. Dr. Klaus

Schmidt, of Warwick University, is gratefully acknowledged for supervising this

work.

2. Ergodic theory preliminaries. Let (X,§>, p) denote a Borel space where u is a

probability measure on ( A", S). Let/denote a nonsingular ergodic transformation of

(X, S, u), i.e. every/-invariant set B E § satisfies either p(B) = 0 or p(B) = 1. We

define the set Aut(X,^>, p) — {T: (X, §)*- such that T is a nonsingular Borel

automorphism of (X, §)}, and let

Ofix)= {fx:n GZ}.

The full group of /is defined by

[/] = [VE Aut(A",S,u): Vx E Of(x) for u-a.e. x E X).

Definition 2.1. Two transformations/, g G Aut(A', S, u) are weakly equivalent if

there exists a measurable invertible map <//: X -» X with \¡/~xp ~ p and \p(Of(x)) =

Og(\px) for u-a.e. x E X.

We now introduce an invariant of weak equivalence.

Definition 2.2. Let/ G Aut(Ar, S, p) be an invertible, ergodic transformation. A

nonnegative real number t is said to he in the ratio set off, r*(f), if for every Borel

set B E S with p(B) > 0, and for every e > 0,

«ez
u    U   \ B n f"B Cl \x E X:

dpf
dp

■ix)-t >0.

Here dpf'"/dp denotes the Radon-Nikodym derivative of /£« with respect to u. We

set r(f) = r*(f)\{0}. One can show that /•(/) is a closed subgroup of the

multiplicative group of positive real numbers R+ , and that / admits a o-finite

invariant measure if and only if r*(f) — {1} [13]. If / has no a-finite invariant

measure equivalent to u, there are three possibilities:

(1) r*(f) = {t E R: t > 0), in which case/is said to be of type III,;

(2) r*(f) = {0} U {X": n E Z) for 0 < X < 1; in this case/is said to be of type

IIIX; or,

(3) r*(f) = {0,1}; then/is of type HI0.
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The ratio set is actually an example of the set of essential values for a particular

cocycle for /. We shall briefly introduce these more general concepts from the study

of nonsingular group actions on measure spaces. For the purposes of this paper, we

will give the definitions in the differentiable context; for the most general defini-

tions, we refer the reader to [16].

Let (X, S, u) denote a compact Riemannian manifold with S the o-algebra of

Borel sets, and let u denote a smooth probability measure. By Diff°°(A') we will

denote the set of C°° diffeomorphisms of X. We define the metric

00 d ( f e)
djf, g) = 2 2~rl + Jl/g)    for every/, g E Diff-(Jf),

where dr denotes the usual Cr metric. Clearly Diff °°( A') is a Baire space.

Let/G Diff°°(A") be u-ergodic and let 77 be a locally compact second countable

abelian group. The action (n, x) i->/"(x) of Z on X is nonsingular since for every

n EZ,Xr-*fxisa Borel automorphism of A~ which leaves u quasi-invariant.

Definition 2.3. A Borel map a: Z X X -> H is called a cocycle for Z if the

following condition holds:

For every n, m E Z and for every x E X, we have

a(«, fmx) — ai» + m, x) + a(m, x) = 0.

A cocycle a: Z X X -» H is called a coboundary if there exists a Borel map b: X -> H

with a(7j, x) = b(fx) — b(x), n E Z, for u-a.e. x E X. Two cocycles a, and a2 are

said to be cohomologous if their difference is a coboundary.

The following defines a cohomology invariant which generalises the concept of the

ratio set.

Definition 2.4. Let (A", S,u) be as above, G a countable group which acts

nonsingularly and ergodically on (A", §, u) and let a: G X X -* H be a cocycle for G.

An element aG7^ = i7U{oo}is called an essential value of a if, for every Borel set

B E S with p(B) > 0 and for every neighbourhood N(a) of a in H,

p(B n g~xB n {x: a(g, x) G ¿V(a)}) > 0

for some g E G. The set of essential values is denoted by E(a), and we put

E(a) = E(a) D H. We will state a few well-known properties of E(a).

(1) E(a) is a nonempty closed subset of 77;

(2) £(a) is a closed subgroup of 77;

(3) E(a) = {0} if and only if a is a coboundary;

(4) E(ax) = E(a2) whenever a, and a2 are cohomologous.

Definition 2.5. Let (A", §, u) be as above, G a countable group acting nonsingu-

larly and ergodically on X, and a: G X X -» 7/ a cocycle for (7. The cocycle a is

recurrent if, for every 5 G § with u(t9) > 0, and for every neighbourhood N(0) in 77,

u( IJ  {B n g-'£ n {x: aig, x) E tV(0)} n {x: gx # *})) > 0.
vgec '

We will now recall some definitions relating to flows, or R-actions, on manifolds.
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Definition 2.6. A C flow on a manifold X is a Cr map /: X X R -» A" such that

if we denote/,(;c) = /(jc, i) Vx G Ar, / G R, then

(*)/,+,(*) = /,/,(*) V/, 5 G R, Vx G A";

(ü)/o = Idx.
Then it follows that

(iii)/_,=/,-'.
A flow on (A", §>, p) is u-ergodic if f,iA) = A (A E S)Vr G R imphes u(^4) = 0 or

p(A<) = 0.
Definition 2.7. A nonsingular flow/ on (X, §, u) is of type III if it admits no

a-finite invariant measure equivalent to p.

If / is any orientation-preserving diffeomorphism of a smooth manifold of

dimension n > 1, there exists a canonical method for obtaining a flow on an

(n + l)-dimensional manifold, from /, called the suspension flow of /. We first

define a flow on X X R by Gt(x, y) = (x, y + t) Vjc G X, y G R, t G R. We next

consider the equivalence relation on X given by (x, y) ~ (fx, y + n) Va? G Z and

we see that Gt induces a flow, ij,onIXR/~sIX Tx. We call Ft the suspension

flow of/.

The following lemma appears in [7 and 14].

Lemma 2.8. Let (Y, %, v) be a Lebesgue space, v a positive a-finite measure and Gt a

flow on Y preserving v and v-ergodic. If G, has no orbit of full v-measure, then there

exists a set B C [0,1], m(B) = 1, such that for all t0 E B, G,o G Aut(F, v) is

v-ergodic.

Finally, we define type IIIX flows for 0 < X < 1, and give a definition for weak

equivalence of flows.

Definition 2.9. A smooth flow Gt on a C00 manifold (A", S, u) is of type IIIX

(0 *£ A < 1) if for 77j-a.e. t0 E R, Gt(¡ E Aut(X, u) is of type IIIX.

Two flows gt and G, are weakly equivalent if there exists a measurable invertible

map \p: X -» X with \p~xp ~ u and ^(g,(x)) = Gs(ipx) for u-a.e. x E X, and some

s, t E R.

3. Type III0 flows and diffeomorphisms of T". This section contains a crucial step

in the process of obtaining a type III0 diffeomorphism on an arbitrary manifold; we

prove the existence of a flow with the desired property. In order to obtain a type III0

flow on T2, we start with a type III0 diffeomorphism, /, of Tx and then take the

suspension flow. We need to check that for 777-a.e. t E (0,1), the diffeomorphism

given by (x,w)r-* (fx,w + t) is also of type III0. This involves proving that,

usually, the nontrivial ergodic decomposition of the skew product given by

(x,.z).h* \fx, z + log-^— {x)\ onlXR

is preserved when we pass to one higher dimension.

In Theorem 3.2 we prove that a type III0 diffeomorphism of an arbitrary smooth

manifold X can be extended to a type III0 flow on A" X Tx. As a corollary we obtain

type III0 diffeomorphisms of T", for n > 2.
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Proposition 3.1. Let (X, §, u) be a smooth manifold with p a C00 a-finite measure

on X. Suppose f E Aut( X, u) is a p-ergodic diffeomorphism of type IIIX (0 < X < 1),

and there exists a ß E [0,1] satisfying:

(1) Fß: X X Tx -> X X Tx defined by (x, w) h* (fx, w + ß) is u ® m-ergodic;

(2) (Y, 5", p) and {qy: y E Y} are the Borel space and family of ergodic measures,

respectively, corresponding to the ergodic decomposition of Sf: IXR-»IXR given

by

(x, z)\->ifx,z + log   ^     (x)

(see [16]), and the ergodic decomposition of SFß = SB: XXTXXR^XXTXXR

defined by
I dp ® mFßx

ix,w,z)\-> \fx, w + ß, z + log     .   0>n    (x,w)

has Borel space (Y,§, p) and ergodic measures {q~.y E Y} such that q~ = qy® m for

p-a.e.y E Y and p-a.e.y E Y.

Then Fß is also of type IIIX.

Proof. We prove the theorem by showing that r*(FB) — r*(f) which is equiva-

lent to proving that E(af) = E(aB) where a^and aB are the following cocycles:

af:Z® X-+R,       afin,x) = log-^—(x)    and

dp®mFB'" duf~"
aß:ZXXXTx^R,       aßin, x, w) = log   ^^   (x, w) = log-^-(x)

for every n E Z, x E X, w E Tx.

From [16, §5] we recall that I(af) = {X E R: äxtS = .ß(ixmodO) for every B E §

XßclXR which is Sy-invariant}, and 7(0^) is defined analogously, where

Rx(x, z) — (x, z + X) for all x E X, z E R, X G R, and Rx(x, w, z) = (x, w, z + X)

for every x E X, w E Tx, z E R, X E R. Now by Theorem 5.2 in [16] we have that

E(a) = 1(a) for all cocycles a:ZX X->R (and for all a: Z X X X Tx -> R) so the

proposition is true for X > 0 if we show that I(af) = I(aß), and if X — 0, I(aß) C

I(af) plus the uniqueness of ergodic decomposition suffice to prove the result. (This

will be discussed further later.)

Let it: X X Tx XR->A"XR denote the projection mapping defined by

(x,h>, z) h» (x, z)   for every x E X, w E Tx, z E R.

Clearly, Sf ° m = m ° Sß (as maps from X X Tx X R to X X R), and also for every

X E R, Rx o m = 77 o R(.

We now prove that tt defines an isomorphism (mod sets of w ® m-measure zero)

from Sy-invariant sets of X X R to 5^-invariant sets of A" X Tx X R. Suppose that

B eSxGc XXRis 5^-invariant. Then SfB = B implies that B = Sf° m(-n~xB) =

tt ° Sß(-n~xB), hence -n^B = Sß(TT'xB) so tt^B is 5^-invariant. Now let D E § X í X

Gc XXTX XR satisfy SßD = D. Then SfirD = m ° SßD = -nD, so trD is Sf-

invariant.
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Now X E I(af) implies for every ^-invariant D, Rx(ttD) = <nD, which implies

that TT-xRxmD = tt^itD. Equivalently, it^ttR^D - D, so X E I(aß).

If X E I(aB), then for every ¿y-invariant B, R^t~xB = tt~xB. Then RXB =

Rxit(tt-xB) = TrR{TT-xB = tttt^B = B, so X E I(af).

In the case X = 0, we have E(af) = (0, oo). Since Y ss Y by hypothesis, and by

the one-to-one correspondence between Sy and Sß invariant sets, Fß cannot be of type

II (i.e. have r*(Fß) = {1} which would imply that Sß is conjugate to (7^, Id)), so it

must be of type HI0.

Using Proposition 3.1, it is now an easy consequence to prove the following

theorem.

Theorem 3.2. If X is any smooth manifold which admits a type III0 diffeomorphism,

then the suspension flow of that diffeomorphism is of type III0 on XX Tx (i.e., for

m-a.e. t E (0,1), the diffeomorphism obtained by fixing the flow at t is of type III0).

Proof. Assume that/is a type III0 diffeomorphism of X. We consider the ergodic

decomposition of the skew product defined by

F: X X R -» X X R,

{x,z)\^[fx,z + log^j—(x)\,       xEX,zER,

which preserves the measure v = e~z dp ® dz. By [16] there exists a Borel probability

space (Y, *$, p) and a-finite measures q on (Tk X R, Sk, v) such that:

(i)y \-+qy(B) is Borel for every B E St.

QÏ)viB)~ fT*XRqyiB)dpiy).
(iii) Every qy,y E Y, is invariant and ergodic under F, and qy and qy, are mutually

singular when^ ¥= y'.

(iv) Let % = {B E %k: F(B) = B}. For every B E %, put By= {yE Y: qy(B) >

0). Then 2y = {BY: B E %} is equal to ïmod sets of p-measure zero.

For each.y G Y, the map F{: X X R X Tx -> X X R X Tx defined by

(j      r-\

fx, z + log—2—ix), w + t

is qy ® 777-ergodic for w-a.e. t E [0,1]. This can be shown by taking the suspension

flow of F and applying Lemma 2.8 for each y E Y. If we can prove that the set

Q = {(y, t) E (Y X 1,5" X i, p X 777): Ft is qy ® w-ergodic} is p <8> m-measurable,

then by Fubini's Theorem, since p ® m(Q) = 1 there exists a set C C [0,1], 771(C) = 1

such that if t E C for p-a.e. y E Y, Ft is q ® 777-ergodic. By the uniqueness of

ergodic decomposition, this implies that Ft is of type III0.

We conclude the proof with the following lemma.

Lemma 3.3. The set

Q = {( v, t) E (7 X 7, 9"X 3, p ® m): F, is qy ® m-ergodic)

is measurable.
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Proof. Let X= XXR, and denote by Xn the manifold defined by Xn = X X

(-77, n). The skew product F defined in 3.1 is always conservative, so we can induce

on Xn. Let F„ denote the induced transformation on X„, and we write Fnt for the map

f„,: a-„ x t" - a; X r,

(x, z,w) i-> (F„(x, z),w + t)    for every x E X, z E (-«, n), w E Tx.

We define, for every y E Y and tj > 1, a normalised measure on Xn equivalent to the

induced measure obtained from qy restricted to X„. Call these measures pyn); then

py"\Xn) = 1 for n > 1. Clearly we have Ft is q ® m-ergodic if and only if Fnt is

p(«) ® m-ergodic for every n> I. To show Q is measurable, we show that Q„ =

{(y, t) E Y X 11 Fnl ispyn) ® m-ergodic) is p ® w-measurable for each n E N.

To show Qn is measurable, we use the following claim, a different version of which

is proved in [7].

Claim. With the above notation, Fnt is/^n) ® m-ergodic if and only if

m-\

inf
m»l m j=0 Jx„xi

m 0,
L2(X„XI,p<i,"ï®m)

where \L2(x„x.i,p(v"'l®m) denotes the relevant L2 norm and h¡ E {hk}kels and {hk}keN

is a countable dense sequence of Borel (L2) functions on X„ X I (hence measurable

îorpyn) ® m, for every y E Y).

Since the infimum of measurable functions is measurable, and since the countable

intersection of measurable sets is measurable, it suffices to show that for each fixed

m, i, and 77 G N, the map

(x,z,w,y,t)

I   m— 1

-  2 h,°Flix,z^)-i     hsdpf^m
m j=o JXr.xr L2(X„XI,p(")'Sim)

is measurable, for every x E Xn,z E (-n, n), w E Tx, y E Y, and t E [0,1].

Using the definition of Lebesgue integral and elementary facts about measurable

functions, it is not difficult to see that the map 0(m)j>n): X X (-n, n) X Tx X Y X I

-» R given by

(x, z,w, y, t)

m-\1 /•
-  2 h,oF^,(x,z,w)- h,dp™2>m
m  ._ j y vT1

j = 0 L2(X„XI)

is Borel for each fixed triplet (m,i,n) and hence the infimum map, denoted $, „, is

Borel also.

Thus the set Q = DneN D,eN O,"i(0) is a measurable set in X X R X Tx X Y X I,

and by Fubini's Theorem we have that the projection on Y X I of Q is measurable in

F X 7. Now we conclude by observing that

VyxAQ) = {(;M)Gyx7|Fiisp®m-ergodic} = Q,

so the lemma is proved.

Corollary 3.4. For every n s* 1, there exist type III0 diffeomorphisms of T".
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Proof. We use induction. For 77 = 1, the theorem is true by [11]. At the A:th step

we take the suspension flow and apply Theorem 3.2.

4. Type III0 diffeomorphisms of T1 X R. In this section we prove the existence of

smooth, ergodic real Une extensions for the Z-action of a type IIIX diffeomorphsim

on a smooth, paracompact manifold X, for any 0 < X < 1. It is not difficult to show

that in the type III0 case, most of these ergodic extensions give type III0 diffeomor-

phisms of X X R. Our goal is to obtain type III0 diffeomorphisms of Tx X R, so we

can complete our construction on arbitrary manifolds in §5. Special thanks are due

to Klaus Schmidt and Ralf Spatzier for helpful discussions on the construction given

in Theorem 4.8.

We begin with a theorem proved in [16].

Theorem 4.1. Let ( X, S, u) denote a C°° manifold with smooth probability measure

p, and let f E Diff°°( A") be p-ergodic. If H denotes a locally compact second countable

abelian group with Haar measure XH, and if a: Z X X -» 77 is a cocycle for the

Z-action of f on X, then the map Sa: X X H -» X X H given by (x, h) \->

(fx, h- a(l, x)) is u ® Xjj-ergodic if and only if E(a) = H.

Any real-valued function <¡> on a smooth manifold ( X, S, u) gives rise to a cocycle

for the Z-action of any ergodic diffeomorphism,/, of X in the following way.

Using additive notation we have

aÂn,x) =

n-\

2 </>(/**)     iin>\,
k = 0

0 if n = 0,

-a(-n,f"x)    if«<-l

for u-a.e. x E X.

From the above definition one can check that a^ is a coboundary if and only if <¡>

can be written as <f>(x) = tj — tj ° f(x) for u-a.e. x E X and for some Borel map 77:

X -* R. We say that </> is a coboundary if a^ is a coboundary and we will write

E(a,f,) = E(<j>) unless confusion arises.

If F G [/], then recall that V(x) =/"(x)(x) for u-a.e. x E X. Using the notation

of [16] we let a^V, x) = a¿n(x), x) if V(x) = f"(x\x).

We prove a result which is motivated by a result of Jones and Parry [10] for

continuous and compact extensions.

Proposition 4.2. Let (X, S, u) be a smooth connected compact manifold with p a

C°° probability measure on X. Let /G Diff°°(A~) be an ergodic diffeomorphism.

Suppose there exists an element which is not a coboundary in the set

6= { <i> G C°°(X, R) I </> = tj - 7) ° ffor some Borel map tj: X ^ R )

(where the closure is taken with respect to the  C°°  topology).  Then  the set of

coboundaries is meagre in Q.

Proof. The proof is similar to that of [10]. We consider 6 as a complete

topological group under pointwise addition and with respect to the C00 topology. If
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we let

E — {</>: X -» R | (j> is a Borel map and § — <j> ° /= h a.e. for someh E Q},

and identify two functions in E if and only if they are equal u-a.e., then we see that

E is a group under pointwise addition.

We define the map L: E -» 6 by setting L(<j>) = <i> — <i> ° /. We see that L is a

group homomorphism and kerL = constant maps s R. We now define a metric on

£by

/<f>.   —  Ö91 + u  _^ i^+ll^i -¿*zll,    for all<*»,,<?>, G £;

then we see that E is complete and separable with respect to SR, and that L is a

continuous group homomorphism.

Using the Open Mapping Theorem, and the assumption that there exists \p E G

such that \p G image L, the proposition is proved.

Remark 4.3. Under the assumption that there exists at least one element which is

not a coboundary in 6, we will prove that there is in fact a dense Gs of elements in C

which contain all of R in their essential range; i.e. there is a dense Gs in 6, call it &e,

such that if <j> E &e, then the skew product given by F: X X R -« X X R, where

(x, y) H» (fx, v + <i>x) is u ® m-ergodic. We begin with an easy lemma, whose proof

is similar to [16, 9.6].

Lemma 4.4. Let (X, S, u) and f be as in 4.2. The set &e = {</> G C°°(X, R) \ F:

X -> R defined in Remark 4.3 is p ® m-ergodic} is a Gs.

Proof. By Theorem 4.1, Se = {<¡> E C^X, R)\E(<t>) = R}. Let §0 denote a

countable, dense subalgebra for X. Let {A,},6N be a dense sequence in R. Fix any

element B E §0 and any number ß E {A,},eN. We claim that for every fixed 5 > 0

and e > 0 the set

U(B,ß,e,8)

= Ue C°°(A\R)|   sup |i(fin F-'fin (x: <^(iV, x) G iß - e, ß + e)}) > o]
1 KE[/1 -1

is open in C°°( A", R) with the C°° topology.

(Proof of claim. Clearly, for fixed 77, the map </> h» 2"=q </> ° /' is continuous in

C°°(A",R) with respect to the C00 topology. We recall that Vx =fn(x)x for some

tj G Z and for u-a.e. x G X. By [16, 2.6], a^(K, x) = a^,(n(x), x) = 2"io)_ ' <í> ° fix).

Therefore by continuity, we can find 0 > 0 small enough s.t. \\<j> — QW^ < o impHes

that u{x: | a^(V, x)\<e} = u{x: | a^(V, x)\< e}.) Then

H    D uiß,ß, 1, ^) = {^> G C-(A-, Ä) I ß E EM),
ßGög      m

and finally we have

= n   fi   n£AÍA,xíf¿,^) = {#ec-(jr,ii)|^) = R},

which proves the proposition.
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Remark 4.5. Since GcC°°(A",R) is a closed subgroup, the set &e= {<¡> E

CX(X, R) | E(<¡>) = R} is also a Gs. It is easy to see that the set &e is dense in 6 if it

is not empty. For if there exists an element ^ G &e, then by adding a suitable

coboundary to \p we can find another element of Se arbitrarily close in the C00

topology to any £ G G.

In the next lemma we will prove that if there exists an element \p E G such that

EW) = {«Mnsz f°r some X > 0, then there exists an element \p G Se.

Lemma 4.6. Let (X, S, u) and f be as in 4.2. Suppose there exists an element \p E G

such that E(ip) = {nX}nezfor some X > 0. Then Se is a dense Gs in G.

Proof. Since X E E(i), we have for all B E S, p(B) > 0 and all e > 0,

sup pÍBíl V~XBC\ [x: \a^(V, x) -\|<e}) >^p-,

as proved in [16].

We can choose an irrational scalar c G R, 0 < c < 1, such that ß = cX, and X and

ß are rationally independent. Then for all x G {x: | a^(V, x) — X \ < e}, we have

n(x)—\ n(x)—l

ac^iV,x)=    2    c*o/'(x) = c   2    *°fix),
i=0 /=0

for some t7(x) G Z, so | ac^(V, x) — ß \ < e as well. Let \p = cxp. Thus ß E E(\f). By

adding suitable coboundaries to \p, we see that the set {<j> E G\ E(<(>) 3 {nß}neZ} is

dense in G, and the proof of Lemma 4.4 shows us that it is in fact a Gs. Similarly, we

have that J7X = (<i> G G\ E(4>) 3 {nX}neZ} is a dense Gs. Then Ux D Uß is also a

dense Gs in G, and since the set of essential values for <$> E G forms a closed additive

subgroup of R, X E E(<f>) and ß E E(<j>) imply that E(<¡>) = R since X and ß are

rationally independent. Therefore the proposition is proved.

We have verified the existence of a nonempty set Se if there exists \p E G such that

E(\¡/) = R or {nX}n£Z. The only remaining possibility is that every element <j> E G

which is not a coboundary satisfies E(<¡>) = {0, oo). In Theorem 4.8 we will show

that even under this assumption we can construct elements in &e. This theorem is

sufficient to ensure that type III0 diffeomorphisms of compact manifolds have

ergodic real Une extensions, which is what is needed to extend type III0 diffeomor-

phisms to arbitrary manifolds.

We first prove a proposition which is necessary for the construction in Theorem

4.8.

Proposition 4.7. Let (X, S, u) be a smooth paracompact connected manifold with u

a smooth a-finite measure on X. Let f E Diff°°( A") be a p-ergodic diffeomorphism. We

denote by S0 a countable dense subalgebra o/S, and G is as in 4.2. Suppose there exists

<j> E G such that </> is recurrent and E(<¡>) = (0, oo}. 77ie77 there exists a set ^ C G,

such that ¥ is a dense Gs in G with respect to the C00 topology and every element

\p E ^ satisfies the following condition:

For every e > 0, for every M E R+ , and for every B E S0, there exists </> G G with

\\<¡>\\x < 1 andE(<t>) = {0,oo}, and VE [f]suchthat

p(Bn V~xBn {x:|a^(F,x)|<e} n {x: \a^(V, x)\> M}) > p(B)/2.
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Proof. We choose a countable dense set {</>,},eN in the unit ball of G, where for

every i E N, £(<f>,) = (0, 00} and <>, is recurrent. We choose a countable dense set in

the full group of /, denoted {Vk}k(Els. Let M E N denote a positive integer. We

define the set

A(B,M,e,l,j,k,i)

= ^EG\p(BnVkxB<l {x:\a+iVk,x)\<e} n [x\aM(Vk, x)\> m})

>(l-j)u(fi).2-1.

By the continuity of t|/, and using techniques from 4.4 we can show that for each

fixed (B, M, e, I, j, k, i) the set A(B, M, e, I, j, k, i) is open in G with respect to the

C00 topology.

We also claim that T(B, M, e, I, j) — Uk UtA(B, M, e, I, j, k, i) is open and

dense in Q. Clearly it is open, and it is dense because each r(.ß, M, e, I, j) contains

the coboundaries. To show this, fix e0, M0, B0, j0 and l0. Suppose \p E G is a

coboundary. Then choose any <j>0 E G which satisfies E(<f>0) = (0, 00 } and \\<¡>0\\ x/j0

< 1. Since 4> is a coboundary we write i/> = tj — tj ° /where tj is a Borel function on

X, and we find a set D0 C B0 such that | tj(x) — -q(y) |< e0/4 for all x, y E D0.

Since 00 G E(<j>0), we can find an integer/? such that

p(d0 nfpD0 n {x: I a+o/jo(p, x)\>M0})> 0.

Using the exhaustion argument method of [15, 9.4], we can find an element Vk E [/]

such that

p[BCi VkxBn {x: \a^Vk,x)\<e0} n {x: \a*o/joiVk, x)\> M0})

>(i-^)u(t90)2-'.

This proves that rp E T(B0, M0, e0, l0, j0).

We now define * = nBeSo DM De D, Ply. T(B, M, e, I, j) (where e G {er}reS is

a countable set such that er < 1/r).

Clearly "& is a dense Gs, and it remains to show that \p G ^ satisfies the

hypotheses of the proposition. If >p G ^, then for every er > 0, for every MEN, for

every B E §0, and for every j, I E N there exists <i>, G C, Ei<f>¡) — {0, 00}, <¡>i is

recurrent, and there exists Vk E [/] satisfying

p[bo VkxBC\ {x:\a^(Vk,x)\<e} n (x: |a4(//(K4, x)|> ilf})

>(l-))u(5).r'.

This concludes the proof.

We make ^ into a complete metric space by defining a metric on ^ given by

Ac(<f>l><f>2) =11*1 - fcIL +«U*1>*2)>

where dx(<¡>x, </>2) is defined in the following way.
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Let di<j>, A) = inf^g^, || <j> — \p \\ x for any set A C G. We index the countable set of

sets r(v3, e, M, j, k) by s E N, say. Then we define

dsi4>i,4>2) -
1

¿(>„r;)    ¿(fc.r;)

where Tsc denotes the complement of the open set r, = TS(B, M, e, I, j).

Finally we let </«,(<*>„ <t>2) = 2™=x2~sds(<t>x, <t>2)/(l + ds($x, 4>2)). An easy calcula-

tion shows that Dx is a metric on <k, and that ^ is complete with respect to Dx.

We are now ready for the main theorem of this section.

Theorem 4.8. Let (X, §, u) andf E Diff°°( A") be as in 4.7. Suppose there exists an

element <j> E G which is recurrent and not a coboundary. Then ¡&e is a dense Gs in G with

the C°° topology.

Proof. By 4.4-4.6 it suffices to assume that every element of G which is not a

coboundary satisfies E(<¡>) = (0, oo}.

Let S0 denote a countable, dense subalgebra of X We fix an element B E §0,

p(B) > 0, and we choose and fix any e > 0.

We will construct ^ G G and V E [ f ] such that

p(BCl V~xBCi {x: \a^V, x) - l\< e}) > p(B)/2.

Then, using the notation and methods of Lemmas 4.4-4.6 we see that

U(B, I, e, p(B)/2) is open, dense, and nonempty in G (in the C°° topology) for each

B E S0 and e > 0, and therefore the theorem is proved.

A. Setting up the construction. Let ^ be defined as in 4.7. We start the induction

process by defining <i>0 — 0, B0 — B, M0 = 1, and e0 = e/2. Since (f>0 G ^ we apply

4.7 to obtain px and <J>, satisfying

(4.1)   u(4n/-"730n {x:\a<t>o(px,x)\<e0} n {x: \a^px, x)\ > M0}) > 0.

Since the set ^ is dense in G, we can perturb <¡>x slightly if necessary so that ^Et,

and (4.1) still holds. We choose

Bx CÉ0nf-P'B0n {x:|aj/>,,x)|<e0} n {x: |fl+1(/>„ x)\ > M0)

such that Bx nfPlBx= 0. Choose c, < 1 satisfying

r(Ê0nf-*É0n (x: \a^oipx,x)\<e0} n  {x:|aCiJ/>,,x)-l|<eo})>0.

We defined, G[/]by

fp'x ifxGfi,,

v\(x) = ■ f~"'x HxEf"Bx

. x otherwise,

and let Bx = B0\(BX n fp,Bx). We define f, = cx$x.

B. Thejth stage. We will define inductively, </>,. G G, llfyll« < 1, cy G R+, Sj E N,

My G R+ , ey > 0, Bj C t?, t5, C B, p} E N, f, G ¥ and «v. G [/] satisfying:
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i2)j p(Êj_x n /-"*,_, n {x: | acAipj, x) - K e,} n {x: | atj (Pj, x) |< e,})

>0,

(3), D„i$j_uSJ)<ej,
(4)j Cj \\lfl-0« <¡>, Il M < £(2>+2')"1 for 0 < / <j - 1,
(5), Pj >Pj-u tj = e(V+x)-x, Mj > M7_„

(6)7 tS, C Bj_x n/-*4_, n {x: | acA(/>,, x) ■* 1 |< Ej}, p(Bj) > 0, and B} n

/^ = 0. We define B¡ = 5,-1\(^ U /'^)-

>,(x)     ifxefik,fc</-i,

fix)       iîxEBj,

f"jix)    iixEfJBj,

. x otherwise.

r,(x) =

C. The induction step. Assume we are at the/th stage. First we choose sj+x G N

large enough so that ~S,f=s+t2's < e(2J+3)'x. Then we define y, —yJ+x —

mms<Sj+¡dttj, T/). Since £, G *, y,+] > 0.

Now we choose Mj+X > max(My, ejlyJ+xSj+l2*ipj). Using (1). and Proposition 4.7

we can find pj+, > pj and ^eS such that II <f> II „ < 1, and for e;+( = e, • 2'x we have

(4.2)

p(Éjnf-Pj-'Éjn [x: \aSj(pJ+ux)\<BJ+1} n {x: \a<>ipj+x,x)\>Mj+x})>0.

Let <j>J+x = </>. We choose cy+, < l/MJ+x such that

(4.3)   u(i, n/-';+'£, n {x: |afy(/>,.+„x)|<e,+,}

n{^:Ky+lVl(^+,^)-i|<£y+,})>0.

We define the set

2?,+ 1 Ç BjClH^Bj n {*: |^(^.+ l, x)|< e>+,}

such that u( BJ+, ) > 0 and BJ+, n /'y+ lBJ+l= 0.

We can assume that fy + cy+1^)/+, G 4% because if not we could have chosen cJ+x

or <j>j+, arbitrarily close by such that (4.2) still holds and f7 + cJ+ ,<>■+, G ^ (since SP

is dense in 6). Define ¿}+, = ¿} + cy+rfy+1 = 2/=,' c,</>,.

We must now check to see if (l)y+, through (7) •+, hold.

For (7)y+1, we just define

Vkix) iîxEBk,k<j,

V.   (x) = -J"*<x)      iixEB^

J+] \f-pj+iix)    iixE f^'BJ+x,

. x otherwise.

By our construction, (1)7-+1, (2)7+1, (5)y+1, and (6)7+1 obviously are satisfied.
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To check (3)-+, we proceed as follows:

oo dice)

i=i

= \\r-t    II     i   y' ?-5    ^(^-'^+i)      ■       Ç      ?-,    ^(^^7+1)
0+lll° l+^fy.fy+.)     .-¿I+l       I'+^.fj.+ i)

s=l

J=l ' TajU;'V+l/        »=J/+i + l

s7+'        diet:   )
c     We     II    +  y  2"* —_Li*¿iÍ¿±LL_ + e(2J'+3)+ 3\-l

by our choice of sy+1.

We have that

dÁCj>Sj+\)
1

1

\diij,r¡)     «/(f„r;)+||f,-r,+ I||(

since I di$j, T/) — ¿(f/+1, r/) |< ||^ — f,-+1 II«, for each s, so the denominators can

vary by at most || £• — £•+, || 00, and now we have

<*j-y}+l-2-+'-pïl-sJïl<e-y}+l-2-*J-p;l-sJïl

and recalling our choice of y+, > 0, we have

v      0+1    e    z •V+l    / 7/+1    «    z J/+1
A.(rJ.f/+i)<.-2-*+ 2 ^-^- -^i/n

j=i v2 v2
7/+1

+ E.2-0'+3)

< e • 2-5^ + sJ+x(e ■ 2<J+\ll) + e ■ 2^+3>

< e • 2~5J + e • 2-^+6' + e • 2-<;+3>

<£-2-0+3) = £y+1.

We check (4)-+1 as follows. Clearly

p-i

2 v.°/''"7+1
1=0

Cj+l-Pj-hj+,\\x   sinceO</</,

< e ; 2"0+ !) • 2"(4y) < £ - 2~u+ X+2I).

D. Taking the limit. We let i/y = 2J1, «:,$,. Since (3), holds for all/ > 1, «// is the

limit of a Cauchy sequence in ty. More precisely, given any 5 > 0 (we might as well
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assume 0 < S < e), we choose j0EN such that 2"=7-o 2 ■>< o/e. Then for any

m > n >j0 we have

m—n—l m—n—l

Aoik.L)*:    2    Di$H+k,$n+k+l)<    2    «■,+*+!,   by (3),,
i=0 k=0

Now

m—n—l m — n—l oo

2    en+k+x^e    2     2-<«+*+')<e2   2-*<Ä>
k=0 k=Q k=j0

soDco(fn>U<*-
Therefore ^ G ^, since ^ is complete. We can apply 4.7 to \p and continue the

induction process. Then, using an exhaustion argument, we obtain a sequence of sets

B¡ such that Bi n Bj = 5, (1 /^¿f, = 5, D /'<£,. = Ä, n /*<£,. = B} n /^fi. = 0, for

all i t¿/, and such that u(U/eN(5, U /''2Ï,)) > p(B)/2. We also obtain F G [/]

such that

(4.4) V(x) =
Vk(x)    ifxEBkUf^Bk,

otherwise.

For all x G Bj, we have V(x) = f'(x), and this imphes for x G 2^.,

Prx i   oo \

<|flf (^,x)|+|flcA(/»,,*)|+ 2     2 c,*,\of<ix)
k=0   \ 1=7+1 /

<£,.+  !+£,.+ 2 c,J 2 *>•/*(*)
i==/+l       \ £ = 0

by (2)7, and now by (4)j,

ej+ 1 +£y-+    2   £(2'+2<'-1»)~1
'=7+1

< Bj + 1 + e, + e/8 < 1 + (5/8)e.

From the above and (4.4), an easy calculation shows that

p(B n V-XB n {x: | a¿V, x) - 11< e)) > u(/3)/2,

and we are done.

We should point out that 4.4 is true for noncompact X, and the hypotheses on

(A", S, u) in 4.7 are sufficient for 4.8 to be true. We have proved the existence of a

dense Gs of G whose elements give ergodic extensions for /; we now need to see

which of these skew products have the same ratio sets as /. We will give a necessary

and sufficient condition, but first we will recall some easily proved facts.
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Lemma 4.9. Let (X,%,p) be as in 4.7 and let /G Diff°°(A") be any ergodic

diffeomorphism of X. If we consider the skew product F^ defined by

F^.XXR^XXR,       ix,y)y+ifx,y + $x)    where<t>EG,

then r*(F+) C r*(f).

Proof. Let F = Fr By definition, r*(F) = E(log(dp ® mF~x/dp ® m)) where

(dp® mF'x/dp ® m)(x, y) denotes the Radon-Nikodym derivative of the measure

u ® m(F~x) with respect to u ® m at the point (x, v) G X X R. This implies

¿g ® mF~

dp® m
(x, y) = det DFix, y) = det

= dfix) = ^ix).

dfix)

d<t>ix)

From this we see that X E r*(F) => X E r*(f).

Remark 4.10. Given two cocycles on X, <¡>x, <¡>2 G C°°(Z X A", R) we can define a

cocycle (</>,, <J>2): Z X A"-* R2 by (<(>x,<f>2)(n, x) = (<f>,(n, x),<p2(n, x))Vtî G Z, x G

X. We compactify R2 by adding lines of the form (a, oo), (a, -oo), (oo, a), (-oo, a)

for all a E R, plus four points at (-00,00), (00,00), (00,-00), (-00,-00). Then

(X, ß) G £(<J»,, <f>2) means that for every B E S, p(B) > 0 and for every £ > 0, there

exists 77 G Z such that p(B r\f—B n {x: | (</>,(ti, x), <i>2(«, x)) - (X, ß) |< e}) > 0,

or equivalently, p(B nf~nB n (x: |<J>,(n, x) - X\< e} D {x: \$2(n, x) - ß\< e})

>0.

It is clear that (X, ß) E E(<j>x, 4>2) imphes that X G E(<j>x) and ß E E(<p2), but the

converse is not necessarily true. We give an example of the usefulness of considering

two cocycles together in the next proposition.

Proposition 4.11. With (X, S, u) an m-dimensional manifold and f as in 4.7, we

assume further that fis of type III0 and that the map F^ defined in 4.9 is u ® m-ergodic.

Then (0, 00) G Ë(4>, log(dpf~x/dp)) if and only if F^ is of type III0.

Proof. (=») Assume that (0,00) G E(<$>, log(dpf'x/dp)). By 4.9 it suffices to show

that 00 G r*(Fç). Let C E S X í C X X R be such that u ® m(C) > 0. Choose t0 to

be a point of density of C. Then there exists an m + 1-dimensional cube R C X X I

of volume 8 > 0, centered at r0 = (tx, t2) such that u ® m(R (1C)> .995. By

setting B = UX(R n C), we see that u( 5) > 0. Since(0, 00) G E(<p, log( dpf ~x/dp)),

there exists n G Z such that

u   B df-"B H \x:

This implies that

2 WW
1=0

<8l/(m+l)l   nix: 1        ¿r»/"/    Xlog^-(x) >M\\ >0.

p®m\(RnC)n \ix,y)ERnC: \ fnx, y -  2 W(*)| GÄHC|
1-0

n-l

nUx,y) log-^(x) >M\\ >0.
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Therefore oo G r*(F).

(<=) Suppose that F is of type III0, i.e. r*(F) = (0, oo}. Then for every set

C C S X í, u ® 777(C) > 0, and for every M E R+ , we can find an integer n such

that

(i®mcnr"cn Ux,y):
.     dp ® mF" ,       .

>MM >o.

Since   log(í7« ® mF"/dp ® m)(x, y) = log(dpf "/dp)(x),   and   since   F'nC =

{(f'"x, y - l"Zo<t>° fix)), (x, y) E C}, then for any B E §, p(B) > 0, we just

choose C = B X (-e/2, e/2).

Then clearly there exists tj G Z such that

u   Bnf-"Bn \x: "l** fix)
/=o

<£r  H {X »08 ̂-W > A/M >0.

This imphes that (0, 00) G £((/>, log(dpf~x/d[i)).

Finally we prove the existence of a dense Gs of elements in G which satisfy the

hypotheses of 4.11. We assume X and / are as in 4.7.

Proposition 4.12. Let ip: X -* R be_a fixed (Cx) cocycle for f with £((/>) = (0,00}.

77ií?w rTie íeí 31 = {<¡> G (2| (0, 00) G Ë(<j>, \f/)} is a dense Gs in G.

Proof. Let §0 be a countable dense subalgebra for X. Choose any fiE§0, and fix

M G R+ . Since 00 G Ë(<j>), there exists V G [/] such that

n(B n K-'B n {x: | a¿V, x) |> M}) > u(7?)/2.

If we define the set

&ÍB, M, e)= UeG\ sup u(y3n VXB n {x: \a^V,x)\>M)
1 vsif]

n {x:|a^(F,x)|<£})>p(y3)/4],

using the same argument as in Lemma 4.4 we see that it is open for fixed B, M, and

£. Now

% = n n n &(b,m,±]) = [<t>EG\(o,oo)EE(<j>,*)}.
D*=Z. -_^T1VT      lY^VT \ "*   'seS0 mEN  MEN

Clearly this set is a Gs. To show that it is dense, we observe that the coboundaries

are dense in G and obviously He in 21.

Theorem 4.13. With X and fas in 4.7, suppose further that fis of type III0. Then the

set G0 = {<¡> E G\ (x, y) t-» (fx, y + (¡>x) is of type III0} is a dense Gs in G.

Proof. By 4.8, we have that 8e is a dense Gs. By 4.11 and 4.12, we have 31 is a

dense Gs. Then Se D 3Í is a dense G$ of G and 60 = &e n 31.

Corollary 4.14. There are uncountably many C°° type III0 diffeomorphisms on

T" X R", for every n>l,p>0.
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Proof. For n = 1, p = 0, we use Katznelson's construction. By 4.2, the result is

true for all tj > 1 when/7 = 0. By repeated applications of 4.4-4.13 and an induction

argument, the corollary is proved.

Remark 4.15. All of the results from this section hold true for diffeomorphisms of

type HIX, with 0 < X < 1. In some sense, type IHX transformations are better

behaved than type III0; there is only one type IIIX ergodic transformation, up to

weak equivalence, for each 0 < X < 1 which is not true in the III0 case. In particular,

using obvious modifications of the preceding theorems, we can prove the following.

Theorem 4.16. For every X, 0 < X < 1, there exists a C°° type IIIX diffeomorphism

of T" X RP, for every n>l,p^0.

5. Type IIIX, 0 < X < 1 diffeomorphisms of arbitrary manifolds. Herman proved in

[7] that every connected paracompact manifold of dimension > 3 has a C°° type III,

diffeomorphism on it. He used a nice method for exending maps on T2 X Rm2 to

any connected paracompact m-dimensional manifold for m > 3; this procedure was

introduced by Anosov in 1974 [5]. We will outline the method here without proof,

also including some modifications for our particular circumstances.

Lemma 5.1. Let X be an m-dimensional C°° paracompact connected manifold and p a

C°° measure on X. Then there exists an open set VEX, diffeomorphic to Rm and

satisfying p( X — V) — 0.

Lemma 5.2. Ifm>3, there exists an open set U ofRm diffeomorphic to T2 X Rm~2

such that u(Rm - U) = 0.

Lemma 5.3. There exists a C°° type III0 (IIIX, 0 < X < 1) flow on T2 X Rp for every

/JEN.

Proof. We apply Corollary 4.14 (Theorem 4.16) to obtain a C°° type III0 (IIIX,

0 < X < 1) diffeomorphism of Tx X Rp, then take the suspension flow.

Lemma 5.4. Let U be an open set of Rm, and let ft be a C°° flow of type IHX,

0 < X *£ 1, on U. Let x be the infinitesimal generator off, i.e., x is defined by

H, x
Jt-{x)

1 = 0
= X° ftix).

Let <f> G C°°iU, R), </> > 0, be defined such that the vector field <t>x is globally integrable

and defines a flow gt. Then the flow g, is weakly equivalent to ft.

Lemma 5.5. There exists a C°° type IH0 (IIIX, 0 < X < 1) flow on every paracom-

pact, connected manifold X of dimension m > 3.

Proof. By 5.1 and 5.2 we have an open set U C X of full u-measure and such that

U is diffeomorphic to T2 X Rm~2. Let/ be a type III0 (IHX, 0 < X =s 1) flow on U

with infinitesimal generator x; such a flow exists by 5.3. Let <i> G C°°(X, it) be such

that </> > 0 on U, <i> = 0 on X — U, and such that the vector field

>(x)x(x),    iîxEU,
Yix)

'0, if x G X -U
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is C°° on X and globally integrable, thus defining a flow, /, on X. The flow / is of

type III0 (IIIX) by 5.4.

Corollary 5.6. There exists a Cx type III0 (IIIX, 0 < X < 1) diffeomorphism on

every connected paracompact manifold of dimension > 3.
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