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DOMAIN BLOCH CONSTANTS

BY

C. DAVID MINDA

Abstract. The classical Bloch constant % is defined for holomorphic functions /

defined on B = {z:|z|< 1} and normalized by |/'(0)|= I. Let R, denote the

Riemann surface of /and B¡ the set of branch points. Then $ can be regarded as a

lower bound for the radius of the largest disk contained in R,\B{. The metric on R,

used to measure the size of disks on Rf is obtained by lifting the euclidean metric

from C to Rf. The surface Rf can also be regarded as spread over B and the

hyperbolic metric lifted to R,. One may then ask for the radius of the largest

hyperbolic disk on Rf\Bf. A lower bound for this radius is called a domain Bloch

constant. The determination of domain Bloch constants is nontrivial for nonconstant

analytic functions /: B -» X, where X is a hyperbolic Riemann surface. Upper and

lower bounds for domain Bloch constants are given. Also, domain Bloch constants

are given an interpretation as a radius of local schlichtness.

1. Introduction. Let/: B -> A'be an analytic function, where B = (z: | z |< 1} and

A' is a hyperbolic Riemann surface; that is, B is the universal covering surface of X.

Let/*(0) G [0,1] denote the "derivative" of/at the origin relative to the hyperbolic

metric on both B and X. For a G (0,1] we demonstrate that there is a positive

constant 9", x(a), not depending on/, such that if fx(0) > a, then/is locally schlicht

in some hyperbolic ball of radius log(l + <SX x(a))/(\ — 9", x(a)). Actually, we

refine this result by introducing constants 9"m x(a), where the positive integer m

depends on the multiplicity with which / assumes values. We obtain a lower bound

for <Sm x(a) by making use of a differential-geometric method that was introduced

by Ahlfors [1] and refined by Heins [5]. The method involves an extension of

Schwarz' lemma to certain metrics. In case I=B we obtain lower bounds for

^mBva) by suitably generalizing the example of Ahlfors and Grunsky [3] that was

used to give the conjectured sharp upper bound for the classical Bloch constant.

Finally, we mention the open problem of obtaining bounds on the constants SmjA-(«)

which have the property that if fx(0) > a, then/is schlicht in some hyperbolic ball

of radius log(l + S„,jjr(a))/(1 - SmX(a)).

2. Preliminaries. In this section we establish some notation and terminology that

will be employed throughout this paper. We also establish one lemma.

Definition. Let X, Y be Riemann surfaces. For m E Z+ U {oo} let ^m(X, Y) be

the family of all nonconstant analytic functions/: X -> Y such that for any q E f(X)

each root of / = q is either simple or else has multiplicity at least m + 1.
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Clearly, <SX(X, Y) is just the family of all nonconstant analytic functions/: X -» Y

and 'Sji^X, Y) is the subfamily of locally schlicht analytic functions. Clearly,

{9^(X, T)}"=1 is a decreasing sequence of families of functions and

00

'SJX,Y)= n$m(X,Y).
m=\

We generally take X = B in this paper. The families 'Sj^X, Y) were also considered

in [9] and [10].

Definition. For z, w E B let

o(z,w)=\(z-w)/(\-wz)\.

Also, for z G B and r E ( 0,1] let B(z, r) = {w G B: 5(z, w) < r}.

The function Ô defines a distance on B that is invariant under the group Aut(B) of

conformai automorphisms of B [12, pp. 510-511]. The Poincaré hyperbolic distance

d on B is related to 8 by

d(z,w) = log(l +Ô(z,w))/(1 -8(z,w)),       8(z,w) = tanh(d(z,w)/2).

We find it more convenient to work with the distance function 8 in this paper. Of

course, due to the relationship between d and 8, any result involving 5 can easily be

translated into one involving d.

Definition. Let A' be a Riemann surface and / G ^,(B, X). For z G B let t(z, f)

denote the maximum value of r E (0,1] such that/is locally schlicht in B(z, r); set

t(z, f) = 0 in case / is not locally schlicht in any neighborhood of z. Let t(f) —

sup{i(z,/): z ËB).

It is not difficult to show that t(z, f) is a continuous function; in fact, | t(z, f) —

t(w, /) | < 8(z, w). Also, t(z, /) = 1 for all z G B if and only iff G fJB, X).

Finally, we require certain facts about metrics on Riemann surfaces. We briefly

state these facts; for details the reader should consult [9] which also contains

references to other sources. Given a hyperbolic Riemann surface X, let \x(z)\dz\

denote the hyperbolic metric on X. It has constant curvature -1. In particular,

AB(z)|<fe|=2|«fc|/(l - |z|2).

Given f E ^SX(X, Y), where Y is a hyperbolic Riemann surface, let f*(XY(z) \ dz \)

denote the pull-back to X via / of the hyperbolic metric on Y. This defines a metric

on X. If X and Y are plane regions, then

f*(\Y(z)\dz\)=\Y(f(z))\f'(z)\\dz\.

For/ G <F,(B, X) and a E B define

f*(Xx(z)\dz\)

1  {a) XB(z)\dz\       ■

This measures the local distortion of / at a relative to the metrics Xx(z)\dz\ and

AB(z) | dz | . In case A" is a hyperbolic plane region,

fX(a) = {Xx(f(a))\f'(a)\{\-\a\2).

The principle of hyperbolic metric implies that fx(a) G [0,1] and/*(a) = 1 if and

only if /is an analytic universal covering of B onto X [8].
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Definition. Let Zbe a hyperbolic Riemann surface. For a G (0,1] and m G Z+

U{oo} let

g^C«) = inf.{*(/): /£ 9m(B, X) and/^(0) > «}.

Clearly, 9" ^(a) < 1 and it is not difficult to show that <Sm x(a) is an increasing

function of both m and a. Trivially, 9^ x(a) = 1 for all a G (0,1]. From Theorem 2

it will follow that ^„^(ol) increases to 1 as m tends to oo for each fixed value of a.

The number 9m x(a) is called a domain Bloch constant; a justification for the use of

this name is presented in the next section. The main purpose of this paper is to give

bounds for 9m x(oc). We shall obtain a lower bound for 9"m x(a) by making use of a

differential-geometric method that was introduced by Ahlfors [1] and refined by

Heins [5]. We shall make use of the notion of an ultrahyperbolic metric; this concept

is due to Ahlfors [1,2]. The more general concept of an SK metric was introduced by

Heins [5]; we shall also make use of SK metrics.

Lemma 1. Suppose that p(z)\dz\ and a(z)\dz\ are positive C2 metrics on a plane

region Q which have curvature at most -1. Then the metric px(z)ax~\z) \ dz \ has

curvature at most -1 for X E (0,1). If px(z)ax~x(z) \ dz \ has constant curvature -1 in

fi, then p(z)\dz\= a(z)\dz\ and these metrics also have constant curvature -1 in ß.

Proof. Set t(z) \dz\= p\z)ox~x(z) \dz\ . The curvature of t(z) | dz | at z is

K(z) = -(Alogr(z))/T2(z).

The curvature condition on both p(z) \ dz | and a(z)\dz\ is equivalent to

Alogp(z)>p2(z),       Alog o(z)>a2(z).

Thus,

Alogr(z) = AAlogp(z) + (1 - X)Moga(z) 3* Ap2(z) + (l - A)a2(z).

Now, the inequality of the arithmetic and geometric means gives

Ap2(z) + (1 - A)a2(z) > p2X(z)a*x-x\z) = t2(z),

with equality if and only if p(z) — a(z). Thus

AlogT(z)3=T2(z),

or t(z) I dz | has curvature at most -1. If t(z) | dz | has constant curvature -1, then

we have equality in the arithmetic-geometric mean inequality and p(z)|dz| and

a(z) | dz | both have constant curvature -1.

3. Relationship to usual Bloch constants. Suppose / is holomorphic and noncon-

stant in B. Let Rf denote the Riemann surface of/. Specifically, Rf = {(z, f(z)): z

G B} is the graph off. Define

ttx: Rf —* B, w2: R¡ —* C,

iT\{z,f{z)) =z,     v2{z, f(z)) =/(z).

Rf is endowed with the unique conformai structure that makes both ttx and tr2 into

analytic functions. Note that mx is actually a conformai mapping of Rf onto B.

The functions mx and tr2 can be used to induce metrics and distance functions on

R,. Let Ac(z) | dz | = | dz | denote the euclidean metric'on C. We use this notation
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even though C is not a hyperbolic region. Set

px(z) | dz | = irj*(AB(z) | dz |),       p2(z) \dz\= ir2*(Xc(z) \ dz |).

Then px(z) \dz\is the hyperbolic metric on Rf. Let Bf = {(z, f(z)): f'(z) — 0}; Bf is

the set of branch points of Rf when viewed as spread over C. The metric p,(z) | dz \

induces a distance function d, on Rf that is compatible with the topology. For

(z, f(z)) E Rf\ei r¡(z, f(z)) denote the minimum of the distance from (z, f(z)) to Bf

and the distance from (z, f(z)) to the ideal boundary of Rf relative to the distance

function dr Then t(z,f) — tanh(\rx(z, f(z))). Also, when we view Rf as being

spread over C, r2(z, f(z)) is the radius of the largest unramified disk in Rf with

center (z, f(z)). Let r2(f) = sup{r2(z, f(z)): z E B}. This quantity is involved in

the definition of various Bloch constants [9]. The definition of these Bloch constants

is parallel to the definition of the domain Bloch constants given §2. The only

difference is that the definition of the classical Bloch constants employs the

pull-back of the euclidean metric on the range of the function, while the domain

Bloch constants can be regarded as defined in terms of the pull-back of the

hyperbolic metric on the domain of the function.

4. Lower bound for 9m x(a). We shall derive a distortion theorem which gives an

upper bound for fx(z) in terms of t(z, f) when/ G ÏÏJJi, A") and A" is a hyperbolic

Riemann surface. This will immediately lead to a lower bound for the constant

The proof of the distortion theorem requires the construction of a special metric

of constant curvature -1 that is defined in a deleted neighborhood of an arbitrary

point c G B. We briefly outline the construction of this metric; the reader is referred

to [9] for more details. For R > 0 and m E Z+ let

/  x,', , 2Ä1/<'"+i)|dz|
«m{*)\d*\

(m +  1) I z !'"/('"+') ^2/(m+l) _ i      .2/(m+l)\ -

If pm(z) — Rzm+X, then the metric am(z) | dz | is uniquely determined by the require-

ment that

P*(am(z)|dz|) = AB(z)|dz|.

In particular, this implies that am(z) \ dz | has constant curvature -1 on the punc-

tured disk {z:0 <\z\< R}. The special metric that we require is obtained by

shifting am(z) \ dz | to an arbitrary point in B by means of a hyperbolic motion and

then selecting R appropriately. For c E B let

rc(z) = (z-c)/(l-cz).

Then Tc is a conformai automorphism of B and

i-i?;(z)'2

1 - \z\

where

Tc*(am(z) \dz\) = om(Tc(z))     , '   :\!1   \dz\= Bm{8{z, c))XB(z) \ dz \

(\ - t2)Rx/<-m+x)
a rt\ — _v1      '  >K_ m EZ+

mK   ' (m +   \\(m/(m+l)tR2/(m+\) _ ^/(m+l)) '



DOMAIN BLOCH CONSTANTS 649

Given 0 < t < 1, we select

Rm(T) = r[(m + 2 + mr2)/ (m + (m + 2)T2)]<m+1)/2,       m E Z+ .

Note that t < R„(t) < 1. Let 6mT denote the function 6m with R = Rm(r) and

6mT(z)\dz\ the metric am(z) | dz | with the same choice of R. Our selection of R„(t)

insures that 0 is decreasing on (0, t] and increasing on \r, Rm(T)). The minimum

value of 0mT on (0, R„(t)) is

Öw,t(t) = ((m + 2) + mT2)X/\m + (m + 2)t2)X/2/2(m + 1)t,       m E Z+ .

Hence,

T?(am>T(z)\dz\) = 6m,T(8(z,c))XB(z)\dz\

is a metric of constant curvature -1 defined on B(c, R„(t)) \ {c} C B.

Theorem 1. Let X be a hyperbolic Riemann surface and f E 'SJB, X). If t(f) < t

< 1, then for z E B,

a) /*(z)<i/<u,(z,/)r+i.
Proof. We shall write t(z) in place of t(z, /). The proof will be carried out in a

series of steps. Define

p(z)|dz|=0miT(>(z))AB(z)|dz|.

Let Bj = {z G B: t(z) = 0}. Note that p(z) \ dz | becomes infinite at each point of Bf

and that B¡ is a discrete subset of B. The first step is to show that p(z)\dz\ is a

continuous ultrahyperbolic metric on B \launder the assumption that /(/) < t < 1.

Next, it readily follows that p(z)\dz\ is a continuous SK metric on B \Bf in the

general case í(/)<t<1. The third step is the elementary observation that

/*(A^(z) | dz |) is a continuous SK metric on B that vanishes at each point of Bf. The

fourth step is to show that the product /*(Ax(z) \ dz \)x/(m+2\p(z) \ dz |)('«+i)/(«+2)

is a continuous SK metric on all of B; the exponents are selected so that the zeros of

the first factor and the poles of the second factor cancel at points of Bf to produce a

finite-valued metric on B. Then Ahlfors' lemma [1], as refined by Heins [5], when

applied to this SK metric yields (1) but without strict inequality. The final step is to

establish strict inequality.

(i) We begin by showing that p(z) \ dz | is a continuous ultrahyperbolic metric on

B \Bf under the assumption that /(/) < t < 1. Obviously, p(z) \ dz \ is continuous

since t(z) is continuous on B. We must exhibit a supporting metric at each point of

B\Bf. Fix a EB\Bf-, then 0 < t(a) < t. The definition of t(a) implies that there is

a point c G B with 8(a, c) = t(a) and t(c) = 0. We shall show that

öm,T(o(z,c))AB(z)|dz|=7;*(am,T(z)|dz|)

is a supporting metric for p(z)|dz| at a. Clearly, this metric does have constant

curvature -1. Our selection of c insures that t(z) < 8(z, c) < t for z near a with

equality for z = a. Because the function 6mT is decreasing on the interval ( 0, t], we

conclude that

7?(am,T(z)|dz|)<p(z)|dz|
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in a neighborhood of a with equality at a. Hence p(z) \ dz | has a supporting metric

at a, so it is ultrahyperbolic on B \ Bf.

(ii) The second step is to demonstrate that p(z) \ dz | is a continuous SK metric on

B \B¡in case t(f) < t < 1. Set t„ = t + \/n. Define

Pn(^)\dz\=em4t(z))XB(z)\dz\.

Then part (i) of the proof implies that pn(z) \ dz | is an ultrahyperboUc metric on

B \ B, provided that t„ < 1. This will be true for all n sufficiently large. Now,

p„(z) | dz | converges to p(z) \ dz | as n -» oo, locally uniformly on B \By. It follows

that p(z) | dz | is a continuous SAT metric on B \ 5^ [9].

(iii) Clearly, f*(Xx(z)\dz\) is a continuous metric on B that vanishes at each

point of B,. We shall show that it has constant curvature -1 on B\By. Fix

a EB\Bf. Then / is univalent in a neighborhood of a. Because curvature is a

conformai invariant, it follows that f*(Xx(z) \ dz |) has constant curvature -1 in a

neighborhood of a. Trivially, f*(Xx(z) \ dz |) can be regarded as its own supporting

metric at each point of B \Bf, so it is an ultrahyperbolic metric on B. Consequently,

f*(Xx(z) | dz \) is an SK metric on B.

(iv) From [5, p. 14] we conclude that

a(z) | dz | = f*(Xx(z) | dz \y/(m+2\p(z) | dz l)^«)/^

is a continuous SK metric on B \ Bf. Now we demonstrate that each point of Bf is a

removable singularity for the metric a(z)|dz| in the sense that this metric has a

continuous extension to B and the extended metric is an SK metric on B. Let

a G Bf. Then for z near a we have t(z) = 8(z, a). Thus,

(    (   VU   ,\("i+i)/(m + 2) _  ,       / /•    \ i   ,   ,N\(m+l)/(m + 2)
(p(z)|dz|) - \T*(amX^)\dz\))

= 8(z, a)""Am+2)R(z)(\ dz |)<"'+1>A'"+2>!

where R(z) is continuous at a and R(a) ¥= 0. Also, f = f(a) has a root of order

« + 1 at a, where n> m. We now assume that A" C C. If X is a Riemann surface,

then we perform similar calculations in terms of any local coordinate at the point

f(a). For z near a, we have

f(z) =f(a) + A(z - a)"+X + B(z - a)"+1 +■■■,

where A ¥= 0. Then

\f'(z)\ = \z - a\"g(z) = 8(z, a)"\\ - 5z\"g(z),

where g(z) is continuous and g(a) ¥= 0. Consequently,

/*(A,(z) | dz |),/(m+2) = (A,(/(z)) |/'(*) 11 dz |),/(m+2)

= o(z,a)"/(m+2)F(z)(|dz|)1/(m+2)

where F(z) is continuous and F(a) ^ 0. Then for z near a,

a(z) | dz | = 5(z, a)(""m)/<m+2)F(z)Ä(z) \dz\ .

Because n> mwe see that a(z) \ dz | has a continuous extension to a and vanishes at

a if and only it n > m. Let a(z) | dz \ denote the extension to B. Then a(z)\dz\ is
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continuous on B and an SK metric on B \Bf. Since Bf is a discrete subset of B, we

may now conclude that a(z) | dz | is an SK metric on all of B [5, pp. 9-10].

(v) From [5] it follows that

(2) a(z)|dz|<AB(z)|dz|

and if equality holds at a single point, then o(z) \ dz | = AB(z) | dz \ . From (2) we get

f*(Xx(z) | dz |)(<U/(z))AB(z) | dz |)m+I < (AB(z) | dz \)m+\

or

(3) /*(z)<l/<U^))m+\

for z E B. All that remains is to demonstrate that strict inequality holds in (3). If

equality holds in (3) at some point of B, then equality holds in (2) at the same point.

This implies that a(z)\dz\=XB(z)\dz\ . Let us show that this is impossible.

Consider a G Bf; such a point exists since t(f) < t < 1. From part (iv) of the proof

we conclude that

p(z)|dz|=7?(am,T(z)|dz|)

for z near a, z =£ a. Thus,

f*(Xx(z) | dz \YAm+2Xr:(am,T(z) I dz |)f+ 1)/(m+2) = AB(z) | dz |

in a deleted neighborhood of a, so that the product has constant curvature -1 in a

deleted neighborhood of a. Then Lemma 1 implies that

(4) /*(Ax(z)|dz|) = r*(am,T(z)|dz|)

in a deleted neighborhood of a. This is impossible since the left-hand side of (4)

vanishes at a while the right-hand side becomes infinite at a. Thus, strict inequality

must hold in (3).

Remark. For / G 5,(8, A"), where A" is a hyperbolic Riemann surface, the princi-

ple of hyperbolic metric implies that

f*(Xx(z)\dz\)^XB(z)\dz\    or   /*(z)<l,

with equality if and only if / is an analytic universal covering of B onto X [8].

Because 6m t(t) > 1, Theorem 1 can be viewed as a refinement of the principle of

hyperbolic metric. In particular, for X = B, Theorem 1 refines the invariant form of

Schwarz' lemma. Different refinements of the principle of hyperbolic metric occur in

[8 and 9].

Now we can obtain a lower bound for 9m x(a). Define

hm(r) = l/0m>)>       mEZ+.

Then hm is strictly increasing on [0,1], fixes 0 and 1 and

/,„'(«) = «
m(m + 2)

2(m + \f - (m2 + 2m + 2)«2 + 2(m + l)[a4 - (m2 + 2m + 2)«2 + (m + l)2]
211/2

1/2

Theorem 2. If a E (0,1] and X is any hyperbolic Riemann surface, then <Sm x(a)

/im1(a1/(",+ 1>).
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Proof. If this result were false, then there would exist / G tfJB, X) such that

/*(0) > a and x = t(f) < /i;1(a'/(m+1)) < 1. Now if we apply Theorem 1 to the

function/at the point z = 0, then we obtain

a <f*(0) < 1/<U'(0, /))m+1 < l/<UOm+1 = hm(T)m+l < a,

a contradiction.

Remark. For a = 1 and any m EZ+ this theorem is sharp. It gives <Sm x(\) >

h-x(\) = 1. But trivially, <Sm x(\) < 1, so 9^(1) = 1. But this result is trivial. If

/G IHJB, X) and/*(0) = 1, then/must be a universal covering. Hence,/is locally

schlicht and t(f) = 1. Also, for a fixed a G (0,1], limm^00/!m1(a1/(m+1)) = 1. This

agrees with the fact that ^^(a) = 1.

A lower bound for 9", B(a) is implicit in the work of Landau. He proved that if/is

a holomorphic self-mapping of B and |/'(0) \> a, then / is univalent in B(0, p),

where p = a/(\ + (1 — a2)x/2). This result is contained in [6, p. 37] and is sharp. If

B(z) = z(a - z)/(\ - az), then B'(0) = a and B'(p) = 0. This implies that t(0, B)

= p. Also, this result implies that if /: B -» B is analytic and /B(0) > a, then

t(Q, f)> p. Therefore,

?riiB(a)>a/(l + ^l-a2).

However, direct calculation shows that

Ar'fV«) >ol/{\ + /l -a2),       a G (0,1).

Thus, the lower bound given by Theorem 2 improves the lower bound that is implicit

in Landau's work.

In our definition of 9m x(a) we require that A" be a hyperbolic Riemann surface. If

9m,c(«) = inf{/(/): / G ^m(B,C) and |/'(0) \> a),

then it is elementary to see that <SX c(a) = 0. In fact, let Z be a discrete subset of B

such that if z E Z, then there exists w E Z, w ¥= z, with 8(z, w) < e, where e > 0 is a

given number. We assume that 0ÍZ. Then there exists a holomorphic function / on

B which vanishes at each point of Z and at no other point of B. We may even

assume that /'(0) ^ 0. Let g—f2- Then t(g) < e. By multiplying g by a suitable

scalar, we can make its derivative at the origin be any value a G (0, oo). Hence,

9", c(a) < e, so 9", c(a) = 0. Thus, for X = C the domain Bloch constants can be

trivial.

5. Upper bound for 9m B(a). Ahlfors and Grunsky [3] gave an upper bound for the

classical Bloch constant that is conjectured to be sharp. They obtained this upper

bound by constructing a specific function. The basic idea involved in this construc-

tion was generalized in [9] and [10] to obtain upper bounds for various euclidean,

hyperbolic and spherical Bloch constants. This same generalization can be used to

obtain upper bounds for 9m B(a). We just outline the idea here; for details the reader

should consult [9].

For q E [0, j ) let A be the regular circular triangle which has all interior angles of

size -nq and vertices at the points 1, u and o¡2, where u = exp(2w//3). Set

Rq =[sinW(f + f)/sinW(¿ + f)]1/2,        q E [0,i).
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The value of Rq is selected so that RqAq = {Rqz: z G A^} is a hyperbolic triangle in

B. Let fq: B -* Aq be the unique conformai mapping that satisfies the conditions

/(V) = w> (j = 0,1,2). Then/,«)) = 0 and

/;(o) = r(f + f)r(í)/r(¿ + t)r(f).
Define

gm,9(Z) = Ä9/9 ° /ç/U+l/V^Am+l))

for 4 G [0, $ ) and m G Z+ . Then gmq is a conformai mapping of Rq/(m+X)^q/{m+X)

onto Ä?A^ which sends 0 to 0 and makes the vertices correspond. Also,

,    () *gr(5/6 + g/2)r(l/6 + q/2(m + l))

«*.,     i-.fl ^      RqAm+X)T(l/6 + q/2)T(5/6 + q/2(m + 1)) '

Now we can construct the functions which produce upper bounds for 9m B(a) for

certain values of a. For m G Z+ we consider gmX/„, where « > 4. The triangle

Ä1/nA1/n, w > 4, leads to a triangulation of B that is obtained by starting with

Rx/nAx/n and applying successive reflections in its sides and in the sides of newly

formed triangles. The Schwarz reflection principle in conjunction with this observa-

tion about triangulations of B implies that gmX/n extends to a holomorphic function

defined on all of B; we use the same notation for the extended function. Then gm x,n

is locally schlicht in B except at each vertex of the triangulation of B that is induced

from Ä1/n(m+1)A1/n(m+1). At each such vertex the function gml/„ assumes a value

with exact multiplicity m + 1; the value assumed at such a vertex is one of the

vertices of the triangulation of B induced from Rx/nAx/n. Thus, gOTl/„ G ^(B,B)

and clearly t(gmX/n) < R]/n(m+ir This gives an upper bound for ^mB(a) for the

countable number of values a = am 1/n, n > 4. It would be interesting to give

examples for a ¥= am¡x/n. For m = 1 we get 9"m B(ax x/n) < Ri/2n. The following

table gives upper and lower bounds for 9m B(a, x/n) for selected values of n.

Lower Bound Upper Bound

« a. K\^\,\/n) R\M,l/n                    "lVV"l,l/n^ "1/2/1

4 .7171 .5101 .6982

5 .8413 .6172 .7546

6 .8964 .6817 .7928

7 .9265 .7263 .8206

8 .9449 .7594 .8417

9 .9571 .7850 .8584

10 .9656 .8056 .8718

25 .9947 .9192 .9470

50 .9987 .9589 .9732

100 .9997 .9793 .9865

6. A related open problem. Let A" be a Riemann surface and /: B -» X an analytic

function. For z G B let s(z, f) be the maximum value of r such that/is schlicht in

B(z, r); set s(z, /) = 0 in case/is not univalent in any neighborhood of z. Clearly,
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s(z, f) < t(z, f). Let s(f) = sup{s(z, /): z G B}. For a G (0,1] and a hyperbolic

Riemann surface X let

§>x(a) = inf{s(f):fE'Sx(B,X)andfx(0)>a}.

Of course, one could also introduce constants Sm x(a) by restricting consideration to

functions/ G 'SJB, X). It would be interesting to determine bounds for S^(a).

The constant §>x(\) has already been considered, but in a different guise. If

/ G f|(B, X) andfx(f)) = 1, then/must be an analytic universal covering of B onto

X. Let T be the associated group of cover transformations; T is a fixed-point free

Fuchsian group. Then the work of Harvey [4] and Marden [7] implies that there is a

constant r > 0, independent of the hyperbolic Riemann surface X, such that any

normal polygon for T contains a hyperbolic ball of radius r. Sturm and Shinnar [11]

gave an explicit lower bound for r. Actually, this result is true for an arbitrary

Fuchsian group; that is, the group T is allowed to contain elliptic elements. Now /is

injective on the interior of any normal polygon, so it follows that s(f) > tanh(r/2).

Recently, Yamada [14] has shown that the largest possible value for r is sinh"'(2/ vT).

Consequently,

2 + 1/7-1/3---— = .45685...,

2 + f7 + p

with equality for the thrice punctured sphere. The explicit determination of related

constants is given in [13].

Sharp lower bounds for §¿-(0:), a E (0,1), are not known. Is it possible to obtain a

lower bound for this constant by using the differential-geometric method of Ahlfors

and Heins? Yamada used a different method to derive the sharp lower bound for

§*(!)•

Added in proof. Recently, the author has obtained lower bounds for S^(a) for

various classes of Riemann surfaces (Marden constants for Bloch and normal func-

tions, J. Analyse Math., to appear). The lower bound is independent of a G (0,1 ]

and of X, provided X supports nonconstant Bloch functions. Related results are

obtained for surfaces which support nonconstant normal functions.
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