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GENERALIZED INTERSECTION MULTIPLICITIES

OF MODULES

BY

SANKAR P. DUTTA

Abstract. In this paper we study intersection multiplicities of modules as defined

by Serre and prove that over regular local rings of dim < 5, given two modules M, N

with l(M ®R N) < oo and dim M + dim TV < dim R, x(M, N) =

2fHo"(— l)V(Tor,"(M, TV)) = 0. We also study multiplicity in a more general set up.

Finally we extend Serre's result from pairs of modules to pairs of finite free

complexes whose homologies are killed by /", J", respectively, for some n > 0, with

dim R/I + dim R/J < dim R.

In Algèbre locale. Multiplicités [S] Serre has proved the following theorem: If R is

an equicharacteristic or unramified regular local ring and M, N are two finitely

generated modules over R such that /(M ®R TV) < oo, then

dim«

x(M,N) =   2   (-l)'/(Tor,*(M,/V))>0

and = 0 if and only if dim M + dim N < dim R. In the same book Serre conjec-

tured that the above result is true for any regular local ring. In 1970/71 M. P.

Mallaivain-Brameret [M] proved the special case of Serre's conjecture in the ramified

case (i.e. p Em2) when pM = 0, pN — 0. In 1972, M. Höchster [H] proved Serre's

conjecture for regular local rings with dimension < 4. In 1975 Peskine and Szpiro

proved the conjecture for graded modules over graded rings R with R finitely

generated over R0 and R0 is Artinian.

In this paper we start with a greater generality: Let 6 be the set of pairs of

modules (M, N) over a C-M ring R such that l(M ®Ä N) < oo, pdM < oo, dim M

+ dim N < dim R. We say that R satisfies the vanishing conjecture if x( M, N) = 0

whenever (M, N) E 6 and dim M + dim 7Y < dim R, and that R satisfies the

nonvanishing conjecture if x(M, N)>0 whenever (M, N) E Q, and dim M +

dim N = dim R.

In this work, all rings are noetherian local with identity and all modules are

finitely generated.

We show in (1.1) that the vanishing conjecture holds for two-dimensional C-M

rings. Using this fact we prove in 1.4 Serre's Conjecture for the pair (M, N) E 6,

dim N — 1 over a regular local ring and also give another proof that the above result

implies vanishing for regular local rings R with dim R < 4. (M. Höchster proved this
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in 1972. See [H]. Recently H. B. Foxby has proved the case of dim N = 1 in a more

general set-up. See [¥].) In 2.4 we show that the vanishing conjecture holds on a

Gorenstein ring R if and only if for all pairs (M, N) G (3, with M perfect, N C-M,

dim M + dim N — dim R, l(M <8>R N) = l(M ®R Ñ). Using this criterion we prove

in 2.5 that over a regular local ring of dimension 5 the vanishing conjecture holds.

§§2.4, 2.6, and 2.7 provide some special cases of the vanishing conjecture. §3.1

establishes that the vanishing conjecture holds if and only if for all pairs (M, N) G 6,

with pd M < oo, dim M + dim N < dim R, X\(M, N) > 0 and, prolonging this

argument in 3.2, we show that the nonvanishing conjecture implies the vanishing

conjecture. In 4.1 and 4.2 we extend the vanishing part of Serre's theorem to pairs

of finite free complexes C, C such that dim(l?//) + dim(R/J) < dim R,

l(R/(I + J))< co, where / = AnnR H(C), J = AnnÄ H(C'), and R is regular.

Most of the main results of this paper were obtained when I was doing my Ph.D.

thesis under the guidance of M. Höchster at the University of Michigan. I would like

to thank him for his constant inspiration and encouragement throughout this work.

List of abbreviations and notations and a special lemma.

l(M) = length of the module M,

Q = the field of rational numbers,

C-M = Cohen-Macaulay,

chp = characteristic/?,

n.z.d. = nonzero divisor,

d.v.r. = distance valuation ring,

Q{R} = total quotient ring of the ring R,

pd M = projective dimension of M,

r(N) — torsion-free rank of N,

Q{N}=N®RQ{R},

p(.n) - [x ER\tx Ep" for some t E R - p].

Let R be a local ring with 1. Let M be a finitely generated module with finite

projective dimension n. Let TV be another finitely generated module with l(M ® N)

< oo. Then

X,(M,N)= I(-l)kl(Tor«+k(M,N)).
k=0

The following lemma has been used many times in this work. We leave the proof

as an exercise for the reader.

S. L. (Special Lemma). Let R be a local ring with 1. Let M be a finitely generated

module with pd M = n. Let N be another module with M ®R N ¥= 0 and let Annfi M

contain an N-sequence of length r. Then Tor,f_,(M, N) = 0, 0 < / < r.

We also state two results from [Dl, 2.2] which have been referred to many times in

this work.
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Lemma 1. Let R be Gorenstein of dim«. For any two modules M, N with

pd M < oo, l(M ®R N) < oo and dim M + dim N < dim R, x(M, N) = 0 if and

only if for any perfect module M, C-M module N such that l(M ®R N) < oo and

dim M + dim N = n - 1, x(M, N) = 0.

Claim 1. Let M and TV be two modules over a C-M ring such that l(M <8>RN) < oo

and dim M + dim N < dim /?. Then we can choose a system of parameters

{xx,...,xr} for M contained in AnnR N such that {xx,...,xr} is an i?-sequence

where r = dim M.

1.

1.1 Proposition. Let R be a C-M local ring and dim R = 2. Let M be a module of

finite length and finite projective dimension over R. Let N be another module over R

with dim N < 1. Then x(M, TV) = 0.

Proof. First we prove the following lemma.

Lemma. Let R be a commutative ring with 1. // 0 -> R"k -*•••-» Rn° -» M -* 0 is

exact, x G R is not nilpotent in R and x is nilpotent on M, then 2f=0(— 1)'«, = 0.

Proof. Since x is nilpotent on M, M <8RRX = 0. Thus the result follows by

applying ®R Rx to the given exact sequence. Now we return to the proof of the

theorem.

Since l(M) < oo, pd M < oo and depth R — 2, from depth M + pd M =

depth R, we get pd M = 2. Let k = R/m, where m is the maximal ideal of R. Let

(1) 0 -» Ä"2 -> Ä"' -» Ä"» -> M -» 0

be a minimal projective resolution of M. Then

(2) x(k,M)= 2(-l)'», = 0
i=0

(by the above lemma). When dim N = 0, l(N) < oo, hence by taking a filtration of

N with all factors isomorphic to R/m, and noting the fact that, given 0 -> TV, -* N2

-> N3 -> 0 is exact,

(3) x(^2>^) = x(iV1,M)+x(^3,M),

we get

(4) x(N,M) = l(N)x(k,M) = 0.

Next we consider the case when dim N = 1. Since any filtration of /?//>" contains

l(Rp/p"Rp) copies of jR//? and each of the remaining quotients in the filtration is

isomorphic to R/m, we have by (3) and (4),

X(R/P", M) = l(Rp/p"Rp)x(R/p, M),

i.e.

(5) X(R/P, M) = X(R/P", M)/l(Rp/p"Rp).
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Now we consider the exact sequence

(6) 0 -* p(n)/p" -» R/p" -» R/p(nX -» 0.

Since dvavR/p" = 1, dim p(n)/p" = 0, i.e., p(n)/p" is a module of finite length.

Hence by (4),

(7) X(R/P", M) = x(R/P(n), M)

and by (5),

/ x(R/p{n), M)

(8, x(R/P.M)=^^/p;Rf>.

Since dim Rp = 1, l(Rp/p"Rp) is a linear polynomial in « for n > 0. Thus we will be

done if we can show

x(R/p(n), M)
(9) lim   M   /y    -'- = 0.

n->oo ft

Since jR//7(n) has depth 1 and Ann M is m-primary, Ann AÍ contains a R/p^n)

regular element. Therefore, by Lemma (S.L.), Tor2(R/p(n), M) = 0. So

(10) x(R/P(n), M) = l{M/p(n)M) - l(TorxR(R/p(n), M)).

Since l(M/pin)M) < l(M),

(11) Um  -l(M/pwM) = 0.
n-»oo   1

Since /(M) < oo, we have the exact sequence

(12) 0-»M-»(Ä/(jc„je2))'-»ß-»0

where (x,, x2} is an Ä-sequence. By Lemma (S.L.) Tor2(R/p^"\ R(xx, x2)) = 0;

hence 0 = x(R/P{n), R/(x\, xi))- (Since l(R/(xx, x2)) < oo and {xx,x2} is an

Ä-sequence,

0 = l(R/ {/"» + (xx, x2)}) - /(Torf(ü/p<"), Ä/(x„x2))),

i.e.,

Since l(Q) < oo, pd(g) < oo, by Lemma (S.L.), Tor^R/p^, Q) = 0. Thus apply-

ing <g> R/p(n) to (12) we get

0-*Tor«ML, m U Torf

exact and hence

¡4-,M))</Tor«Í4T,í^-^)1U4
/">'   ff U(,,),\(*i>*2)/ \(*i>*2)
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by (13) which shows

Now by (9), (10), (11), and (14) we are done.

1.2. M. Höchster has proved Serre's multiplicity conjecture for regular local rings

R with dim R =£ 4 (see [H]). To prove the vanishing part he has used the fact that

after extending the ring the Grothendieck group of modules of finite length and

finite projective dimension is generated by modules of the type R/(xx, x2), where

{*,, x2} is an Ä-sequence, dim R = 2. By using 1.1 we can give another proof of the

vanishing part in the following way:

We have to show that given M, N on R, where dim R < 4, dim M + dim N <

dim R, and l(M ® N) < oo, then x(Af, N) = 0. We note that for dim R = 1 the

proof is obvious, dim R = 2 is done in 1.1. So we consider the cases where

dim R = 3 or 4. We can assume M, N are both C-M and dim M + dim N = 2 (or 3)

[Dl, 2.2]. Without loss of generality we may suppose dim N = 1 (or 2). By [Dl, 2.2]

we are reduced to proving the vanishing conjecture over C-M rings of dim 2 which

was already done in 1.1.

1.3 Proposition. Let Rbe a C-M ring o/dim n. Let N be a module of dim 1 and M

a module of finite projective dimension with dim M < n — 2. Then x(M, N) = 0.

Proof. By [Dl] we can assume without any loss of generality that M is perfect,

dim M — n — 2. Again by [Dl, 2.2] we are reduced to proving the vanishing

conjecture on a 2-dimensional C-M ring. Thus we are done by 1.1.

1.4 Theorem. Let N be a module with dim TV = 1 over a regular local ring R. Let M

be another module such that l(M ®RN)< oo. Then

(i) dim M + dim N < dim R implies x(M, N) = 0;

(ii) dim M + dim N — dim R implies x(M, N)>0.

(Since R is regular, dim M + dim N < dim R.)

Proof, (ii) dim N — 1 implies dim M = n — 1 where n = dim R. Since dim M —

n — 1, the minimal primes of AssR(M) are primes/?, of ht 1, i.e., p¡ — (x¡) for some

prime element x¡■ E R. Thus by taking a prime filtration of M by (3), 1.1, we get

(1) x(M,N) = 2x(N,R/(xl))+    2    x(N,R/qj).
ht ^2

Since dim N = 1, xW R/(x¡)) > 0 by [L, Theorem 1]. Hence if we show x(N,Q)

= 0 with dim Q < n — 2, by (1) we will be done. Hence the proof of (ii) now reduces

to(i).

(i) By [Dl, 2.2] we can assume M is perfect, dim M = n — 2. Therefore we are

done by the two previous propositions.

2.
2.1 Definition. Let R be a C-M ring of dimension n with canonical module Ü and

let M be a C-M module of dimension d. We define M to be Extß^A/, Ü).
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Proposition. Let R be a Gorenstein ring of dim n. Let M be a perfect module and

let N be C-M such that (i) dim M + dim N = n; (ii) l(M ® TV) < oo. Then l(M ® N)

= l(M®Ñ).

Proof. Let dim M = r, dim N — s. Since M is perfect, pd M = n — r = s. Since

R is Gorenstein, SlR = canonical module of R = R. We have by local duality

Ext'(M, R) = 0, i\# 5, Ext^M, Q) ^ 0; Ext^/V, fl) = 0, j ¥* r, Extr(N, R) =£ 0

(since both Af and N are C-M). We note that if l(T) < oo, for any module T, then

l(T) = /(f ). We have

(1) 1(M®N) = 1(M®N),

(2) (M®N) = Extn(M®N,R).

Since l(M ® N) < oo, by Claim 1, Lemma 1 ([Dl, 2.2]), Ann M contains a maximal

N sequence. Hence TortR(M, N) — 0 for all i ¥= 0. We know both the spectral

sequences Ext'(7orj(M, N), R) and Ext'(M, ExtJ(N, R)) converge to the same limit.

When i +j = n each degenerates and hence we have

(3) Ext"(M®N, R) ^Exts(M,Extr(N,R)).

Since pd M = s and Ext'(M, R) — 0, /' < s, we have from (3),

(4) Exts(M,Extr(N, R))^M®N.

From (l)-(4) the required result follows.

2.2 Theorem. Let R be a Gorenstein ring of dim n. Let M be perfect and let N be

C-M such that l(M ®R N) < oo. Suppose dim M + dim N < dim R. Let i = n —

dim M - dim N. Then X(M, N) = (- l)'x(M, Ñ).

Proof. First we note the following facts:

(A) If R is Gorenstein local and M is perfect, N is any finitely generated module,

Tor/(M, N) =* ExtpdM-'(Af, N).

Also the spectral sequences Extp(M,Extq(N, R)) and Ext'(Tor,(M, N), R) with

p + q = i + j, converge to the same limit.

(B) If N is C-M of dim r and l(M ® N) < oo the left spectral sequence degener-

ates (only q — n — s gives a nonzero term) and so does the right (all Tor^M, N)

have finite length, so the Ext is 0 unless i = n). Hence we get

Extj+S(M, Ñ) = Ext"(Tor7(Af, N), R) = Tory(M, N)~.

Thus if R is Gorenstein, M is perfect, N is C-M and l(M ® N) < oo,

Tor^M, N) » ExtJ+s(M, Ñ)~    (dual of (B))

-TorpdM_0+j)(M,/V)"    (by (A)).

Hence

X(M,N) = 2(-iyf(Tor,(M, ;y)) = 2(-l)"y/(Torpd^-,(Aí, iV))

= (-i)-Pd^^(-l)pdA/"S^(TorpdW_y^(M, A/))

= (-l)-pdM+Jx(M,7V).
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Since

— pd M + s = — (n — dim Ai) + dim N = dim M + dim N — n = i,

we are done.

2.3 Corollary. Let R be a Gorenstein ring. Let M be perfect and let N be C-M

such that l(M ®R N) < oo. Suppose M — M, N = Ñ and dim R — dim M — dim N

isodd.Thenx(M,N) = 0.

In particular over a regular local ring of dim n, if R/p and R/q are Gorenstein and

n - dim(R/p) - dim(R/q) is odd, then x(R/P, R/q) = 0.

Proof. By 2.6 we have x(M, N) = ~x(M, Ñ) = ~x(M, N). Hence x(M, N)
= 0.

2.4 Theorem. Let Rbe a Gorenstein ring of dim n. The vanishing conjecture holds in

R «=> for any perfect module M and any C-M module N with dim M + dim N = dim R,

l(M®RN) = l(M®RÑ).

Proof. =» : We consider a prime filtration of N. Since x(A/, L) = 0 if dim M +

dim L < dim R, we have

(1) l(M®RN) = x(M,N)=      2     l(Np)x(M,R/p).
p<EAss(N)

Similarly,

l(M®RÑ)=x(M,Ñ)=      2      l{Ñp)x(M,R/p) = X(M,N).
p£AíSS(N)

Since Ass N = AssÑ and l(Np) = l(Exthtp(Np, Rp)) = l(Np), we have l(M ®R N)

= l(M®RN).

<= : By [Dl, 2.2] we can assume M perfect, Q C-M with l(M ® Q) < oo,

dim M + dimQ < dim R. We have to show x(M, Q) = 0. Let {xx,... ,xr_,} be an

Af-sequence contained in AnnÄ Q such that it is also an Ä-sequence [Dl, 2.2]. We

consider the exact sequence

(i) o-r-(/v/(*„...,xr_,))'-Ô-o.

Since l(M ® T) < oo, dim M + dim T = dim R, we have by the given condition,

l(M ® T) = l(M ® T). Hence x(Af, Q) = x(M, Q). (We notice

(2) Jor,R(M,Q) = 0,       i>\,

by(S.L.).)

Let {v,,... ,ys-\) be a ß-sequence contained in AnnÄ M such that it is also an

Ä-sequence. We consider the exact sequence

(3) 0-»iV-»(A/y)'->Af-»0.

Since   l(Q®RN)< oo,   M  perfect,   /(/Y ® Q) < oo,   dim TV + dim Q = dim R,

l(N ®R Q) = l(N ®R Q). Again from (3), applying Horn (   , R), we get

(4) 0^(R/y)p ^N^M-0.
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From (3) and (4) we get

(5) x(M,Q)=-x(M,Q).

From (2) and (5) our result follows.

2.5 Corollary. Let R be a regular local ring of dimension 5. Then the vanishing

conjecture holds on R.

Proof. By Theorem 2.4, we have to show

(1) l(M®RN) = l(M®RN)

where M is perfect, N is C-M, dim M + dim N = dim R. We have the following

three cases to consider:

Case 1. dim N = 0. In this case dim M = dim R; hence M - R', l(M ® N) =

tl(N) = l(M ® ¿V).
Case 2. dim M = 4, dim N = 1. In this case by killing an Ä-sequence which is also

an M-sequence of length four contained in AnnR TV, we reduce to proving (1) on a

complete intersection of dim 1, where l(M)< oo. Since, on a complete intersection

of dim 1, the vanishing conjecture holds, we are through.

Case 3. dim M = 3, dim N = 2. In this case by killing an Af-sequence which is

also an Ä-sequence of length 3 contained in AnnÄ N, we reduce to proving (1) on a

complete intersection of dim2, l(M) < oo. Since, on a complete intersection of

dim 2, the vanishing conjecture holds, we are done.

2.6 Proposition. Let R be a Gorenstein ring with dim R = 3. Let M be a self-dual

module (i.e., M ^ M) of finite length and finite projective dimension. Then for any

module N with dim N < 2, x(M, N) = 0.

Proof. If dim N = 1, we are done by 1.3. So we assume dim N = 2. Without any

loss of generality we can assume 7Y to be C-M [Dl, 2.2]. We consider the exact

sequence

(1) 0^T^(R/(xx,x2))'-*M^0

where we choose {xx, x2) in such a way that it is both an TV-sequence and an

Ä-sequence; moreover there exists x E Ann TV such that {jc,, x2, x} is an R-

sequence. This implies x is T-regular. Also T is perfect of dim 1 so

(2) X(M,N) = tl(N/(xx,x2)N)-l(T®RN)

= tl{N/(xx,x2)N) - l(T/xT®R/xRN).

Now R/xR is a 2-dimensional Gorenstein ring, hence the vanishing conjecture holds

on R/xR. Since T/xT is a perfect module of finite length of R/xR and dim TV =

dim(R/xR), N C-M, we have by (2.4)

(3) l(T/xT®R/xRN) = l(T/xT®R/xRÑ) = l{T®RÑ).

From (2),

(4) x(M,Ñ) = tl(Ñ/(xx,x2)N)-l(T®RÑ)

= tl(N/(xx,x2)N)-l(T®RN)    (by (3))

= X(M,7V).
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But we have

X(M, TV) = -X(M, Ñ)   by (2.2)

= —x(Ai, TV)    (since M ^ Ai).

Thusx(A/, 7V) = 0.

Remarks. (1) Definition. A module M on a local ring R is called "t>good" if (i)

pd M < oo, (ii) given any module TV such that l(M ®R TV) < oo, dim M + dim TV <

dim«, then x(A/, TV) = 0.

Corollary to 2.6. Any perfect self-dual module M on a Gorenstein ring with

dim M > dim R — 3 is v-good.

The proof follows by killing an M-sequence contained in Ann TV, where l(M ® TV)

< oo, dim M + dim TV < dim R.

(2) In the course of proof we have shown that if R is a 3-dimensional Gorenstein

ring, M is a module with l(M) < oo, pdAf< oo and TV is C-M with dim TV = 2,

then x(Af, TV) = x(Af, TV) (2.6(4)).

2.8 Proposition. Let R be a Gorenstein ring of dim n. Let TV be a module with

dim TV = 2 and M a self-dual C-M module such that l(M ®RN) < oo, dim M +

dim TV < dim R and n — dim M — odd. Then x(Af, TV) = 0.

Proof. Without any loss of generality we can assume TV is C-M [Dl, 2.2]. We can

construct a module Q such that l(Q ® TV) < oo, dim Q — n — 3, x(Q,Ñ) =

X(M, TV), and

(1) x(Q,N) = x(M,N)   (see[Dl]).

By killing a maximal g-sequence contained in Ann TV n Ann TV and using (2), (2.7),

we have

(2) x(Q,N) = x{Q,N).

But

(3) x(Q, N) = -x(Q, N)    (by 2.6)

= -x(M,N)

= -x(M,TV)

From(l)-(3),x(M,TV) = 0.

3.

3.1 Theorem. Let Rbe a Gorenstein ring of dim n. The vanishing conjecture holds in

R iff given two modules M, N such that l(M ® TV) < oo, pd M < oo, dim M + dim TV

< dim R, we have X\(M, N) > 0.

Proof. =» : Since the vanishing conjecture holds, given M, TV as in the theorem,

X(M, TV) = 0, i.e., l(M ® TV) = Xl(A/, N). Thus x,(Af, TV) > 0. (We note that on a

local ring the tensor product of two finitely generated modules is nonzero.)

<= : By [Dl, 2.2], we can assume the case when M is perfect and TV is any module

such that l(M ®RN)< oo, dim M + dim TV < dim R. The proof is by induction on
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dim TV. If dim TV < 1, we are done by Proposition 1.3. So we assume dim TV > 1, and

the theorem is true for any module with dimension less than dim TV. We take a prime

filtration TV. By the above and (3) in 2.1,

X(M, TV) = 2 x(M, R/p)    (by induction).
dim(R/p) = dim N

So it will be enough to show x(M, R/p) = 0. Again taking a filtration of R/p" we

can show

X(M, R/p")//(Rp/p"Rp) = x(M, R/p)    (by induction on dim TV)

i.e.,

<» to7TF7^T = *<«•*/>>•
»-"»    l\Rp/P Rp)

Now

(2) x(M, R/p") = l(M ® R/p") - Xl(M, R/p").

Since dim M + dim(R/p) < dim R, dim M < dim R — dim(R/p) — ht p. Since

l(M® R/p) < oo,/(«) = l(M ® R/p") is the Hilbert polynomial of M with respect

to p for n » 0, i.e., for n » 0, /(«) is a polynomial whose degree is the dimension of

M and hence whose degree is less than ht p. On the other hand g(n) = l(Rp/p"Rp)

is a polynomial in « of degree ht p for « » 0. Hence

(3) lim   *»**'rt=0.
-«   l(Rp/p"Rp)

Thus from (l)-(3),

X(M, *//>)=" um   y    '    y'.
»-oo    l(Rp/p"Rp)

Since Xi(^' R/p") > 0 by assumption, we have

(4) x(^.*//0<0.

Since AÍ is a perfect module, we can find {^,..., x„} an Ä-sequence such that

(5) o-M-(i?/(*,,••-,*„))'-e-o

is exact. Since pd Af < oo, pd Q < oo; also Q is perfect. From (5),

This forces both x(M, R/P) and X(Q, R/P) to De 0- Thus the theorem is estab-

lished.

3.2 Remark. We have seen in [Dl, 2.2] (reduction to a sublemma) that in order to

prove the vanishing conjecture on a Gorenstein ring it is enough to consider the case

when M is perfect, /(M) < oo, TV is any other module, with dim TV < dim R. In 3.1

we have shown that by applying induction on TV, we actually come down to showing

Xi(Af, R/p") is greater than 0, dim(R/p) < dim R. Since l(M) < oo  we have



generalized intersection multiplicities 667

p"M = 0, for n » 0. Now from 0 -» p" -> R -» R/p" -> 0 we get X\(M, R/p") =

X(M, p") (since M^M® R/p" for « » 0). Thus Xi(Af, R/p") > 0 iff x(M, /?") >

0. Hence we have proved the following:

Theorem. On a Gorenstein ring of dim n, the nonvanishing conjecture implies the

vanishing conjecture.

We note here that for our result to be true we need only the nonvanishing

conjecture to be true for a pair of modules, one of which is perfect.

We now state two results without proof and we refer the reader to [D2, (1.8),

Corollaries 5 and 6] for the proofs.

3.3 Proposition. Let Rbe a Gorenstein ring of dimension 3 and ch R = p > 0. Let

M be a perfect module of finite length. Then M is v-good iff given TV with dim TV = 3,

X(M,TV)>0.

3.4 Proposition. Let R be a complete ramified regular local ring of dim 5 and let p

denote a generator of the maximal ideal of the d.v.r. V contained in R such that

V/pV =* R/m, where m is the maximal ideal of R. Let M and TV be two modules over

R such that (i) l(M ® TV) < oo, (ii) dim M + dim TV = 5, (iii) pM = 0, p is a n.z.dx

on TV and TV is perfect. Then x( Af, TV) > 0.

4.

4.1. Let R be a regular local ring and / an ideal of R. Let C, be the set of finite

free complexes over R with homology killed by I" for some n > 0. Let G¡ = free

abelian group on elements of C, modulo the subgroup generated by (i) exact

complexes, (ii) C2 — C, — C3, where 0 -> C, -» C2 -* C3 -* 0 is an exact sequence of

complexes.

Proposition. G, is generated by free resolutions of modules M with I"M = 0 for

some n > 0.

Note. Fossum, Griffith and Iverson [F-G-I] have proved the case when I — m, the

maximal ideal of R.

Proof. Let C be any finite free complex. We assume H0(C) ¥= 0 (otherwise we

can split off an acyclic free complex from C and start with truncated C). Let

M - HQ(C). We have a projective resolution of M, K0: 0 -» R'- -* • • • -> R'° -* 0,

mthH0(K0) = M.

Claim. We can construct a finite free complex D0 such that the number of nonzero

homologies of D0 is less than that of C.

Proof. Since components of C are free and K0 is exact we have a map <j>: C -> KQ.

We construct the cone "£>0" of C by K0 via <f>, i.e., a complex Dq where

(D¿')n = (K0)n + Cn_x

and d'¿: (D¿\ -> (D¿')n_x is given by

d';(x, y) = (d'n(x) + ^_,( v), -d„_,( v)).
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Hence we have the exact sequence of complexes

(1) 0-» JT0 » Ztf-» C_, - 0

where (C_x)n = C„_,. The last few terms of the long exact sequence of homologies

obtained from (1) are as follows:

- H2(C_X) - HX(K0) - ff,(Z>¿') - HX(C_X) - H0(K0) -» H0(D¿') - 0.

It is easy to see H0(D¿') = 0. Since #,(C_,) ^H0(K0) and #,(*„) = 0 for all i > 1,

we have HX(D¿') = 0. We also note H¡(D(¡) = Ht(C_x) = #,_,(C) for i > 2. Let

r = min{/: Hj(D¿') ¥= 0}. Denoting the ith component of D¡f by F¡ we see that

Fl+X -F(-F,_, -   ...-^-Fo-O

and that Dq sphts off 0 -» Im »//, -» F,_, -> • • • F, -» F0 -» 0 which is acychc, and we

have a new free complex D0 given by

-Fl+I-F,-» ■••-Fr+1-F/'-0

where F't' = ker \pr

We easily check that the number of nonzero homologies of D0 is less than that of

C. Thus the claim is proved.

Now continuing the above procedure a finite number of times, we arrive at a finite

free complex D with H0(D) ¥= 0, H¡(D) = 0 for all i > 0, and in G¡, C is generated

by these K/s and D. Thus G, is generated by free resolutions of modules M with

I"M = 0 for some n > 0.

4.2 Theorem. Let R be a ring of formal power series over a field or d.v.r. Let

C, = finite free complexes over R with homology killed by I" for n > 0 where I is an

ideal of R. If I and J are two ideals of R such that I + J is primary to m, the maximal

ideal of R, we have a map 0¡/. G, ® Gj -> Z via [Cx] ® [C2] -> x (total complex

(C, ® C2)) (i.e., alternate sum of length of homologies). If dim(R/I) + dim(R/J) <

dim R, then 6,j = 0.

Proof. By (4.1) it is enough to show that if C is a finite free resolution of a

module M with I"M — 0 for some n > 0 and if D is a finite free resolution of a

module TV with J'N = 0 for some t > 0, then x(C ® D) = 0. But x(C ® D) =

X(M, TV) and since dim M + dim TV < dim R, x(M, TV) = 0 by [S, Chap. V, Theo-

rem 1, Lemma].

Thus 6,j = 0.
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