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THE SPLITTING OF BO (8) A bo AND MO(8)A bo

BY

DONALD M. DAVIS1

Abstract. Let BO (8) denote the classifying space for vector bundles trivial on the

7-skeleton, and MO (8) the associated Thom spectrum. It is proved that, localized at

2, BO (8) A bo and MO (8) A bo split as a wedge of familiar spectra closely related

to bo, where bo is the spectrum for connective KO-thcory.

1. Introduction. Let BO (8) denote the classifying space for vector bundles trivial

on the 7-skeleton, and MO (8) the associated Thom spectrum. Let bo denote the

spectrum for connective /co-theory, localized at 2, bo^ the spectrum obtained from

bo by killing homotopy classes of Adams filtration less than s, and bo^[m] the

spectrum obtained from bo^ by killing homotopy classes of degree less then m. In

this paper we prove

Theorem 1.1. There are equivalences of spectra, localized at 2,

BO(8)Abo^MO(8)/\bo^KV   V  bo<2ä+e>[4d],
(U,V)

where K is a wedge of Eilenberg-Mac Lane K(Z2)-spectra, U ranges over all

nondecreasing sequences of integers u>2 such that u — 1 is not an even 2-power, V

ranges over all increasing sequences of integers v with a(v) = 2, d = \U\ +\V\ is the

sum of the entries of U and V, and e = lvev(2v(v)+x - 1).

Here and throughout the paper a(v) is the number of l's in the binary expansion

of v, and v(v) is the exponent of 2 in the prime factorization of v.

This splitting is quite similar to that of bo A bo given in [12]. Two important

applications of the splitting of bo A bo have been made; analogues of these for

MO (8) A bo certainly warrant investigation. The first is to ¿w-resolutions, useful in

understanding n*(S°) [12,13] and in obstruction theory [6]. The second is in

constructing operations bo -> bo^ [14] and applying these to deduce restrictions on

the A -modules which can arise as H*X [9]. Here and elsewhere A denotes the mod 2

Steenrod algebra. Kane's applications to realizable ^4-modules were for odd primes

and utilized the splitting of bu A bu, but it seems quite likely that the operations

M0(8)-> bo^ derived from Theorem 1.1 may be chosen to have nice properties

similar to his.
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The compositions

(1.2) BO (8)^ 50(8) A bo -> ¿>o<2d+e>[4d]

give rise to üf-theory characteristic classes which may be useful in obstruction theory.

In order that these be of much use one will have to show that the orientation

#0(8) -» 1PN A Af0<8> of [5] factors through (1.2).

Another possible application of Theorem 1.1 is as a first step toward calculating

the (8>-cobordism ring, 7ril(MO(8» [8]. Since calculation by the classical Adams

spectral sequence (ASS) has thus far been too complicated for any sort of general

conclusions [8,4], one might hope for more success from the Tw-resolution, similar to

that applied successfully to irt(S°) by Mahowald in [11 and 12]. The entire £rterm

can be written explicitly using Theorem 1.1 and results of [12] which we will also use

in our proof of Theorem 1.1.

The proof of Theorem 1.1, which is given in §2, combines the splitting of

H*MO(%) as an ^4,-module obtained in [4] with the method used for bo A bo in [12]

or [6]. The splitting of M0(%) A bo encounters an obstruction which was not present

for bo A bo; this is circumvented by using a property of Brown-Gitler spectra [2]. Ax

above is a case of Ar, the subalgebra of A generated by {Sq7: j < 2r}.

2. Proof of main theorem. In this section we prove Theorem 1.1 and make some

minor corrections in some proofs of [6].

Since we will use many of the results and techniques of [6], we restate Theorem 1.1

in the terminology of that paper.

Theorem 2.1.

B0(8)/\ bo - MO(S) A bo - KV   V  24dbo<e>V  V 24dbsp4dh™<<-l>

U, V: U, V:
d even d odd

where K, U, V, d, and e are as in (1.2).

Here bsp is the 2-local connective fi-spectrum whose Oth space is Z X BSp. The

equivalence of Theorems 1.1 and 2.1 follows from 2Skbo(s)- fto(4A:+s>[8A:] and

2>p~&o<3>[4].

In the splitting of bo A bo in [12 and 6] certain Thom spectra B(n) were useful.

There the pairings B(n) A B(m) -* B(n + m) were used, but we shall also require

maps Sx DK7.(5(2') A B(T)) -> B(2i+X). The existence of these maps follows easily

from [2 and 3], since B(n) are closely related to Brown-Gitler spectra (see §3).

\íñ = (nx,...,ns), let |«|=2«„ a(ñ) = Ia(n¡), and B(h~) = Aß(nt). Then we

have

Lemma 2.2 [6,3.9].

,   4 ffto(2H-«(»)> if\ñ\even,
B(ñ)Abo^KV¡       ,„_   ,    f_ '

V   ' Us/2!"!-1-*"»     if\ñ\odd.

2.1 follows from the following result, to be proved below.
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Proposition 2.3. There is an equivalence mod KZ2's

BO(8)Abo^MO(8)Abo^i A   V SSkA A A        V V">Z
* k>\ />0 ' \       m odd      J>0

A    A    (Z2 V 24'fi(2"(/))) Abo,
«(0 = 2

w/ieve Z « a stable complex whose Ax-structure is

rJÙ

and Zj is its j-fold smash product. Here (n) denotes a stable n-cell, ^~^ denotes

attaching map tj G irn+x(S"), and — denotes attaching map 2 G <nn(S").

Proof that Proposition 2.3 implies Theorem 2.1. Let &, <$, and Q be the three

A-products on the right-hand side of Proposition 2.3, i.e. RHS = & A % A 6 A bo.

Using Lemma 2.2, G A bo becomes

v2^--h(e>'   meven'
v \bsp<e-x\    |F|odd,

where Fand e are as in Theorem 1.1. Using Z A Z A bo — K V bo, & A <& A bo can

be written

KV     A       V 24"VZ"U /\bo = ÍVVZ^ZM Abo.
m—\ not  />0 U
an even
2-power

Thus RHS of Proposition 2.3 becomes

bo(e\ \U\e\, \V\ev,

bsp<e~x\ \U\ev, |K|od,

ZAbo(e\ \U\od, \V\e\,

ZAbsp(e~x\ \U\od, |K|od.

2 2«\u\ + \v\). .

u,v

Since Z A bo^— bsp<e~x\ this implies Theorem 2.1. There are no KZ/s on the

LHS of Theorem 2.1, because the RHS without the K contains none.    D

We write the ^-splitting of [4,2.9'] in notation more convenient for this paper.

Let Mn denote the ^4,-module with generators m4, for 0 < /< n — 1 and relations

Sq'mo, Sq'm4, + Sq2Sq3m4,„4 (1 < i « n - 1), and Sq2Sq3m4„_4. Thus Mn =

Qx „_, where QXn-X is as in [6,3.11] and [4,Chapter 2], Mn is stably isomorphic to

H*B(n) if n is a 2-power [6,3.12], and Mn is stably isomorphic to (S-1/)2" ' [4,2.1]

if n is even. Let / = H*Z (of our Proposition 2.3) be as in [4, Chapter 2]. If S is a set
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of modules, let P(S) and £(§) denote the polynomial and exterior algebras on S, i.e.

P(§)= ®  ®M8j   and   E(%) = (g>(Z29M).
A/eS ;»0 A/eS

(This use of P( ) differs from that in [4].) Then [4,2.9'], modified as in the sentence

which follows it, can be restated:

Proposition 2.4. H*BO(%) is stably Ax-isomorphic to

P({22'Z2: i > 3})®P({28'Z2: a(i) > l})

®p{{2.%iZ2:iodd,ot(i- 1)> 1})

®£({247:/odd,a(/- 1) > l})

®£({24/A/r,o:a(/) = 2}).

// g¡ E H'(BO(c))) is the generator of [4,2.4], then the initial classes of these

summands are, respectively, g2*,gl + gv-igti+ugingn-ign, andSai-

Here we use that the Thom isomorphism H*BO(&) -* H*MO(S) is an ^-equiva-

lence (in fact an ^-equivalence) to identify the two. The only properties of MO (8)

that we use in the remainder of the paper are its /l^cohomology and its multiplica-

tion, both of which are true of 50(8), so that everything said for MO(8) from now

on can be said of 50(8). Note that if the first two factors of Proposition 2.4 are

combined and the third and fourth factors combined, the decomposition of Proposi-

tion 2.4 corresponds directly to Proposition 2.3.

From now on, we shall delete Z2 from the second component of Ext( , ), and

denote MO (8) A bo by Mb. From Proposition 2.4 (or perhaps [4,2.3] is slightly

more convenient for this purpose) and [4,2.2] one can easily write the chart for

ExtAi(H*MO(8)) <« ExtA(H*Mb). The chart begins as in the figure and continues

in this fashion.

Î

V.
V- VL

8

v_
16

Here, and elsewhere, we use the ASS charts introduced in [1] and used extensively

in papers such as [6 and 7]. A dot in (x, v)-position (t — s, s) corresponds to an

element in a basis of Extst(H*X), and if it survives the spectral sequence contrib-

utes to irt_s(X). Vertical lines correspond to multiplication by 2 in tr^i )• Often, as in

the chart above, we just indicate the vertical lines without indicating the dots which

they connect.
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There are no possible nonzero differentials in the ASS converging to tr^Mb), and

no exotic multiplications by 2. To see the latter, in degree = 0 (4) an exotic

multiplication can be avoided by rechoosing the generator, while in degree d = 1 or

2 (8) 2tj = 0 implies 2md(Mb) = 0. Filtration zero Z2's due to free^'s in H*MO{%),

which are not pictured in the above chart, cannot extend into elements of filtration

> 0 because the latter is acted on freely by P G m%bo. Finally, a filtration zero Z2

such as the one in the chart in degree 26 satisfies P ■ 2g4i+2 = 2tj v4(+9 = 0, so that

2g4,+2 = 0.

The first four factors of Proposition 2.4 multiply out to give a stable sum of

28%'s and S8/+4/'s (since J A J <» Z2, stably).

Proposition 2.5. For every 28*Z2 (resp. S8/+V) in the Ax-splitting of 77*50(8)

given by Proposition 2,4 (after multiplying out) there is a map SSk->Mb (resp.

28/+4Z -» Mb) such that under the isomorphisms

Horn™(H*Mb,Z2) » Hom8^H*MO(8),Z2)

« HoœÇ*(28%,Z2) © Horn^CZ,),

(resp. Hom84/+2(/7*Mè,Z2)«Hom8j+2(28/+4Z,Z2)©Hom84'+2(C',Z2)), where C

(resp. C) is the complementary summand in the Ax-splitting, [/] (resp. [f ° i] where i:

58/+2 =* 28/+4Z) corresponds to g © 0, where g is the nonzero element.

Proof. The element of Ext°/k(H*Mb, Z2) » Hom8^(H*Mb, Z2) corresponds un-

der the ASS to the desired map SSk -» Mb. For S8/+4/, the element of

Ext°/'+2(H*Mb, Z2) gives the map on the bottom cell of 28/+4Z. Since 2[/8/+2] = 0,

7T8/+3(Mè) = 0, and [58/+4 U2e8/+5, Mb] = 0 above filtration zero, there are no

obstructions to extending this map over 28/+4Z.    D

For the last factor of Propositions 2.3 and 2.4 we have the following result, which

sounds similar to Proposition 2.5, but is much more difficult to prove.

Proposition 2.6. For every I with a(l) = 2 there is a map 24/5(2"(/)) -> Mb such

that f*(g4¡ ® 1) ^ 0 and f*(g¡ ® I) = 0 if gr is a product of two or more of the

generators ofH*(BO(S)) o/[4,2.4].

Before proving Proposition 2.6, we use it and Proposition 2.5 to prove Proposition

2.3 (and hence Theorem 1.1).

Proof of Proposition 2.3. For any 28m+47 (or similarly for 28i:Z2) occurring in

the expansion of the first four factors of Proposition 2.4 and any finite set {/,,... ,/r)

of integers with a(l¡) = 2, we use the ring structure of Mb and the maps of

Propositions 2.5 and 2.6 to form the map

28m+4z A 24'i5(2"C')) A • ■ ■ A24/'5(2"('')) -» Mb A Mb A ■ ■ ■ AMb -> Mb.
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We form the wedge of all such maps, apply Abo, and follow by the map Mb A bo -»

Mb to obtain a map from the RHS of Proposition 2.3 without the AT into Mb.

We thus have a map F between two spectra whose homotopy charts are isomor-

phic except for filtration zero Z2's. We will show that the induced map of homotopy

groups is surjective above filtration zero, which implies Proposition 2.3. We will use

the action of itjoo on the homotopy groups of the spectra, which is valid because of

the following lemma.

F
Lemma 2.7. If X Ab->Y Ab satisfies F = (Y A mb)(f A b) for some map f:

X -> Y Ab, then F„(rx) = rF*(x) if r G mj) and x E irJ(X A b).

Proof.

f Ab Ab                           Y Am Ab                       Y Am
XAbAbé->YAbAbAb->YAbAb-—►  YAb

X Am Y A m

XA b
f A b

Thus for example, a map of this type between two charts of the form

V

which sends the bottom class across induces an isomorphism, by considering the

action of the generators of mMbo on the generator of the first tower.

In considering the cohomology map of F, we must be somewhat careful because

the product structure used in splitting //*MO(8) in Proposition 2.4 was the product

in //*50(8>, while the product used in forming the maps was MO(8) A MO(8)-*

MO(8), corresponding to the diagonal A in H*MO(&). There is some compatibility

here, since the Thom isomorphism $ is a coalgebra morphism, and the diagonal of

77*50(8) is an algebra morphism.

Referring to the calculation of tr^Mb from ExtA(H*MO (8)) using Proposition

2.4, the summands of n^Mb due to Z2's and /'s are in im(F+) by construction

(Proposition 2.5), as are those due to 24'M2k/) (by Proposition 2.6 and Lemma 2.7).

For

24/'5(2"</')) A • • • A24/'5(2"(/-)) ->Mb A • • • AMb ^Mb

(mp)*($(gf) ®l)= />*($A'(g/) ® 1) = bottom  class  iff  g4! ®g4, E A%,

which is true if g, — g4l ■ ■ ■ g4/ and perhaps for some shorter products, but not for

any longer products. Since the homotopy charts due to the shorter products will
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already be accounted for in im F„,, we deduce that the first tower in the summand of

tr^Mb corresponding to

24/'Mr<„, ® ■■■ ®24/'A/2„w

is in im F^, and utilizing Lemma 2.7 that this entire sequence of towers is in im F„.

Finally we consider a summand

S8/+4/ g 24/'MrW $ ... ®24/'M2.<,,,

in 77*MO(8) from Proposition 2.4. (If 28/+47 is replaced by 28*Z2, a similar but

easier argument applies.) The map 28/+4Z -» Mb sends 0(g2) ® 1 to the class in

778/+4(28/+4Z), where g, is a product of an odd number of distinct g,'s with / = 2

(4). (To see this for a basic / in Proposition 2.4, $(g2, + g2l,_,g2i+1) ® 1 (-» Sq2

(bottom class), but $(g2/-ig2/+i) ® 1 cannot map to it, because it is in imiSq1).)

The element of

77*(28/+4Z A 24/|5(2"('l)) A • • • A24''5(2"('>)))

from which the first homotopy tower arises is

(middle class of 77*(Z)) ® (bottom classes of 5 's).

Using A as in the preceding paragraph, the map

mp: 28/+4Z A 24/'5(2"(/')) A • • • A24/'5(2"('')) -* Mb

sends $(gfg4it • • ■ g4l) ® 1, but no longer products, to this "bottom class". The

argument of the last sentence of the preceding paragraph completes the argument.

D
It remains to prove Proposition 2.6. Throughout the rest of this section let

n = 2v(,). Most of our work will be to prove the last statement of the following

result.

Proposition 2.8. If f: 24/5(«) -» Mb is as in Proposition 2.6, and \p is the

composite

,,    .    . ..    ,    . m'(f,Af,)Abo MO(8)Ambo
24/5(n) A24/5(«) Abo       ->       Mb A bo       -*       Mb,

then T8/+8n-4(24/5(n) A 24/5(n) A bo) » Z(2) with generator a8/+8„_4, and

t//*(a8/+8„_4) is divisible by 2.

Proof that Proposition 2.8 implies Proposition 2.6. The proof is by induction

on v(l). The case v(l) = 0 of Proposition 2.6 is easily handled as in Proposition 2.5

since 5(1) = S° U„ e2 U2 e3 and trsl+6(Mb) = 0 = ir%l+1(Mb). We will show below

that Proposition 2.8 implies that in the diagram

fiber (<t>Abo)

l i

(2.9) 24'5(«) A 24'5(«) Abo^Mb

l<¡>/\bo ,''

28/5(2«) A ¿o''
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\¡i ° i — 0, so that \p factors through a map f2!. The desired map f2, is the restriction of

f2l to the bottom cell of bo. The cohomological behavior of f2l follows from the

following lemma.

Lemma 2.10. If m' denotes the multiplication of MO (8), O is the Thorn isomor-

phism, and gi is as in [4,2.4], then m'*($g,) = 3>g4/ ® 3>g4/ + others iff I = 8/.

Proof. As in the proof of Proposition 2.3, this cannot be true for a decomposable

g, since kfrBo/%) preserves products. To see that this is true for g8,, note that

g2°+2" = 0)Sq(2a - 2b+x, 2b), so that it is equivalent to

A(xSq(2a+,-2*+2,26+,)[/)

= x Sq(2a - 2b+ ', 2b ) U ® X Sq(2a - 2b+ ', 2b ) U + others

in 77*MO(8), and hence to a similar statement (without the U 's) in A//A2. This is

immediate from

AxSq(5)=      2     x^(Sx)®XSq(S2).
S, + S2 = R

The proof that ^ ° i — 0 in (2.9) is similar to the proof of the case k = 2' of

[6,3.15]. There are some minor errors in [6,3.16 and 3.17]; we wrote a chart for

w*(^2' A B2i A bo) but called it a chart for ir*(B2¡ A 52<). By making minor changes

in the proof of [6,3.16], mostly adding Abo, we obtain the following result (n = 2"(/)

here, n = 2' for [6]).

Lemma 2.11. Ifn is a 2-power, let Fn = 28""5M2 A 5(1). There is a map Fn ̂ B(n)

A B(n) A bo such that the cofibre of the composite

jAbo ÍAfiAm

F„ Abo  -> B(n) A 5(h) Abo Abo     -»     B(n) A B(n) A bo

is equivalent mod K(Z2)'s to B(2n) A bo.

The corrected version of [6,3.17] should read (in the notation of that paper):

[6, Lemma 3.17] If 6 E [52, A 52, A bo, bo A bo] satisfies 0*(t2, ® t2, ® 1) = ¿2'+3

® 1,  there exists q of filtration > i + 4 such that the following composite is

inessential:

1 m(jAbo) 0 + q

F¡ -» F¡ A bo     ->     52, A 52, Abo -^ bo Abo.

[6,3.15] follows from this once we note that the cofibre of the composite c,

m(jf\bo)i/\bo lAm

F¡ A bo        ->        52, A 52, Abo Abo -» 52, A 52, A 6o,

is also equivalent mod K(Z2)'s to 52¿+i A bo, and [(0 + <?)c] = 0 so that 6 + q

factors through 52,+ i A bo.

The analogue of the corrected [6,3.17] for Mb is not true. [6,3.17] was proved by

calculating an ASS in which there were no possible nonzero differentials; but the

analogue for Mb has possible nonzero differentials.
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Instead we use Proposition 2.8 to see that

28/F„ ̂ >24'5(h) A 24/5(h) A bot Mb

is trivial on the bottom two cells, and hence on all of 28/F„ since Tril+in_t(Mb) = 0

for 1 < e < 3. If Abo is applied to this composite, and we follow by Mb A bo -» Mb,

we obtain a trivial map homotopic to 28/ (the composite of Lemma 2.11) followed

by \p. Thus by Lemma 2.11 \p factors as claimed in (2.9).    D

Proof of Proposition 2.8. The calculation of tt-8/+8„_4(24/5(h) A 24/5(h) A bo)

is easily performed as in [6, Chapter 3]. The possible difficulty in showing its image

under \p¡. divisible by 2 is exemplified below for 1 — 6.

-t-    A-    -t*    >t-    /îs *     4.

V

*

Y.
\/

48 56 64

tT*(l24B(2)AE24B(2)Abo)

48 56 64

part of TT*Mb

It is conceiveable that ^¿gm) might contain among its terms the filtration 3

generator and hence not be divisible by 2. When this possibility arose for bo A bo, it

was possible to vary 7) A f to cancel this behavior, but here it is not possible,

essentially because the sequence of towers in 7r„(2245(2) A 2245(2) A bo) begins

earlier (in 48) than the sequence of towers in it ¿Mb) beginning in 56 which contains

the possible obstruction.

In order to prove the divisibility by 2, we consider the diagram

24'5(h)A24'5(h)     ^    Mb

Ij /c

Sx Kr24/5(n) A24'5(h)

and show that (j A bo)st(a%l+in_4) is divisible by 2, plus perhaps an element of

order 2 of positive filtration. But an element of the latter type must map to 0 in

TTsl+Sn_4(Mb), since it is torsion free above filtration 0. The factorizability of

B(n) A B(n) -» B(2n) through j is in §3. The existence of G follows from (i)j is the

cofibre of 1 - T: 24'5(h) A 24/5(h) «- and (ii) m'(f, Af) t= m\f,/\f,)T.

We begin to calculate ^((S1 CXr 24/5(h) A 24/5(h)) A bo). There is a short

exact sequence of A -modules

0^2coker(l + T) -> H*(SX Kr 24/5(h) A 24/5(h)) - ker(l + T) -> 0

where 1 + T: 77*(24/5(h) A 24,5(h)) «= . By [6,3.12] 77*5(n) ~ ßi,B-i © F as

A, -modules, where Q x n , is as in [6,3.11 ] and F is a free A, -module. When there is a

splitting of Ax-modules 77 « Q® F, the morphism 1 + T: H ® 77 <-= splits into

components on Q ® Q, F ® F, and (Q ® F) © (F ® Q). The following calculation

will be presented later.
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Lemma 2.12. There are isomorphisms of stable Ax-modules

m m

(i)    ker(l + T: QXm ® QXm -)~ 0^2m+1 © © 28'+2Z2 © © S8'"2/,
1=1 /=1

m m

coker(l + F: ß1>M ® ß, ffl «=) * 0 28'Z2 © © 28'+47;
(=0 i=0

(ii)    ker(l + T:AX ® Ax <-=) ~ (22 © 26)ßi/,

coker(l + F: ^, ® Ax «=) « (26 © 210)Z)ß[/

w/iere ß^ ¿s ß, „ without the top (4n + 3) dimensional class, and DQX is the module

dual to Qx (DQX begins in degree -6).

Because 2.12(h) implies that the Ax's in H*B(n) give rise to significant homotopy

of Sx K jB(n) A B(n) A bo, we must be careful to show that they cannot affect us.

Let 5 = 24/5(h) and b = bo. There is a map XV F^B Ab such that

(5 A mb\g A b) is an equivalence (XVF)AT>^5AZ> where 77** « 24/ßln_1

and 77*F is a free ,4,-module. (X can be taken to be 24/(S° UXCF4"+2) and the

map constructed as in [7,2.1].) The composite 6,

eAgAft SASAm

(JÍVf)A(JÍVF)Aíi    ->    (B Ab) A(B Ab) Ab     -»    BABAb,

is an equivalence and the following diagram commutes:

(lVf)A(jfVf)Aii      ->      BABAb

1(1 -T)Ab i(l-r)Ai)

(JfVF) A(íVf) A¿      ->      BABAb

Thus so does the map of cofibres:

(lAIA/,)V(fAFAft)V((íAFVFAl)A¿)^   BABAb

I j' a ¿> I y a ft

(S'KTIAIAè)v(SlKTFAFAii)vH'AÎ)    ~*   S1 IXr(5 A 5) A ¿>

where If = cof(l - F: * A F V F A X *=). Since the generator a of 77-8/+8n_4(5 A

5 A b) comes from that of X A X A b, the divisibility by 2 of (/ A b)^a follows

from that of (j'x A b)#a in ir¿Sx IX TX A X A b).

There is a long exact sequence

-» Ext^TC) -» Ext^'(77*(5' KTXAX)) -> Ext^'(2C) -> EjO%1*(K) -»

where by Lemma 2.12 there are stable Ax -isomorphisms

(n-\ n-\ \

Qin-x ® © 28,+2Z2 © © 28'-27   ,
1=1 1=1 /

ln-\ n-\ \

C~28'   028'Z2© ©28,+47   .
\i=0 1=0 /
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Thus ExtA(H*(SX XTX A X)) above filtration zero is a sum of the following three

types of charts with possible d,-differentials ( ^) from the third type to either of

the first two. These charts also depict ^(S1 K T X A X A bo), with the possibility of

dr-differentials for r > 1 from the third type.

•       *      *

♦ it- *■ ♦ * *

8Í.+
0       4

n-1
®

i=l

8n-8   8n-4 8n+4

t

I fc
BT+BT+F

n-1
9

i=0

k.
v

8Í.+8Í+1

In particular iril+in_A\Sx KTX A X Abo)is Z(2) or Z/2' for some i > 2 plus high

filtration Z2's in im(rj2). It is easily verified that

ExtA<(H*(XAX)) ^ExtA{(H*(Sx XTXAX))

maps onto towers in t — s = 0 (4), ; — s < 8/ + 8n. Thus m
8/+8n _4(XAXAb)

%+8„_4(S KTX A X A b) sends generator to 2-generator plus perhaps Z2's in

postive filtration. As noted earlier in the proof, this implies wg/+g(I_4( A" A X A b) ->

w8/+gn-4(Mb) has image divisible by 2, completing the proof of 2.8 (modulo Lemma

2.12).    D

Proof of Lemma 2.12. (ii) is omitted since it is a single calculation, and it is not

used in this paper. Let K = ker(l + T). Then K has as basis elements (/', j) for

i <j, {i, j} C {k: 0 < k < 4hj + 3, k ¥= 1), where (i, i) = x, ® x¡, and if i <j,

(i, j) = x¡ ® Xj + Xj ® x¡. Let Sd denote the sum of all elements (/', j) of degree d.

These elements Sd form an /1,-submodule of K isomorphic to Q2m+X. Sending

28,+2Z2 to (4/ + 1,4/ + 1) and 28,~27 to the Ax-submodule generated by (4/ - 2,4/

— 2) gives a monomorphism

m m

QL+i ® © 28'+2Z2 © © 28'-2J - 7Í

which induces an isomorphism in ß0- and ß,-homology and hence is a stable

Ax-isomorphism by [15]. The isomorphism in ß,-homology follows from H^(K; Q0)

= <(/', /'): /' = 0 or i odd) and H„(K; Qx) = ((/, i): i = 4m + 2 or i odd). This is
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seen by splitting Tí as a ß0-module and then as a ß,-module. For example as a

ß,-module it is a free module on

{(/, ;): /even, i < 4m,j > i,j <2 {/ + 1, i + 3}}

plus a trivial module on {(/', /'): /' = 4m + 2 or / odd}. A similar argument works for

coker, with elements (a, b), a < b, representing the equivalence class xa ® xb ~ xb

® xa. The Z2's are (4/, 4/)+ (4/ — 1,4/ + 1) and the J's are generated by (4/, 4/

+ 2).    D

It seemed reasonable to try to deduce Theorem 2.1 from Proposition 2.4 without

using any specific knowledge of the cohomology classes involved in the splitting, i.e.

to avoid the need for the maps B(n) A B(m) -> B(n + m). The author attempted to

mimic the cellular method of [7, Chapter 2] to prove that if 77* X is stably Ax -isomor-

phic to

© 28"'(2-7)e' © © 28",'+4(2-1/)/'/,

then X A bo == K V V28"'7>o<e<>V V28m'+4fo/><<'<-,>. An obstruction was encoun-

tered, which led to the following example.

Example 2.13. There is a spectrum Y with 77*7« 77*((5° UXCF14) V 58) as

yl-modules, but Y Abo* (S° UXCF14) A bo V 286o (= ¿>o<7> V 28¿>o).

Proof. Let W = D(S° UACF14) denote the Spanier-Whitehead dual of the map-

ping cone. Then ir^W « vr,F_15 for /' < -2. This is given in [10, p. 54] by

IA

Let/: S~9 -> Wbea non tri vial map of filtration 3. Then Y = D(W Ufe~*) is the

desired counterexample, for if Y A bo splits, there is a degree 1 map Y -» Ss A bo,

and hence a filtration zero element in tr_s(DY A bo). But a chart for DY A bo in this

range is

-4
3. Properties of B(n). We recall from [6 or 12] the definition of B(n). Let

W - fibre(fi253 -> S1) and Fn(W) be the filtration induced by the May filtration on

ß2S3. Then 5(h) is the Thom spectrum of

o2g.

F2n(W)^F2„(^l2S3)^Ü2S^BO

F2n+2m and WXWThe multiplication ß253 X Û2S3 ̂ ß2S3 sends F2„ X F2,

-» W (since hi covers S'XS'-»S'). Thomifying, one obtains B(n) A B(m)

B(n + m).
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In [2 and 3] it was noted that May's operad structure gives maps Sx X TF2n($l2S3)

X F2„(ß2S3) -» F4n(ß2S3). This induces maps Sx KTF2n(W) X F2„(IT) -» F4„(H^)

because the composite

S1 XrF2„(W)2 -> S1 XrF2„(ß2S3)2 -> ß2S3 -» S1 = K(Z, 1)

is trivial. Results of [3] imply that the induced map of Thom spaces is S1 X TB(n) A

B(n) -» B(2n) which has the desired effect in cohomology if h is a 2-power.
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