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BIHOLOMORPHIC INVARIANTS OF A HYPERBOLIC MANIFOLD

AND SOME APPLICATIONS

BY

B. L. FRIDMAN

Abstract. A biholomorphically invariant real function hx is defined for a hyper-

bolic manifold X. Properties of such functions are studied. These properties are

applied to prove the following theorem. If a hyperbolic manifold X can be exhausted

by biholomorphic images of a strictly pseudoconvex domain D C C" with dD G C3,

then X is biholomorphically equivalent either to D or to the unit ball in C". The

properties of hD are also applied to some questions concerning the group of

analytical automorphisms of a strictly pseudoconvex domain and to similar ques-

tions concerning polyhedra.

Introduction. Let A7 be a hyperbolic manifold of complex dimension n. Let

% C C" be a bounded homogeneous domain. We denote by B(x0, r) the ball in

Kobayashi metric (see [9]) of radius r > 0 with center at x0 E X. By "31 we denote the

set of all r such that there exists a biholomorphic imbedding F: % -» X, F(%) D

B(x0, r). We set

Definition 0.1.

(0.1) hx(x0,%)=M \/r.
reft

Clearly this function is biholomorphically invariant: namely, if í>: X -» y is biholo-

morphic, then hx = /iy°$.

Such functions with the property of being invariants could be defined for any

holomorphically invariant metric and any homogeneous domain %. For the

Carathéodory metric and % = U" the unit polydisk, these functions were defined

and studied in [4]. In this article we will consider these functions on strictly

pseudoconvex domains. The metric we will consider here is the Kobayashi metric, %

will generally be 5", the unit ball. We will prove that hx is nonnegative and

continuous, and if hx(x0,%) = 0 at a point x0 E X where A' is a hyperbolic

manifold, then h x = 0 and Xis biholomorphically equivalent to %.

Let {Xk}, 1 < k < oo, be a sequence of subdomains of X.

Definition 0.2. We will say that {Xk} exhausts X if for any compact K E X there

exists a number N such that Xn D K for any n > N.

One of the properties of h x is that hx -» hx uniformly on compacta if X is

completely hyperbolic. (A hyperbolic manifold is said to be complete if all subsets

bounded in the Kobayashi metric are relatively compact in X.)
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Let hD(z) = hD(z, B") where D is a bounded strictly pseudoconvex domain with

3D E C3. The main property of this function is

(0.2) hD(z)   -.  0.

This property shows for instance that the only bounded strictly pseudoconvex

domain where hD is a constant is the unit ball.

We will apply the properties of these functions to several questions. The first one

is the following.

Let G be a bounded domain in C", X a manifold. We will say that X can be

exhausted by biholomorphic images of G (or shorter "by G") if for any compact

K E X there is a biholomorphic imbedding FK: G -> X such that FK(G) D K.

Suppose that A' is a hyperbolic manifold and X can be exhausted by G. The

question is to describe X.

Questions similar to this one were studied in [1-4]. In [2] it was shown, in

particular, that if a hyperbolic manifold X admits an exhaustion by an increasing

sequence of biholomorphic images of the ball B" (or U"), then X is biholomorphi-

cally equivalent to 5" (or U"). In this theorem B" may be replaced by any bounded

homogeneous domain (see Theorem 1.2 below). In [1] sharp estimates were obtained

for the best imbedding of a polydisc in a ball and a ball in a polydisc. In terms of

our functions these results are

hB.(x, U") = hv„(x, B") = (ln[(^TT)/ (/h^T)])"1.

In the direction of this question we obtain the following theorem.

Theorem I. Let D EC" be a bounded strictly pseudoconvex domain with boundary

of class C3, and X is a completely hyperbolic manifold of complex dimension n. Suppose

it is possible to exhaust X by biholomorphic images of D. Then either X is biholomorphi-

cally equivalent to D or X is biholomorphically equivalent to B".

As a corollary we obtain

Theorem II. Two bounded strictly pseudoconvex domains with boundaries of class

C3 are biholomorphically equivalent if and only if each of them can be exhausted by the

other.

To put it another way, if two such domains are "approximately" equivalent they

are biholomorphically equivalent.

Theorems I and II were announced in [4].

Evidently any orbit of the group Aut(7)) of analytical automorphisms of a domain

D lies on a level line of hD. So hD may give us some information about Aut(D). We

obtain a simple proof of the following theorem: if D is a bounded strictly pseudo-

convex domain such that Aut(D) is noncompact, then D is biholomorphically

equivalent to a ball. This theorem is very well known for 37) E C°° (see [11]). We

prove it for 37) E C3. One more generalization of this theorem can be found in §4.

We prove there one theorem concerning Aut(G) where G is a polyhedron.

In §1 we prove Theorem 1.2 about exhausting a hyperbolic manifold by a

homogeneous domain. §2 is devoted to showing the relation between functions hx
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and hx when X is exhausted by {X„}. In §3 we prove property (0.2). In §4 we

present the proofs of Theorems I, II, theorems concerning Aut(7)) and some

remarks.

I wish to express my deep gratitude to Robert Bix who gave me much help in

preparing this paper for publication.

1. Exhausting by biholomorphic images of a homogeneous domain. We begin with a

general lemma.

Lemma 1.1. Let D EC" be a bounded domain, X a hyperbolic manifold of complex

dimension n. Suppose that there exist two relatively compact sets Kx E D and K2E X

and a sequence {Fk} of mappings Fk: D -» X that satisfy the following conditions:

(1) Fk: D -* Fk(D) is biholomorphic for any k < oo.

(2) For any 1 < k < oo there exists a point zk E Kx such that Fk(zk) E K2.

(3) For any compact K E X there exists a number s = s(K) such that FS(D) D K.

Then X is biholomorphically equivalent to D.

Proof. (1) We denote $k = Fk~x: Fk(D) -> D, xk = Fk(zk). Let Ux Œ U2 E

■ • • £ Un S • ■ • be a sequence of open sets such that U Un = X. One can see that

by passing to a subsequence if necessary we may assume that {<bk} satisfies the

following condition: for each n > 1, there exists an N such that {$k}k»N is defined

on Un and converges uniformly on compacta in Un to 3>: Un-> D. Evidently, 0 is

defined on X.

(2) Evidently $(X) E D. We want to show that $(X) C D. Since {xk} C K2 and

{zk} E Kx, we may assume (by passing to a subsequence if necessary) that {xk}

converges to xQ E K2 and {zk} to z0 E Kx. One can easily see that O(x0) = z0. Let

e > 0 be so small that the ball (in Kobayashi metric) Bx(x0, e) (2 X, and BD(z0, e)

S D. Let z E BD(z0, e/2). For a large number k, Fk(BD(z0, e/2)) E Bx(x0, e) (we

use here the important property of Kobayashi's metric: p(Fk(x'), Fk(x")) <

p(x', x")). So, for this number k, Fk(z) = x'k E Bx(x0, e). If x' is the limit point of

{x'k} one can see that O(x') = z. This means that <&(X) D BD(z0, e/2). O is a limit

of regular holomorphic mappings. Since X is connected $ may be either regular at

any point at X or the Jacobian of $ (in local coordinates) vanishes on X.

In the latter case 0( X) could not contain any open set (by Sard's theorem). Since

®(X) D BD(z0, e/2), 3> is regular on X. This implies that <&(X) is open, so

4>(A-) ED.

(3) We will show now that $ is one-to-one. Let x', x" E X. For a large number k

and the Kobayashi metric p we have

p(x', x") = p(Fk o *k(x>), Fk o $,(,»)) < p(9k(x'), *,(*"))

< p(9k(x'), *(*')) + p(*(V), *(*")) + p(*(x"), •*(*"))■

When A: -* oo we obtain

p(x',x")<p($(x'),$(x")).

Hence, if O(x') = $(x"), then x' = x".

(4) We will show that $(X) D D. From all we have already proved, X is

biholomorphically equivalent to a domain 4>(A') C 7). From this point on we can
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consider lasa bounded domain in C". We may now assume that {Fk} converges

uniformly on compacta to F: D -» X. It follows as in steps (l)-(3) that F(z0) = x0

and F(D) E X. For the mapping <t> ° F: D -* D and any z E D we have

O o F(z) = lim (t>k ° Fk(z) = z.
&—* 00

Hencefc(A')DZ).

It follows from (l)-(4) that 3>: X -» 7) is a biholomorphism, completing the proof

of the lemma.

Theorem 1.2. 7>r % C C" 7>e a bounded homogeneous domain, and let X be a

hyperbolic manifold of complex dimension n. If X can be exhausted by biholomorphic

images of%, then X is biholomorphically equivalent to %.

Proof. Let <bk: % -* X be a sequence of biholomorphic mappings such that for

any compact K E X there exists a number s such that ^(30)3 K. Let x0 E X and

z0 E 3C. Without loss of generality, we may suppose that x0 E <bk(%) for any k,

1 < A: < oo. Since our domain is homogeneous, we can find \pk E Aut(OC) such that

"W^t'i^o)) ~ zo- Now the sequence Fk — $k ° t^1 satisfies all the conditions of

Lemma 1.1 for Kx = {z0} and K2 = {x0}. Applying this lemma we find that X is

biholomorphically equivalent to %.

Theorem 1.3. Let X be a connected hyperbolic manifold, dimc X= n, and let

% E C" be a bounded homogeneous domain. Then

(1) hx(x) = hx(x, %) is continuous on Xandhx > 0.

(2) If there is an x0 E X such that hx(x0) = 0, then hx(x) = 0 and X is

biholomorphically equivalent to %.

Proof. (1) If there exists an x0 E X such that hx(x0) = 0 by Definition 0.1, there

exists a sequence {&k}, &k: % -» X, such that $k(%) D Bx(x0, k). Now applying

Theorem 1.2 we obtain that X is biholomorphically equivalent to % and, therefore,

hx = 0.
(2) Let hx(x0) > 0 at any x0 E X. Let us consider Hx(x0) — \/hx(x) = suprea r

(see Definition 0.1). It is enough to prove that Hx is continuous. Let *,, x2 E X be

so close that

2p(xx,x2)<Hx(xx).

Let e > 0 be any number such that

Hx(xx) — 2p(xx, x2) — 2e > 0.

Since p is a metric, one can obtain

Bx(xx, Hx(xx) - e) D Bx(x2, Hx(xx) - e - p(xx, x2)).

This means that

Hx(x2) > Hx(xx) - e - p(xx,x2).

So

(1.1) Hx(xx) - Hx(x2) ^ p(xx, x2) + e
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and

Hx(x2) - e - p(xx,x2) >0.

Similarly

Bx(x2, Hx(x2) - e)D Bx(xx, Hx(x2) - t - p(xx, x2))

and

(1.2) Hx(x2) - Hx(xx) ^ p(xx, x2) + e.

From (1.1) and (1.2), letting e ^ 0 yields

| Hx(x2) - Hx(xx) |< p(xx, x2).

This inequality shows that 77^ is continuous in the topology induced by the

Kobayashi metric. Since this topology is the usual one, we have finished the proof of

Theorem 1.3.

2. Exhaustion and the behaviour of hx. The main theorem we will prove in this

section is the following one. (hx below means hx(x, B").)

Theorem 2.1. Let X be a completely hyperbolic manifold and let {Xn}, 1 ^ n < oo,

be a sequence of subdomains that exhausts X. Then, for any x0 E X,

lim h^(x0) = hx(x0).
n-»oo

Remark. By Definition 0.2 there exists an N such that x0 E Xn for any n^ N.

The limit in the statement above is taken to mean h -> oo f or h > TV.

Before proving Theorem 2.1, we recall the definition of Kobayashi's metric [9].

Let M be a complex manifold, p,q E M. Chain a is a set of

(1) m holomorphic mappings/: 51 -» M,f(Bx) S M, i = l,...,m, and

(2) m pairs of points z}, w¡ E 51 such that /,(z,) = p, fm(wm) = q, and f(wj) =

fj+x(zJ+x) for y = 1.m — 1. Let d(z, w) denote the usual Lobachevsky-Poincaré

distance between z and w.

Definition 2.2.

m

Pm(p,i) = ™î 2 «(Zj,Wj)
° 7=1

where the inf is taken for all chains (m may be any number.)

The next property of this metric is particularly important. Let M, and M2 be

hyperbolic manifolds. If F: Mx -* M2 is holomorphic, then

(2-1) Pm2(f(xi), F(x2)) < pM>(xx,x2).

As a corollary we obtain

(2.2) If M, C M2, then pMi(xx, x2) < pM](xx, x2) for xx, x2 E Mx.

If BM(x0, R) = {x | pM(x0, x) < R} is a ball in the Kobayashi metric on M, then

(2.2) is equivalent to the following statement: for any x0 E Mx and R > 0,

(2.3) M, C M2 - BMi(x0, R) Q BMi(x0, R).
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Lemma 2.3. Let X be any complete hyperbolic manifold and let {A"n}"=1 be a

sequence of submanifolds that exhausts X. Let x0 E X and R > 0. Then for any e > 0

there exists an TV such that Bx(x0, R) D Bx(x0, R — e) for all n > N.

Proof. Let {t/„}^=1 be a sequence of open submanifolds in X such that

(i)t/„+13 [/„foralln,

(ü)U-=1l/=X

(1) Let x be a fixed element of X such that px(x0, x) < R — e. By Definition 2.2

there exists a chain am — {f¡, z¡, w,,\ i = 1,... ,m} such that

m

^d(z¡,wi)<R-e/2.
i=i

Since Ul1,/(51) E X, we can find a number / such that

m

u,3 U/,(*').
fc=i

By Definition 2.2,

Pui(x0,x)<R-e/2<R.

Thus for any point x E X satisfying px(x0, x) < R — e, we have found an / = l(x)

such that x E Bai(x0, R). Since Bx(x0, R — e) is compact (because X is complete),

we can find a finite number of points {xi}si=x such that

n _

U BvJx0, R) D Bx(x0, R-e),

where /(/) = l(x¡). Since the sequence {Un}™= x is increasing (2.3) implies that

(2.4) BUl(x0, R) D Bx(x0, R-e),

where L — max1</s:j Kx/). There exists a number TV such that Xn D i/L for h > TV. It

follows from (2.3) and (2.4) that

B¿x0, R) D BUl(x0, R) DB(x0,R-e).

The lemma is proved.

Proof of Theorem 2.1. (1) Let hx(x0) < \/r. There exists a biholomorphic

mapping F: B" -+ A" such that F(B") D 5^X0, r).

For any e > 0, there exists a 5 > 0 such that F((l - 8)B") D Bx(x0, r - e). Since

F((l - 5)5") S A", there exists a number TV such that XK D F((l - S)B") for any

TsT > TV. Now

XK D F((l - S)B") D 5^(x0, r - e) D 5^(x0, r - e),

so

A^o) < 1/ (r - e).

We have proved that

lim sup h ;^(.x0) < \/r,
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whenever hx(x0) < \/r. Therefore

(2.5) limsupA^(x0)<A^(x0).

(2) Let

(2.6) liminfH^jCn) < 1/5

for some 5 > 0. By Lemma 2.3, for any e > 0 we can find an TV such that

(2.7) BXk(x0, R) D Bx(x0, R-e)

for any K> TV. Now using (2.6) we can find a number / > TV such that

hXl(x0) < 1/5.

Hence  there  exists  a  biholomorphic  mapping F:   5" -» X, suchthat F(B")D

Bx(x0, R). Together with (2.7), this yields

F(B")DBx(x0,R-e),    so   hx(x0) < 1/ (5 - e).

Since e > 0 was arbitrary,

hx(x0) < 1/5.

Comparing this and the choice of 5 in (2.6), we see that

(2.8) M*o) < liminf A^(*0).

(3) From (2.5) and (2.8),

hm hx(x0) = hx(x0).
«-»00

The theorem is proved.

Remark 1. From the proof of this theorem one can see that limn^xhx — hx

uniformly on compacta.

2. The proof can be repeated for h x(x, %), where % is any bounded homogeneous

domain for which (1 — S)% Œ % for any 5 > 0. For instance, if %= U", the

theorem is true.

3. Behaviour of hu near the boundary of a strictly pseudoconvex domain. In this

section hD(z) means hD(z, B"). The main purpose of this section is to prove the

following.

Theorem 3.1. Let D be a bounded strictly pseudoconvex domain, 37) E C3. Then

limz-3z>Mz) = 0-

The next example shows that the ball 5" may be exhausted by biholomorphic

images of half of the ball. The idea of this example will be used to prove Theorem

3.1.

Example 3.2. Let D = B" n {z | Re zx > 0}. Let {Xk}f=, C D be any sequence of

points with the properties Xk = akex and lim^^ooX^ = ex, where ak E R, | ak |< 1,

ex=(l,0,...,0).

We will prove that there exists a sequence {Fk}, 1 *£ A: < oo, of mappings Fk:

D -» 5" with the properties:

(i) Fk: D -» Fk(D) is biholomorphic for any k < oo.
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(ii) Fk(Xk) = 0 for any k < oo.

(iii) {Fk(D)}f=x exhausts 5".

For this purpose let us put z' = (z2,... ,z„), z = (zx, z'), w = (wx, w') and

\wx = (z, -ak)/(\ - zxak),

I3-1) Fk-\   ,     n-2 ,/h ^[w  = VI - aLkz /(l - zxak).

Fk is an automorphism of the unit ball carrying Xk to 0. Fk: D -> 5" and (i) and (ii)

evidently hold. Now let | w | < 5 < 1. From (3.1),

z, = (w, + «J/(1 + wxak),

:• = /l - a\w'/(1 + w,afc).

17-1.rA    ■

Now

2_|,   ,2   ,    I.M2-T1(3.2)     IzMz.f + lz'l^
+ a* + "^ + w,a¿ + (l - a2) w

1 + wxak |

_ («I I H>. j2 + Wlqfc + iv,«, + !)-(!- a£)(l wx\2 - \w'\2)

11 + w\ak I

= l-(l-a2)(l-52)/|l+iv1a;t|2<l.

For Rez,, we have

l-Rez, = Reil-^±^)=Re.1+^
"'        ~\"       1+w,^/ l+wxak

_R  (l-«J(l-w,)^ (!-«,)(!+5)

1 + w,a* 1-5

Thus

(3.3) Rez,>l-(l-aJ(l+5)/(l-5).

From (3.2) and (3.3) one can see that, if ak is close enough to 1, then z ED. This

shows that, for a large number N,Fk(D)^> {w \ \ w \ < 5} if k > TV. This proves (iii).

The idea of the proof of Theorem 3.1 is as follows. We notice that it is enough to

show that for any sequence {Xk} E D, if Xk -» z° E 37), then limk_xhD(Xk) = 0.

First we reduce this statement to a similar one concerning Ds = D D U$, Us = {z |

| z — z° |< 5} where 5 > 0 is any positive number. Then using the idea of Example

3.2 we find a sequence of mappings Fk: Ds -> 5" with the same properties. Using

then Theorem 2.1 we prove the statement limk^œhDs(Xk) = 0.

I. We will now use Royden's definition of the Kobayashi metric (for details, see

[10]). Let p be a point on a complex manifold X and let v be a vector on the tangent

space Tp(X) of X. Consider all holomorphic mappings/: BR -> X(BR is a disk in C1

of radius 5) satisfying the conditions/(0) = p,f'(0) = u. Define the functional

(3.4) *(p,v) =
sup{5: 3/E 6{BXR, X),f(0) =p,f'(0) = v}
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The distance p(xx, x2) can be obtained by the formula

p(xx,x2) = inf  [l<í>(y(t),y'(t))dt,

where the inf is taken over all piecewise smooth curves y: [0; 1] -» X such that

y(0) = xx and y(1) = x2.

The following estimate is a lemma of H. L. Royden (Lemma 2 in [10], a proof is

given in [6]). We will need it in the following form.

Lemma 3.3. Let D EC" be any bounded domain, z0 E 37), U a neighbourhood of z0,

and d = U C\ D. There exists 8 > 0 such that, for any point p E d D Us, Us = {z |

| z — z0|< 5} and any v E Tp(D),

<t>D(p,v)>C<Sfd(p,v),

where C > 0 is a constant independent of p.

Lemma 3.4. Let D EC be a bounded strictly pseudoconvex domain with 37) E C2,

z0 E 37), and d = U C\ D, where U 3 z0 is û neighbourhood of z0. 7/hm2^Zo /¡¿(z) =

0, /Hen limz^,ohd(z) = 0.

Proof. (1) Let X E d D Us, where i/s is as in Lemma 3.3. Let Bd(X, r) be a ball in

the Kobayashi metric such that Bd(X, r) E Us, and let z E [D\Bd(X, r)] n Us. One

can see from Lemma 3.3 and Royden's definition of the Kobayashi metric that

pD(X, z)> Cr. Hence

(3.8) 5D(X,(C/2)r)c5,(X,r).

(2) Let {Xk} ED be any sequence such that lim^^A^ = z0. Without loss of

generality we may assume that {Aj.}^, C Us. The condition limk^xhd(Xk) = 0

shows that there exists a sequence {Rk}, where 5¿-»ooasA:->oo, such that each

ball Bd(Xk, Rk) can be covered by the image of an appropriate biholomorphic

imbedding Fk: B" -* d. From the behaviour of the Kobayashi metric near the point

z0 (for details see [6]) one can deduce that there exists a sequence {rk} such that

rk < Rk, rk -» oo, and Bd(Xk, rk) E Us. Now, for each k — 1,2,... ,(3.8) implies that

BD(Xk,(C/2)rk) E Bd(Xk, rk) E Bd(Xk, Rk),

and therefore

hD(Xk)<(2/C)(l/rk).

Since rk -» oo, we have proved that hmk^xhD(Xk) = 0. Since the last statement

holds for any {Xk} such that lim^,*, Xk — z0, we have proved Lemma 3.4.

II. 7) now means a fixed strictly pseudoconvex domain, 7) = {z | \p(z) < 0}, where

t//(z) is a strictly plurisubharmonic function of class C3 in a neighbourhood of D

with d\¡/ ¥= 0 on 37). Let z° E 37), and let C/be a neighbourhood of z°.

(1) First let F be a linear orthogonal transformation which carries z° onto the

origin. We will denote T(D) by D, T(U) by U, and <// ° F"1 by t//.
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If U is small enough, we have the following Taylor formula for ip in U:

(3.9) * = 2Re2|* z + Re   \
-1    °Z,PZv

Z   ZH   v

+ Í770(^,z) + O(|z|3),

where \ H0(\p, z) is the Levy form.

Let us now introduce new coordinates

(3.10) w, = 2
v=\

3z..
z+x- 2 ~^- z z

and w' = (w2,... ,w„) where w2,... ,wn are coordinates in the tangent space F0(37))

at 0. If U is small enough, this transformation is biholomorphic. In new coordinates

our function (which is denoted now as \px(w)) has the following representation:

*,(w) = 2Rew, + 2-H0(xpx,w) + 0{\w\3),

where H0(\p, w) is the Levy form.

(2) Now we can find a linear transformation (we again use the letters z„ for new

coordinates) z, = wx and z' = l(w') such that in these coordinates our function

<f>(z) = tyx(zx, l~x(z')) has the following representation:

(3.11) <i> = 2Rez, + 2Re[z,L(z)] + |z'|2 + 5(z),

where L is a linear function, z' = (z2,... ,zn), and

(3.12) 5(z)|< C,|z|3,       C, = const.

We define a domain Ds as the set of solutions of the following system:

(3.13)
2Rez, +2Re[z,L(z)] + | z' |2 + R(z) < 0,

<S.

Since <j> is strictly pseudoconvex,

2Re[z,L(z)] + |z'|2^a|z|2,       a > 0.

Taking (3.12) into account one can see that, for small enough 8 > 0,

(3.14) |z|2^ C2(-2Rez,)    foranyzE7)ä

where C2 — const > 0. We assume that such a 8 > 0 is chosen and fixed.

(3) Let e > 0, and consider the transformation $e: Ds -> C" described by

(3.15) *.

2z, + e

2z, — e

2/ez'

2z, — e

$:

z, = e
w. + 1

2(w,-1)'

= f*w. 1 '
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\p(w) = <b(<t>e x(w)) will have the following representation:

(3.16)   ^(w) = £ K±i)(-. - 1) + (^ + DK - 1)
2 I w, - 1

+ 2 Re
w, + 1 fe

2(wx
=T¡*—íliW + £-

W
'|2

\wx-\
+ 5($;'(w))

= £-
|w,-l

|2 I „, i  |2 '     I ... i  12 V    e   V     >),
wx — 1 Vf, — 1

where s(w, w) is a polynomial. The representation of Q,,(D8) can now be obtained

from (3.13) and (3.16):

(3.17)
w\2- 1 + 1/es(w,,w) + (l/e)5(0;1()v))|w1 - 1 |2 < 0,

40 | wx - 1 |2 > e(e | wx + 1 |2 + 41 w' |2).

(4) We will need below the statement: for any e > 0 small enough,

(3.18) |w| = |$e(z)|<C3 = const   foranyzE7)s.

To prove this we use the representation (3.15):

(3.19)

(3.20)

1 +
2e

2z, — e
< 1 +

2e

2Rez, — el 1 + ?rr = 3'0 + £

w  =
2fe\z'\       2{¡JC2(-2Wezx)

|2z,-£|        (-2Rez,) +

(Here we have used the inequality 2 Re z, < 0 and (3.14).) From (3.19) and (3.20) we

get (3.18).

(5) Next we prove that

(3.21) \(\/e)R(^x(w))\wx-l\2\^C4fe.

Using (3.15), (3.12) and (3.14), we obtain

|2

J5(*t-V))K-i|2 <-CAz\
2e

2Rez, — £

,,., (-2Rez,)     £ r
< 4C,C23/2-^-^-— < C4fe.

(-2Rez, +e)

The last inequality can easily be obtained by finding that the last but one expression

has its maximum (for -2 Re z, > 0) when -2 Re z, = 3e.

(6) <ï>e(7)s) now has the following description (from (3.17)):

(3.22)
v|2- 1 + {¡A(w)<0,

48\wx - l|>e(e|w, + 1| +4 | w' |2),
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where | A(w) \ < C5 = const. From (3.18) it follows that

(3.23) $E(7)S)^5"   as£^0.

The first limit in (3.23) is understood as a limit of sets.

(7) Let us return now to the initial domain D. Let Xk -» z° E 37). For each Xk we

choose z* E 37) to be one of the points on 37) closest to Xk. Without loss of

generality we may assume that for each Xk such a point zk is unique. We can now

7-\-
change the coordinate system so that the line joining zk and Xk is the Re z,-axis and

zk is the origin. Then we can obtain the representation (3.11). Let the image of Xk

after all these transformations be -2ekex where ek > 0. Now we can consider the

transformation $2£j (see (3.15)). One can see that all the constants 8, Cx-C5 are

uniformly bounded for all k > TV for some TV. Without loss of generality we may

assume that it holds for all k. Now from (3.23),

(3.24) $2 J Ds) -> B" in the sense of a limit of sets.

From (3.15) with e replaced by 2ek,

(3-25) <M^) = °-

(8) We have obtained the following. There exist a neighbourhood UB z° and a

sequence {Fk} of biholomorphic transformations of d — D n {/ such that

(3.26)F,(X,) = 0,
(3.27) Fk(d) -> 5" uniformly in the sense of the limit of sets.

(9) It is clear from (3.27) that for each k there exists a number 8k > 0, lim^M 8k

= 0, such that if we set Tk = (1 - 8k)Fk then

(i)F¿(í/) C B" for each A:,

(ii) {Tk(d)} exhausts B".

Now (3.26) implies that Tk(Xk) = 0, and Theorem 2.1 yields

(3.28) hm hd(Xk) = hm hTk(d)(0) = A,.(0) = 0.
&-» oo k~* oo

(10) Theorem 3.1 now follows from (3.28) and Lemma 3.4. This completes the

proof of Theorem 3.1.

4. Proofs of Theorems I and II, and remarks.

1. Proof of Theorem I. Let Fn: D -> X, n = 1,2,..., be a sequence of biholo-

morphic imbeddings such that, for any compact K E X, there exists TV such that

Fn(D) D K for all n > TV. The existence of such a sequence follows from the

conditions of the theorem. Let x0 E X. Without loss of generality we may assume

that Fn(D) 3 x0 for every n. We now consider the set A = {Fn~x(x0)} E D. There

are two cases to be considered.

Case 1. A is relatively compact in D. Then by Lemma 1.1 A" is biholomorphically

equivalent to D.

Case 2. A has at least one limit point z° E 37). Without loss of generality (by

passing to a subsequence if necessary) we may suppose that Mm„^ooF„~x(x0) — z°.

From Theorem 3.1 it follows that hm„^ooHD(Fn"1(x0)) = 0. Now Theorem 2.1 and

the fact that h is invariant imply that

hx(x0) = hm hFAD)(x0) = hm hD(F„-x(x0)) = 0.
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Theorem 1.3 (for X = B") now shows that Xis biholomorphically equivalent to 5".

2. Proof of Theorem II. Let Dx and 7)2 be the two pseudoconvex domains. Since

D2 can be exhausted by biholomorphic images of Dx it follows from Theorem I that

either D2 is biholomorphically equivalent to 7),, or 7)2 is biholomorphically equiva-

lent to B". In the latter case, since 7), can be exhausted by D2, it follows from

Theorem I that Dx is biholomorphically equivalent to 5" and, therefore, to 7)2.

Theorem II is proved.

Let D E C" be a bounded domain. Let z° E 37) have a neighbourhood U such

that 37) n £/ is strictly pseudoconvex and of class C3. It follows as in the proof of

Theorem 3.1 that

(4.1) hmH„(z) = 0.
z-*z°

(In fact this very statement was proved in section 3; it follows from Lemma 3.4 and

(3.28) for an appropriate d E D D U.)

We now denote by Aut(7)) the group of analytical automorphisms of 7). If

z' E D, T(z') = {z\z = F(z'), F E Aut(7))} is the orbit of z'. If we assume that the

closure T(z') contains z°, then there exists a sequence {Fk} C Aut(7)) such that

\imk^xFk(z') = z°. Now using (4.1) we obtain

hD(z') = hm hD{Fk(z')) = 0.
k-* oo

Hence it follows from Theorem 1.3 that 7) is biholomorphically equivalent to 5". We

have proved the following statement.

Lemma 4.1. Let D EC" be a bounded domain. Let z° E 37) have a neighbourhood

U such that 37) fl U is strictly pseudoconvex and belongs to the class C3. If there exists

a point z' ED such that the closure of its orbit T(zx) contains z°, then D is

biholomorphically equivalent to B".

As a corollary of Lemma 4.1 we obtain a new proof of the following well-known

theorem (for 37) E C00, see [11]):

Theorem 4.2. Let D be a bounded strictly pseudoconvex domain with 37) E C3. If

Aut(7)) is noncompact, then D is biholomorphically equivalent to B".

More information about Aut(7)) can be found in [7].

If G is a bounded domain, z° E 3G, and z° has a neighbourhood on 3G which is

similar to a part of the boundary of the unit polydisk U", we can prove an analogue

of Theorem 3.1. More precisely, let there be an analytic function f(z) in a

neighbourhood U of z° such that

(4.2) dGnU= {z||/(z)|=l}.

Using   the   functions   hc(x, U")   in   place   of   the   hG(x, B")   we   find   that

limz^zo hG(z, U") = 0. Analogously to Lemma 4.1 one can obtain

Lemma 4.3. Let D EC" be a bounded domain. Let z° £ 3G have a neighbourhood

U with property (4.2) (for some analytic function /). If for some point z' EG the

closure of the orbit (with respect to Aut G) of z' contains z°, then G is biholomorphi-

cally equivalent to U".
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Now let G C C" be a bounded polyhedron. Then G is a bounded domain such

that G = {z E C" | \fs |< 1, s = 1,... ,/>}, where the f unctions /,,... ,f are holomor-

phic in a neighbourhood of the closure of G. Then the (2 n — l)-dimensional

measure of all points having no neighbourhood U with property (4.2) is zero. Let

M(G) = U r(z) n 3G
zee

and let n2n-x(M) be the (2h — l)-dimensional measure of M. If G is the polydisk

U", then evidently M(G) = dU".

Lemma 4.3 yields

Theorem 4.4. If G is a bounded polyhedron and [i2n_x(M(G))>0 then G is

biholomorphically equivalent to U".

Biholomorphic classification of polyhedra and Aut G were considered in [5].
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