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QUOTIENTS OF L°° BY DOUGLAS ALGEBRAS
AND BEST APPROXIMATION

BY

DANIEL H. LUECKING AND RAHMAN M. YOUNIS

Abstract. We show that L°°/A is not the dual space of any Banach space when A is

a Douglas algebra of a certain type. We do this by showing its unit ball has no

extreme points. The method used requires that any function in L°° has a nonunique

best approximation in A. We therefore also show that the Douglas algebra Hx + Lf,

when F is an open subset of the unit circle, permits best approximation. We use a

method originating in Hayashi [6] and independently obtained by Marshall and

Zame.

1. Background and introduction. Let L°° be the usual space of (equivalence classes

of) bounded measurable functions on the unit circle F. Let H°° denote the subalge-

bra of L°° consisting of those functions whose Poisson extensions to the open unit

disk 7) are analytic. We let X denote the maximal ideal space of L00 and identify L°°

with the space of continuous complex-valued functions on X. We furnish L°° with

the essential supremum norm which we merely denote || • ||. Then 7700 is a Banach

subalgebra of L°° and if A is any closed algebra with 7/°° E A E L°°, we let M(A)

denote the maximal ideal space of A. Elements of A may be identified with functions

on M(A). In particular, functions in 77°° may be considered as functions on any one

of 7), F, X or M(HX), and we do not distinguish notationally between these

interpretations. We make use of the Chang-Marshall Theorem [4 and 11] which

states that any closed subalgebra A of L00 which contains H°° is generated as a

closed algebra by 77°° together with the set {b: b is a Blaschke product in 7700 and

b E A}. Such algebras are commonly called Douglas algebras.

The reader will need a familiarity with such concepts from the theory of uniform

algebras as representing measures, peak sets and weak peak sets. For uniform

algebras see the book of Gamelin [5]. For basic facts about 77°° and M(H°°) see [7,

12 and 14].

The subject of best approximation in Douglas algebras got its start with a

theorem of Axler, Berg, Jewell and Shields [2, Theorem 4] which states that every

function / E F°° has a best approximation in 77°° + C = {h + g: h E Hx, g is

continuous on F). That is, there exists a function/* £ 7700 + C such that II / — f*\\

= dist(/, Hx + C). From [12] we know Hx + C is a Douglas algebra and is

contained in all other Douglas algebras except 7700. After the Axler-Berg-Jewell-

Shields result, it was shown by one of us [10] that (77°° + C)/Hx is an M-ideal (see
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[10] for the definition) in L^/H00 and that this is enough to imply their theorem.

Then the other one of us [15] showed that the algebras 77|? (defined below) when E

is a weak peak set for 7700 also have the property that HE/H°° is an M-ideal and so

best approximations always exist in 77]?. A similar result is true if F is only a weak

peak set for H°° + C, except this time (H°° + C)E/H°° is the M-ideal. In particular,

best approximations exist in 77°° + Lf = {h + g: h E 77°°; g E L°° and continuous

at each point of F} when F is a closed subset of F. This particular case is shown in

[16] by methods which also establish the general case.

It was also shown in [2] that Lx/(Hao + C) is not a dual space because its unit

ball has no extreme points. This should be compared to L°°/77°°, which can be

identified with the dual of Hx. Our main result is a generalization of this to several

classes of Douglas algebras. If F is a closed subset of X let Hf = {/E F°°:

f\E E H°° |E}. If E is a weak peak set for H00 then HE is closed, i.e. it is a Douglas

algebra. (77°° + C)E is defined analogously and is a Douglas algebra if F is a weak

peak set for H°° + C. There is a naturally defined projection tt: X -» F given by

m(x) = x(z) for any homomorphism x on L°°, where z is the identity function on F.

Fora E F let Xa = w^a). If F is a closed subset of F then H00 + Lx = (77°° + C)E

with F = m~x(F). 77°° + Up is a Douglas algebra for any F but only when F is open

or closed can we obtain our results.

Theorem I. If A is the algebra 7700 + Lf where F E T is either open or closed, or if

A is HE where E EX is a peak set for H°°, then the unit ball of Lx/A has no extreme

points. Consequently L^/A is not (isometrically isomorphic to) a dual space.

The proof of this theorem requires the following propositions, which may be of

some interest in their own rights.

Proposition 1. If E is a proper peak set for 77°° and b is a Blaschke product with

b £ HE, then there exist a function h E HE, and a representing measure m for HE

which is not a point mass, such that \\b — h\\ = dist(b, HE) = 1 and h is not

identically zero on suppm, the support of m.

We remark that Proposition 1 is not valid if F is only assumed to be a weak peak

set. See Example below.

Proposition 2. 7/ F is an open subset of T and f E L°°, then there exists

f* E 77°° + Lx such that \\f-f*\\ = dist(/, 77°° + Lf).

Our proof of Proposition 2 is essentially the same as that obtained independently

by D. E. Marshall and W. Zame (unpublished) and by T. Wolff (also unpublished).

It uses an idea which may also be found in [6]. Propositions 1 and 2 are completely

independent of one another, and, in fact, apply to entirely different classes of

algebras.

Example. We give the example that shows that Proposition 1 is invalid if the

hypothesis on F is weakened to " weak peak set" (also called generalized peak set or

p-set), i.e. the intersection of a family of peak sets. Let m be a representing measure

for H°° on X whose support S is not X and not a singleton, then 5 is a weak peak set

[16, §4, Theorem C] and Hg ¥= L™. There must exist a Blaschke product b such that
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jbdm = 0 (Hoffman [7, p. 179]), so b<£ Hg. Suppose h E Hg such that \\b-k\\ =

dist(è, Hg) = 1. We claim h\s = 0. For || 1 - bh || = 1 and /(l -bh)dm=l. The

only way this can occur is if (1 — bh) \s = 1, whence h \s — 0.

This example shows, incidentally, that no support set of a representing measure

(other than X itself) can be a peak set. Since the only difference between peak sets

and weak peak sets is that the former are Gs sets, no such support set can be a Gs.

Thus, for example, no fiber Xa can be a support set (Sarason [13]).

2. Proof of Theorem 1. The idea behind the proof of Theorem 1 is the same as for

the case 77°° + C in [2]. The problems in adapting that idea to the present cases are

technical and essentially solved by Propositions 1 and 2. Therefore, let us outline the

proof first, illustrating the idea, before presenting the complete form.

Let A be any of the Douglas algebras described in the statement of the theorem

andlet/+,4 E L°°/A with \\f+A\\ = inf{||/+ h\\: h E A} = dist(/, A) = 1. In

all cases, there exists a function/* E A such that II/ — /*ll = 1 so, without loss of

generality, || /1| = 1. Let h E A be a nonzero function such that 11 / + h \\ = 1. (The

existence of h is one of the technical problems.) Consider/ + jh — (f+ h)/2 + f/2.

Then wherever h(x) ^0, \f(x) + ±h(x)\< 1. Letg E LT with \g\< 1 - |/+ \h \ .

Then || / ± g + A || = || / + \h ± g + A || < 1. If g can be chosen with g<£A, then

f± g + A are elements of the unit ball of Lx/A distinct from/ + A, whose average

is/ + A. This shows/is not an extreme point. (Choosing g £ A is the other technical

problem when A = HE. This gets answered by Proposition 1.)

We divide the proof into cases, the first being the case A — HE. Let/ + A E Lx/A

with 11/ + A || = 1. As above we may suppose 11/1| = 1. Following Axler [1] we

write f=bg where g E 77°° -I- C and b is a Blaschke product with b$A. Let h be

chosen for b as in Proposition 1, i.e. h E A, \\b — h II = 1, and h is not identically

zero on the support 5 of some representing measure m for A which is not a point

mass. Clearly then ||/— hg\\ = \\(b — h)g\\ *£ 1. Define h = -hg. We claim there

exists a point x E S such that \f(x) + \h(x)\< I. Suppose/is not zero at a point x

where h(x) ^ 0. Then | g(x) | = |/(x) \¥= 0, so h(x) ¥= 0. Thus f(x) + \-h(x) is the

average of two unequal points, f(x) and f(x) + h(x), in the unit disk and so

\f(x) + \-h(x)\< 1. On the other hand if/is zero at any point x E S, then \f(x)

+ lKx)\=2-\f(x) + h(x)\^2-.

Now we need to find a function <f> E L00; <¡> & A, such that | <j> \< 1 - \f + {h \ .

To this end, let W be a clopen neighborhood of x in X such that S\W ¥= 0 and

such that 1 — |/+ jh\> 0 on W. Such a neighborhood exists because Xis extrem-

ally disconnected. Let c > 0 be defined by c = inf{l — |/( v) + 2h(y) \ : y E W},

and let <¡> = cxw. Then | <f> |< 1 - \f + \h \ and <f> £ A. For if </> E A, then XwEA

and then

jxwdm = fxwdm = [fxwdm\ .

This contradicts the obvious 0 < ¡Xwdm < L As in the previous outline/± <p + A

are two unequal elements in the unit ball of L°°/A whose average is /+ A. Thus

/ + A is not an extreme point of the unit ball of F°°/A.
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For the second case, take A = 77°° + Lx where F is closed in F. If the Lebesgue

measure of F is zero, then A = HE, where E = m~x(F). By the Rudin-Carlson

Theorem (see [7, p. 81]) F is a peak set for the disk algebra i.e. there exists a function

/ E 7700 D 0 such that/(F) = 1 and \f(z)\< 1 for z E D\F. If we view/as defined

on X, it peaks on F, and so we have returned to the first case. The case where F has

positive Lebesgue measure was done by Younis in [16].

The third case is A = 7700 + Lf where F is open. Again, if / + A E Lx/A and

|| / + A || = 1, we may assume || /1| = 1 because of Proposition 2. From the proof of

that proposition there exists a Blaschke product bQ such that dist(/, A) =

dist( fb0, Hx + C) and such that b0 E A. Thus II / + b0h || = dist(/A0, 77°° + C) for

some h E 77°° + C. In fact, by a result of Holmes, Scranton and Ward [9] the span

of the set

{A + 77°°:A E7700 + C,dist(/Z>0, 77°° + C) = II/+A0"H = 1}

is all of (77°° + C)/77°°. If h(F) = {0} for all such h, then (77°° + C)\F= 77°° |F.

This is impossible because there exist continuous functions on any interval which are

not the restriction of any function in 7700. Therefore there exists a function

h EHX + C such that h(F) ¥- {0} and such that ||/+ ¿"„All = 1. Let h = b0h.

Then there is a point x E tr'x(F) such that h(x) ¥= 0, say x E Xa. As in the first

case \f(x) + jh(x)\< I and we can obtain a clopen neighborhood Wof x such that

1 — |/+ ^ A | > c > 0 on W and X\JV is nonempty. Let </> = ex w so tnat I $ I< 1 —

\f+2h\. Again / ± <#> + .4 are elements of the unit ball of Lx/A whose average is

/ + A. It remains to show that <i> £ A. In fact </> £ 77j? D ^4, because 7700 \x^ contains

no idempotents [7, p. 188]. This completes the proof of Theorem 1.

3. Proof of Proposition 1. In order to prove Proposition 1 we set our arguments in

the open unit disk, making use of the Corona Theorem of Carleson [3] which asserts,

in part, that the open unit disk D is a dense subset of M(HX). We will construct a

function h0 E Hx and a sequence wnE D such that (a) the closure of {wn:

h = 1,2,3,...} contains a point in M(HX)\X whose representing measure is

supported in E, (b) limn^xh0(wn) exists but is not zero, and (c) \\b — h0\\E = 1 =

dist(A, HE ), where II • IIE denotes the supremum of absolute value on E. Let us show

that this will suffice to give Proposition 1 : By Tietze's Extension Theorem and (c)

there exists a function f E Lx such that 11/11 = 1 and f\E = (b — h0)\E. Now

(b-f)\E = h0\E. Leth = b-f, then h E Hx and ||A~-All = ll/ll = 1. Let hi be
the representing measure mentioned in (a) and x the point in the closure of {w„} it

represents. Then /A dm = jh0 dm = h0(x) = hmn_00 h0(wn) ¥= 0 because of (b), and

so A cannot be zero on suppw. The construction of A0 and {wn} requires several

steps.

Step 1. For every e > 0, e < 1 there exists an analytic function g = ge such that

||6-g||«£l + e,||g||£>2and||g||<3.
Proof. Let </> be a linear fractional transformation which maps 0 to 0 and which

takes 7) onto the disk with center at 1 and radius 1 + e. Let g = (<¡> ° b)/b. Then

g E Hx because <j> ° b has the same zeros as b and IIA — g II fl = \\b — b(<t> ° b)\\ T =

111 — <í> o All = 1 + e. Moreover, ||g|| = 2 + e < 3. Finally, the inequality II g II £ > 2
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follows from A(F) = F. For, supposing this equality for the moment, we see that

<j>(b(E)) is the circle of radius 1 + e about the point 1, and consequently Il g II £ =

ll<#> ° A||£ = 2 + e > 2. To see why b(E) = T, suppose that it were not, then we

claim A is invertible in HE, contrary to hypothesis. Because of Theorem 4.1 of [17] it

is enough to show that b \E is invertible in Hx \E. But if A(F) is a proper subset of T

then there exist polynomials/^ -» 1/z uniformly on A(F). Thenpn(b) -» g E 77°° \E

such that gA = 1 on E.

Step 2. Let <7 E 77°° satisfy q(E) = {1} and | q(x) |< 1 for x E X\E. For a > 0

\etpa = (1 — q)a, where we take the branch of za in the right half-plane with 1" = 1.

Then, for any e > 0 there exists a 8 > 0 such that

(3.1) \\b -PagE\\ < \ + 2e

for all 0 < a < 8.

Proof. Write\a =\pa \/WpJ, then

ll6-Ai.ll<ll*-X.&|| + nX.-/»J|.||&||.

Since Repa s* 0, || pa\\ -» 1, and Im pa -> 0 uniformly as a -» 0, we have IIXa — pa\\

-» 0 and so the second term can be made less than £. As for the first term, we

calculate

|*-*«&|<*.|*-g.| + (l-A.)|ft|

< X„(l + e) + 1 - Xa = 1 + Xae < 1 + e.

And so (3.1) is satisfied for all sufficiently small a.

Step 3. Let Û be any neighborhood in M(77°°) of F = q~x(l) Ç M(77°°). Let e > 0

and let 8 > 0 correspond to e as in Step 2. Let U = U D 7). Then there exists a

function/ E Hx such that/(F) = 1, |/(z) |< e for z E 7)\t/, II / II = 1 and

(3.2) ||A"-//>age||<l+3e,       0<a<6.

Proof. The inequality (3.2) will follow exactly as in Step 2 provided/has positive

real part and small imaginary part. Thus let R be the domain |z|< 1, 0 < x < 1,

|y\<e/\2. Let x be a conformai map of 7) onto R with x(-l) = 0, x(l) = L

Choose 17 > 0 so small that {z E 7): | 1 - q(z) |< r/} ç U. Let V = {z E D:

|x(2)|<e}. Now choose a Möbius transformation t: D-> D onto, such that

t({z E D: | 1 — z |> t/}) E Fand í(l) = 1. (This is possible because

z - 1 + 1/h
-:-—.-> -1    as H -» 00,
1 - (1 - \/n)z

uniformly on any compact subset of 7)\{1}.) Finally, let / = x ° t ° q. For z E U,

| 1 - q(z)\> 7} so t(q(z)) E V, whence |/(z) |< e. Clearly f(E) = {1} and ||/|| = 1.

Moreover, 0 < Re/^ 1 and | Im f\< e/\2 and this is sufficient to guarantee that

Wb-fpagt\\ < II*- \f\page\\ + II/" l/l II -\\pagc\\

< 1 +2£ + 2-j~6< 1 + 3e.

Step 4. Let {e„} be a sequence of positive numbers tending monotonically to zero.

Write g„ for ge. Then there exist a sequence of open sets U„= UnC\ D where Un is a
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neighborhood of F, a sequence of functions/, E Hx, a sequence of points wn in 7),

and a sequence of positive numbers a„ converging to 0 such that:

(i) Un D Un+X, wn E u„\u„+x, nx=xun = 0.

(Ü) Z"j=l \Pj(')\<'n> z G U„, where Pj = pa.

(m)2«LB+1|#z)|<Efl,*eZ>\i/B+1.

(iv) II* -fnpngn\\ < 1 + 3£„ and/„(F) = {1} for all n.

(V) \fn(Wn)Pn(Wn)gn(Wn) |> h fOf all H.

Proof. Let Ux = D and choose/, as in Step 3 relative to e,, i.e.

H*-/iAiftll<l + 3«i

for all sufficiently small a and fx(E) = {1}. Choose wx E £/, such that l/^w^g^w,)!

> 2 (clearly possible since || /,g, Il £ > 2). Finally, choose a, so small that (3.1) holds

with a — ax and e = e, and so that |pa (wx) | > \. Thus (iv) and (v) are satisfied with

w= 1.

Now suppose Uk,fk, wk and ak have been chosen for 1 < k < n such that (i), (ii),

(iv), (v) are satisfied and such that

\fk(z)\<ek/2k   forzED\Uk,       k=\,2,...,n.

Choose U„+x = {z: \ q(z) — 1 |< r/} where tj < 1/h is so small that Un+X E Un,

wn& £4+1, and
n

I \Pj(z)\<'n+u       z£Un+x.
7=1

Choose fn+x as in Step 3 with en+x/2"+x for e and l/n+1 for U. Choose wn+x E Un+X

so that |/„+i(M;„+i)g„+1(vvn+1) |> 2 and choose an+x so small that (2.1) is satisfied

with a = an+x, e = en+x and also so that \pan+l(wn+l)\> i

The inductive choices clearly insure that (i), (ii), (iv), and (v) are satisfied.

Moreover, for z 6* Un

00 00        g

2   |/,(*)|<2   é<*n
n+\ n+\  L

and so (iii) is satisfied.

Step 5. DefineA0 = 1x=xfkpkgk. Then A0 E 7700,

liminf|A0(wJ|>i    and    | b(z) - h0(z) |< 1 + lle„,       z£i/„.
/!->O0

Proof. If z E Un\U„+x,

00

*=i

(n-l oo      \

2+2    |A(zWz)g,(z)|.
A=l       k=n+\l

The first term is bounded by 2 and the two sums are bounded by 2e„ and 6e„,

respectively, because of Step 4, (ii) and (iii). Thus the sum defining A0 converges

uniformly on compact sets in D and is bounded there by2-r-8e[,soA0E Hx. Now

I h0(wn)\^\fn(wn)pn(w„)gn(wn) I -2e„ -6en>{- 8e„
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so liminf | hQ(wn) \> {-. Finally, if z E U„ then there is an integer m > n such that

z E U„\Um+l. For such a point z,

| bjz) - A0(z) \<\bjz) - fm{')PÁ*)gm{z) I

m— 1 oo

+  2 2\Pk(z)\ +    2    6|A(z)|
k=\ k=m+\

<l+3em + 2em + 6em<l + lle„.

To complete the proof, replace (w„}, if necessary, by a subsequence so that

{A0(wn)} has a limit and so that {vv„} is an interpolating sequence. In [8] Hoffman

shows that any limit point x in M(HX)\D of an interpolating sequence lies in

M(HX)\X. Such an x must satisfy x E D Un and so | 1 — q(x) |< 1/h, i.e. x E Ê.

Any representing measure m for x must satisfy fq dm = q(x) = 1, consequently

suppw E E. Finally, 1 < ||A — A0||£ < IIA — h0\\v -» 1 as h -» oo. Thus (a), (b),

and (c) are verified.

4. Proof of Proposition 2. Let f E Lx and let /„ be a sequence of functions in

A = 77°° + L£ such that II/-/JI -» dist(/, A). LetB = Hx[f„: n = 1,2,3...], the
closed algebra generated by Hx together with the functions {/„}. Then dist(/, A) =

dist(/, B). By the Chang-Marshall Theorem each fn is a limit of functions of the

form bh where A is a Blaschke product invertible in A and A E Hx. Now a Blaschke

product A has its conjugate in A if and only if the zeros of A in 7) have their cluster

points in T\F. Following a method of Axler [1] (employed by Hayashi in a context

similar to ours) we construct a single Blaschke product A0 such that A0/„ E 77°° + C

for all h, and such that A0 E A. To this end, fix h and let bkn be Blaschke products

invertible in A and let hkn be elements of Hx, k = 1, 2,3,..., such that II/„ —

bknhkn || -» 0 as k -> oo. Let J^-,/ = 1, 2,3,..., be open sets in C such that Vj D Vj+,

all/ and DjVj = T\F. Write A*„ = **„**'„ where b'kn is a finite Blaschke product

and b'kn has its zeros in D n K*+B, and where, if {zy} are the zeros of b'kn with

multiplicities {a,.}, then 2(1 - | z} \)aJ < 2"*"". Let b0 = Uk>nb'¿„. Then, as in [1],

dist(*o/B, 77- + C) < HA0/„ - b0bknhkn\\ - 0

because b0bkn is the product of a Blaschke product and the conjugate of a finite

Blaschke product so that b0bknhkn E H00 + C. Moreover, the zeros of A0 cluster

only on F\F so A0 is invertible in A. Thus we have the following

b0B E Hx[b0f„: n = 1,2,...] E Hx + C E b0A

and

dist(/, A) = dist(A0/, b0A) < dist(A0/, 7700 + C)

< dist(A0/, b0B) = dist(/, B) = dist(/, A).

Since Hx + C has best approximations, there exists a function A E 7700 + C such

that ||*0/- All = dist(A0/, Hx + C). Taking/* = A"0A gives/* EA and 11/-/*II

= ||A0/-A|| =dist(f,A).   Q.E.D.

5. Remarks and questions. Several questions naturally come to mind here, some of

which have been asked elsewhere.
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Question 1. Although Proposition 1 fails for F a support set, is it nevertheless true

that Lx/Hx has no extreme points in its unit ball? Or the weaker question: Is

Lx/Hx the dual of any Banach space?

Question 2. The algebras A = (Hx + C)E, where F is a weak peak set for

77°° + C, are the only known Douglas algebras where A/Hx is an M-ideal in

Lx/Hx. Are they the only ones? We conjecture that the answer is yes. Along these

lines, Donald E. Marshall and William Zame (unpublished) have shown that if A is

any Douglas algebra and B = A[fx, f2,...] with fx$A, then B/Hx is not an

M-ideal. Thus there are many of both kinds. (The relation of M-ideals to Theorem 1

is that best approximations exist in A when A/Hx is an M-ideal. The existence of

best approximations is crucial to the proof.)

Conjecture. If ,4/77°° is an M-ideal in Lx/Hx then A = (Hx + C)E, where F is

a weak peak set for Hx + C.

We ask, nevertheless, the following

Question 3. Do all Douglas algebras possess a best approximation to any function

in L°°? If not, which do? If yes, are the best approximations always nonunique? If

not, when are they unique? (We count this as one question.)

Question 4. Is there an analogue of Proposition 1 for peak sets for Hx + CI (So

that Theorem 1 could be reduced to two cases.)

Added in proof. The second author has recently obtained a positive answer to

Question 4. P. Gorkin has informed us that she, too, obtained such an answer by

other methods.
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