
TRANSACTIONS of the
AMERICAN MATHEMATICAL SOCIETY
Volume 276, Number 2, April 1983

THE SHARP FORM OF OLEINIK'S ENTROPY CONDITION

IN SEVERAL SPACE VARIABLES

BY

DAVID HOFF

Abstract. We investigate the conditions under which the Volpert-Kruzkov solution

of a single conservation law in several space variables with flux F will satisfy the

simplified entropy condition divF'(u) < 1/i, and when this condition guarantees

uniqueness for given L°° Cauchy data. We show that, when F is C1, our condition

guarantees uniqueness iff F is isotropic, and that, for such F, the Volpert-Kruzkov

solution always satisfies our condition.

1. Introduction. In this note we investigate the conditions under which the

Volpert-Kruzkov solution of the conservation law

(1.1) u, + div F(u) = 0       (jcERn,f>0)

will satisfy the simplified "entropy" condition

(1.2) divF'(«) < \/t,

and when this condition guarantees uniqueness for given Cauchy data u0 E LX(R").

We show that when F is C1, (1.2) is a uniqueness condition if and only if F is

"isotropic" (to be defined below), and that, for such F, the Volpert-Kruzkov

solution of (1.1) always satisfies (1.2).

Recall that Oleinik has shown in [3] that, when n = 1 and F is C2 with F" > 0,

there always exist weak solutions of (1.1) satisfying

(1.3) ux< l/(minF")i

and that such solutions are uniquely determined by their initial values. Our condi-

tion (1.2) is thus seen to be a sharper form of Oleinik's condition.

We also observe that centered rarefaction waves satisfy (1.2) with equality. In

addition, solutions satisfying (1.2) cannot contain rarefaction waves forming at

positive times.

We now formulate our results more precisely. We say that m is a weak solution of

(1.1) with Cauchy data u0 if u E LX(R" X R+), u satisfies (1.1) in the sense of

distributions on [t > 0}, and for every bounded set B, u E C([0, oo); LX(B)) with

w(0) = m0. (Thus u( ■, t) -> m0 in LX(B).) Volpert [4] and Kruzkov [2] have shown

that, for given u0 E LX(R"), there is a unique such weak solution satisfying the

Received by the editors March 8, 1982.

1980 Mathematics Subject Classification. Primary 35L65.

©1983 American Mathematical Society

0O02-9947/82/0OO0- 1224/S05.50

707



708 DAVID HOFF

following entropy condition: for every scalar k and nonnegative test function <p with

support in {/ > 0),

(1.4) jf{\ u-k\<t>, + sgn(u - k)[F(u) - F(k)]- v</>} dxdt > 0.

The results of this paper are summarized in the following two theorems:

Theorem 1. If F is Cx and isotropic, then all Volpert-Kruzkov solutions o/(l.l)

satisfy

(1.2) divF'(w) < 1/i.

Theorem 2. Assume that Fis Cx. Then all weak solutions o/(l.l) satisfying (1.2) are

uniquely determined by their Lx initial values if and only if F is isotropic.

Following Crandall and Majda [1] we say that the flux F: R -> R" is isotropic if,

given any vector A E R", the function u -* F(u)-b is either convex, concave, or

linear. These authors observe that (1.1) is a model for the equations of inviscid gas

dynamics only when F is isotropic.

On the other hand, one easily proves that F is isotropic if and only if there is a

unit vector a and a convex scalar-valued function / such that F(u) = f(u)a. In this

case (1.1) becomes the one-dimensional equation

0.5) f + è><»> = °-
Thus the restriction that F be isotropic is a fairly severe one.

We hasten to point out, however, that Theorem 2 shows that the Oleinik-type

entropy condition (1.2) guarantees uniqueness only when / is isotropic. Moreover,

Theorems 1 and 2 provide a significant sharpening of Oleinik's result even in the

one-dimensional case: (1.2) holds and guarantees uniqueness when F is merely C1

and convex, and the estimate (1.2) is sharper than (1.3). In addition, our estimate

(1.2) defines in a more precise way the sense in which the solution operator for (1.1)

is compact. Namely, when (1.2) holds in one space dimension, F'(u( •, t)) will be a

function of locally bounded variation. Then when F' has Lipschitz continuous

inverse, we can recover the result that u(-, t) itself has locally bounded variation,

which was known to hold (from (1.3)) when F is strictly convex.

The requirement in Theorems 1 and 2 that F be C1 cannot easily be relaxed. For

example, the Volpert-Kruzkov solution of the equation

u, + \u\x = 0

with initial data

. Í-1,    x<0,t  \ _ I -1,     jc<0,
"o(x)-ll,       x>i

is given by

-1,    x/t<-\,

u(x,t) = \ 0,       -1 <x/t < 1,

1,       Kx/t.
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Thus there are sets of positive measure on which F'(u( •, /)) is undefined. And even

if we arbitrarily assign a value to F'(0), the resulting F'(u(-, t)) will still fail to

satisfy (1.2). Thus the conclusion of Theorem 1 need not hold when F is isotropic

but not C1.

Theorem 1 may also fail when F is C1 but not isotropic. For example, if F is the

scalar function in Figure 1 and if the «, are as indicated, then the solution of

ut + F(u)x = 0

-t-

with initial data

u0(x) =

—I-

ul U3

Figure 1

«,,    x<-l,

u2,      -\<X<1,

u3,      1 < X,

will contain two approaching shocks (Figure 2) intersecting at some point (x, i). At

t, then, we solve the Cauchy problem with initial data consisting of the two constant

states m, and w3. By virtue of the nonconvexity of F between u, and u3, however, this

solution will contain a rarefaction wave (whose trailing edge is a contact discontinu-

ity) forming at (x, t). Inside this rarefaction wave,

F'(u(x,t)) = (x-x0)/(t-t0),

so that (1.2) is violated.

Figure 2

Observe that the flux F in the above example has two inflection points. We do not

know whether the Volpert-Kruzkov solution in one space dimension will satisfy (1.2)
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when F has only one inflection point. In light of Theorem 2, however, this problem

is of minor significance, since (1.2) cannot guarantee uniqueness for this case

anyway.

Proofs of Theorems 1 and 2.

Proof of Theorem 1. If F(u) = f(u)a, then (1.1) reduces to (1.5). As a direct

consequence of (1.4), the Volpert-Kruzkov solution is then obtained by solving

one-dimensional problems in the a-t plane. It is therefore sufficient to prove the

theorem when n = 1. Moreover, by using various properties of the solution operator

for (1.1) (see, for example, Crandall and Majda [1, Corollary 5.1]), one finds that it is

sufficient to prove the following: if / E C°° with/" > 0, and if u0 E ^(R), then the

Volpert-Kruzkov solution of

(2.1) ut +f(u)x = 0

with initial data u0 satisfies

f'(u)x <(l+S)/t

for any given 8 > 0. We therefore fix such /, u0 and 8. Let e > 0 and let ue be the

solution of

(2.2) U,£ + f(u')x = euxx,       u*(x,0) = u0(x).

Of course, the Volpert-Kruzkov solution of (2.1) is the LxXoc limit as e -» 0 of ue. We

let X(x, t) = f'(ue(x, t)). A straightforward computation from (2.2) shows that X

satisfies

(2.3) X, + (/' + 2egX)Xx - eXxx = -X2 - (eg'/f")X3.

Here g(u) — f'"(u)/f"(u)2, and /, g, etc., are evaluated at ue. Before applying the

maximum principle, we make the change of variables

n(x, t) = (at + l)X(x, t)   where a = maxjO, maxX(x,0)}.

Observe that ¡i(x, 0) = X(x, 0) < a. (2.3) is then replaced by

When n = a(\ +8), the term in the brackets on the right is bounded above by

-aS + const ea2(\ + Ô)2, which is negative when e is sufficiently small, depending

on/, u0 and 8. Since ¡i(x,0) < a < a(\ + 8), the maximum principle applied to (2.4)

then implies that

n(x,t)<a(l + 8)

for all (x, t). Since ju = (at + \)X, we have finally that

X(x,t)=f'(ue(x, t))x^a(l +8)/(at+ 1) =s (l + 8)/t

as required.    D

eg

(at + 1)/
77 P-
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In proving Theorem 2 we shall need to regularize various functions by applying a

mollifying operator/,*. For convenience, we consistently use the symbol/,, for the

mollifier, regardless of the underlying space. The meaning should always be clear

from the context.

In addition, some of the computations can be simplified by employing divided

differences, which are defined as follows: Given a function/and distinct numbers u,

v and w, the divided differences f[u, v] and/[w, v, w] are to satisfy

f[u,v](u-v)=f(u)-f(v)   and   f[u,v,w](u-w)-f[u,v]-f[v,w].

When/is C2, the definitions can be extended to cases in which u, v and w need not

be distinct. The above equations will continue to be satisfied, and the following

mean value property will hold:

f[u,v,w]=f"U)/2

for some £ E conh(w, v, w).

Our proof is similar in outline to the uniqueness proof of Oleinik in [3]. There,

however, the strict convexity of the flux directly implied a certain stability for the

adjoint of the first variation equation of (1.1). We shall show that, when the flux is

merely convex, the same adjoint stability holds for monotone solutions, and this will

be sufficient for proving uniqueness.

Proof of Theorem 2. We begin by proving that, when F is isotropic, our

condition (1.2) guarantees the uniqueness of weak solutions. Without loss of general-

ity, we may therefore assume that (1.1) has the form du/dt + df(u)/dxx = 0 where/

is C1 and convex. Let u and v be two weak solutions with Cauchy data u0, both

satisfying (1.2), and let e be their difference, e = u — v.

One easily shows that, for 0 < tx< t2 and for smooth <i> for which spt <f> n {/, «£ t

< r2) is bounded,

fu(x, -)<j>(x, ■)\'¿dx=f2f(u<l>l+f(u)<t>Xi)dxdt,
'i

and similarly for v. Subtracting, we therefore obtain that

(2.5) fe(x, ■ )<t>(x, ■ ) \'/t dx = f'2fe{<t>, +f[u, v]$x} dx dt.
h

Now fix xf,(x) E 6D(R") and let

r(x)=^±lri|^(í,x2,...,x„)|í7í.
*•     -00

Then \p — t//+ +\p~ and \¡/Xt>0> \¡/x¡. For e and 8 positive let <j>/s be the solution of

(2.6) tf+[j, */'(«)]<*£ = 0,   <¡>+(x,t2)=js*r(x),

and let <¡>¡s be the solution of

(2.7) *r+[w(e)K = o,     <>-(x,t2)=js*r(x).
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Finally, let 4>eS — <¡>*s + <t>¡s. Then <¡>eS is smooth and one easily sees that spt <#>eS n {?,

< t *£ t2} is bounded. Setting <j> = <f>eS in (2.5) we therefore obtain

(2.8) Je(x,t2)(j8* 4>)(x)dx - je(x, tx)<t>eS(x, tx) dx

= f['2fe{f[u,v}-ji*f'(u)}^-dxdt

+ f'2fe{f[u,v]-Jt*f'(v)}^dxdt.

,+ —We need to estimate the derivatives d<j>fs/dxx. Let w   = u and w = v. Then

dropping the e8, we have from (2.6) and (2.7) that

3x,

Therefore if x(f ) is the characteristic curve

dx/dt =jt * f'(w±(x(t), t)),       x(t2)=y,

then

(2.9)    f£(*(0. 0 = f£(* '2>«p(jPU * dhrJ"(w*)](*(*), ,) *).

Since divF^w*) < 1// by hypothesis, the exponential is bounded by t2/t, and we

obtain

;  ll^illi"a*,

In addition, (2.10) shows that

(2.11) 3<i>+/°*, ̂ O^o-^/o-x,.

We are now prepared to estimate the integrals on the right side of (2.8). In doing

this, we let fv=jv* f, so that fv is Cx, /," > 0, and fv, f^ -» /, /' in the continuous

functions on bounded sets. The integrand of the first term on the right of (2.8) is

then

e^{{f[u,v] -fv[u,v]) + (/„[«,„] -fv[u,u])

+ (/„'(«)-/'(«))+   (/'(«) -j. */'(«)))■

The first and third terms in this expression approach 0 as tj -» 0; we therefore

abbreviate them by ov(l). The second term is
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because of (2.11) and the convexity of/,. The first integral on the right side of (2.8)

is therefore bounded above by

IMU-K(l) + ('2/<2)||*ill£.- ll/'(«) 'h * /'(")IU'(B))

for an appropriate bounded set B. We estimate the second integral in (2.8) in a

similar way. (It was for these estimates that we needed to split <¡>eS and 4> into their

monotone parts.) Finally, we observe that, by virtue of (2.6) and (2.7),

ksi*-<ikiL-.
(2.8) thus becomes

fe(x, t2)(js * *) dx <§«(•, OIL.flhHL- + 11*1/*)

+ikii^{0,(i) + ̂ [|^iu+feiU

• [«a«) -j. * f'(u)y(B)+¡fi») -à * /'(«)JU'( *>]}•

Now let T), e, t, and á go to zero in that order. The result is that }e(x, i2)i//(x) dx < 0

for all * E ^(R"). This proves that e( ■, t2) = 0 a.e.

Before proving the converse of Theorem 2, we list some facts about the Volpert-

Kruzkov solution v(y,t) of

(2.12) „,+/(„),=o,   «o0o = -h; J>¡¡;

The first is that ü will satisfy the condition f'(v)y K \/t whether or not/is isotropic.

This follows from the well-known fact that v is also the Volpert-Kruzkov solution of

an equation ut + g(u)y = 0 where g is convex or concave, according as u¡ < ur or

u¡ > ur. Roughly, in the first case, g is the largest convex function whose graph lies

below that of/ and for which g(u,) =f(u¡) and g(ur) = f(ur). Theorem 1 then

applies to show that g'(v( ■, t))y < \/t, and since the range of v is contained in the

set where /' and g' agree, it follows that f'(v(-, t)) = g'(v(-, t)) a.e. This entire

argument follows directly from (1.4) when/is a polynomial (so that g is a piecewise

polynomial). The general case then follows by an approximation argument.

Again let u0 be as in (2.12). Then the function

(2.13) u(y,t) = \U»    y<St>
\u„    y>st,

will be a weak solution of (2.12) provided that s satisfies the Rankine-Hungoniot

relation s — f[u,, ur]. This shock-wave solution u will coincide with the Volpert-

Kruzkov solution v provided that u also satisfies (1.4). One checks that, for this case,

(1.4) requires that the graph of/should lie above (below) the Une joining (u¡, f(u,))

and (ur, f(ur)) when u¡ < ur (u, > ur).
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We can now prove easily that (1.2) is a uniqueness condition only when F is

isotropic. If F is not isotropic, there is a direction a such that the scalar function

f(u) — F(u)a is neither convex, concave nor linear. Therefore there are numbers

ux < ü < u2 with/'(«i) = f'(u2) ¥=f'(u). Thus Fis not linear on [ux, u2], and there

is a number k such that the point (k, f(k)) lies either strictly above or strictly below

the line joining (ux, f(ux)) and (u2, f(u2)). In the first case we take u¡ = u2 and

ur — ux, and vice-versa in the second case. Now let u(y,t) be the shock-wave

solution of (2.12) defined by (2.13). Then since f'(u(-, t)) is constant, u will satisfy

our condition f'(u(-, y))y °s 1/7. On the other hand, the existence of the point

(k, f(k)) shows that u differs from the Volpert-Kruzkov solution v, which, as we

observed earlier, also satisfies f'(v( ■, t))y < 1/7.

By taking v = a ■ x, we therefore obtain two different weak solutions of (1.1) with

initial data

\u„    xa<0,
uJx) = <

ov   '      \ur,    xa>0.

These solutions depend only on (y, t), and both satisfy (1.2). This completes the

proof of Theorem 2.
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