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WEIGHTED NORM INEQUALITIES FOR

THE FOURIER TRANSFORM

BY

BENJAMIN MUCKENHOUPT

Abstract.  Given p and q satisfying  1 < p < q < oo, sufficient conditions on

nonnegative pairs of functions U, V are given to imply

/   \f(x)\"U(x)dx     *<c /   \f(x)\"V(x)dx     ',
JRn J [JRn

where / denotes the Fourier transform of /, and c is independent of /. For the case

q = p' the sufficient condition is that for all positive r,

I,U(x)>Br
U(x)dx

W(x)<r'~x
V(x)

-!/(/>-1)
dx <A,

where A and B are positive and independent of r. For q ¥* p' the condition is more

complicated but also is invariant under rearrangements of U and V. In both cases

the sufficient condition is shown to be necessary if the norm inequality holds for all

rearrangements of U and V. Examples are given to show that the sufficient condition

is not necessary for a pair U, V if the norm inequality is assumed only for that pair.

1. Introduction. Although weighted norm inequalities for classical operators have

been studied extensively as described in [4], surprisingly little is known about the

pairs U, V of nonnegative functions for which

(1.1)
r    , V/q       \ r
/   \f(x)\«U(x)dx       <c  /   \f(x)\pV(x)dx

•>B" ■> B"

Vp

where/denotes the Fourier transform of /and c is independent off. The best known

result is Pitt's theorem [6, p. 489], which for n = 1 asserts (1.1) if q > p, U(x) =
-yq

V(x) =\x \ap, 0 < a < 1 - \/p, 0 < y < \/q and y 1/p+l/q-l.
Other more recent results include Knopf and Rudnick [3], Sagher [5, p. 119] and

Aguilera and Harboure [1].

The conditions given here are less restrictive than those in the cited results. They

depend only on the distribution functions of U and V and not on monotonicity or

continuity conditions. The sufficiency theorems include Pitt's theorem. Surprisingly,

the proofs are simpler than the proof of Pitt's theorem in [6] where several

interpolations are needed. Here the case q = p' is proved directly from the

Hausdorff-Young theorem. The proof for q < p' is similar but uses a lemma

obtained by interpolation in place of the Hausdorff-Young theorem. The case q> p'

is obtained by duality.
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The theorems will be stated for integrable / to avoid difficulties with various

definitions of the Fourier transform though they could easily be extended. Because

of this restriction, we can use the definition

/(*)=/ e-*'f(t)dt.
J B"

The sufficiency theorem for q = p' = p/(p — 1) is as follows.

Theorem 1. If 1 <p < 2, U(x) and V(x) are nonnegative functions on R" and

there are positive constants A and B, independent of r, such that

(1.2) 1 U(x) dx
'U(x)>Br

for r > 0, then for every integrable f,

j V(x)
JV(x)<r''-*

-V(p- O
dx <A

(1.3) f  \f(x)f'U(x)dx   " <c  f \f(x)\pV(x)dx
i/p

where c depends only on A, B and p.

Note that the constant B is needed in (1.2) if the case with U(x) and V(x) not

necessarily equal constants is to be included. Condition (1.2) is not a necessary

condition for (1.3); this is shown in §6. Condition (1.2) is necessary, however, if (1.3)

holds for all rearrangements of U and V as shown by the following theorem.

Theorem 2. If 1 < p < oo, U(x) and V(x) are nonnegative radial functions on R"

such that, as functions of \x\ , U is nonincreasing and V is nondecreasing and (1.3)

holds for all integrable f with c independent off, then there exist constants A and B such

that (1.2) holds for all r > 0.

The theorems for q =£ p' will be stated using rearranged functions; for a measur-

able function g on R" the nonincreasing rearrangement g* is defined on [ 0, oo) by

g*(x) = inf{5:|{?:|g(/)|>i}|<x}.

The sufficiency result for q ¥= p' will be done in two cases, q< p' and q > p'. Since

we will also assume q > p, the first case can be written as p < q < p'\ note that this

set of inequalities also implies p < 2. Similarly, the second case can be written

q' < // < q, which implies q > 2. The sufficiency theorems are as follows.

Theorem 3. 7/ 1 < p < 2, p < q < />', U(x) and V(x) are nonnegative functions on

R" and there are positive constants A and B, independent of r, such that

(1.4) [ U*(x) dx
J[xU*(x)Y'/q>Brx IV(x)<rp~]

V(x)
■W(P-D

dx
i/p'

for all r > 0, then for every integrable f, (1.1) holds with c depending only on A, B, p

and q.
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Theorem 4. If 2 < q < co, q' < p < q, U(x) and V(x) are nonnegative functions

on R", W(x) = [V(x)'x/(p~xx]* and there are positive constants A and B, independent

of r, such that

(1.5) I.xW(x)\i/p>Brx

W(x) dx IrU(x)>\

U(x) dx
p'/r

^A

for all r > 0, then for every integrable f, (1.1) holds with c depending only on A, B, p

and q.

The procedure used to prove Theorem 2 can also be applied to the case q ¥= p' as

follows.

Theorem 5. If 1 <p < oo, 1 < q < oo, U(x) and V(x) are nonnegative radial

functions on R" such that, as functions of \ x \ , U is nonincreasing and V is nondecreas-

ing and (1.1) holds for all integrable f with c independent off, then if <¡r =£ p' there exist

constants A and B such that (1.4) holds for r > 0, if q > p' there exist constants A and

B such that (1.5) holds for r > 0.

This paper is organized as follows. Theorem 1 is proved in §2. Two lemmas

needed to prove Theorem 3 are given in §3. One of these lemmas is the substitute for

the Hausdorff-Young theorem mentioned before. The other concerns rearranging the

function x on [0, oo) to a function g on R" which bears the same relation to U(x)

that x has to U*(x). Theorems 3 and 4 are proved in §4; the proof of Theorem 3 is

like that for Theorem 1 while Theorem 4 follows from Theorem 3 by duality. The

necessity results, Theorems 2 and 5, are proved in §5. As usual this consists of

choosing / so that (1.1) gives information about U and V. Finally, in §6 two

examples are given to show that the sufficient conditions in Theorems 1 and 3 are

not necessary.

Throughout this paper c will be used to denote constants, not necessarily the same

at each occurrence. The convention 0 • oo = 0 will be used. The symbol | F | will

denote the Lebesgue measure of E in the appropriate number of dimensions.

Expressions such as [f(x)g(x)] and [f(x)g(x)]* will be used to denote, respec-

tively, h(x) and h*(x) where h(x) — f(x)g(x). The characteristic function of a set F

will be written Xe-

2. Proof of Theorem 1. To prove Theorem 1, observe first that if V(x) = 0 on a

set of positive measure, then (1.2) implies U(x) — 0 almost everywhere and (1.3) is

true trivially. If the set where f(x) ¥= 0 and V(x) = oo has positive measure, the

right side of (1.3) is infinite and (1.3) is also true trivially. Therefore, assume that

V(x) > 0 almost everywhere and that the set where f(x) =£ 0 and V(x) — oo has

measure 0.

To prove (1.3), start with the fact that /_°^ \f(x) f'U(x)dx is bounded by 2P'

times the sum of

(2.1) If.
j = -oo J2JB<U(.x)<2J + ]B

s,V(t)5*2Jp-

f(t)e- ' dt U(x) dx
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and

(2.2) 2   /
y=-oo J2JB<U(x)^2J + lB * i/i

f(t)e-ix 'dt
'V(t)<2J*-J~'

It is sufficient to show that each of these is bounded by

U(x)dx.

(2.3)
/OO

\f(x)\pV(x)dx
p'/p

where c depends only on A, B and p.

To estimate (2.1), observe that it is bounded by

00

1    f \[f(x)x^2^Ax)]y'2J+lBdx.
—        J Rn

J = -<X>

By the Hausdorff-Young theorem, this is bounded by

2F   j   2J

Since p'/p s* 1 this has the bound

f \f{x)xv>2"-'-Ax)\' dx
JR"

P'/P

(2.4)

where

(2.5)

2B f \f(x)\ph(x)dx
Jb"

p'/p

h(x)=   2   2*"xf>2*-'-(*)-
y=-oo

Now for a given x, A(x) = 2y=_002>(/'~1) where J is the largest integer satisfying

2Jp~J *£ 2F(x). Since the geometric series defining A has the ratio 2p~x > 1, h(x) is

bounded by a constant times the last term. Therefore, h(x) < cV(x) and (2.4) is

bounded by (2.3). This completes the proof for (2.1).

To estimate (2.2), observe first that it is bounded by

(2.6) /    /
V(t)<[U(x)/B]P-

,1/(01* U(x) dx.

Now let / be the least integer such that 2J > II / II,, and let r} = oo. Let W(x) be a

function such that V(x) < 2W(x) < 2V(x) for all x and for all r > 0, | {x: W(x) =

r} | = 0. For/ < 7 let r be chosen so that

(2.7)

Then (2.6) is bounded by

j

f \f(t)\dt = V.
J2W(t)<rf-'

(2.8) 2 /j = -x-/Brj-l<U(x)^Brj I
P'

2W(t)<rf
,1/(01* i/(x) ¿X.
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By (2.7) and the definition of rJt we have for/ < /,

(2.9) / \f(t)\dt<2J = 4J\f(t)\dt,
J2W(t)<rf-1 JDj

where Dj is the set of all t for which rf~2 < 2W(t) < rfS\l. Furthermore, since the

set where V(t) = 0 has measure 0 and f(t) — 0 almost everywhere on the set where

V(t) = oo, we have

\f(t)\=[\f(t)\v(ty/p]v(t)-i/p

for almost every t with the convention 0 • oo = 0. This and (2.9) then show that (2.8)

is bounded by

(2.10)   c   2
y=-oo

f U(x) dx
JBrj_i<U(x)<Brj

/[lAOlW'MO-1"«*

By Holder's inequality the/th term in (2.10) is bounded by the product of

(2.11)

and

f U(x)dx
JBrJ.l<U(x)

S     .w
J2W(t)<rfSxi

P'/P dt

f \f(t)fV(t)dt
P'/P

Now since the set where 2W(t) < rfs/ is a subset of the set where V(t) < rßTxx,

the hypothesis (1.2) implies that (2.11) is bounded by A. Then since p'/p > 1, we

obtain the bound

2 / i/(omo*
J=-ce   DJ

P'/p

for (2.10). Since the D/s are disjoint, this shows that (2.2) is bounded by (2.3) and

completes the proof of Theorem 1.

3. Two basic lemmas. For the proof of Theorem 3 we need an inequality that plays

the same role that the Hausdorff-Young theorem did in the proof of Theorem 1.

This is given in Lemma 1. We also need a function that bears the same relation to U

that x bears to the nonincreasing rearrangement U*; this is done in Lemma 2.

Lemma 1. If U(x) is a nonnegative function on R", 1 <p < q <p' and U*(x) <

x'x+q/p', then for every integrable f on R" we have

(3.1) f \f(x)\"U(x)dx   '"<c f \f(x)fdx
Vp

where c is independent off.

To prove this, observe first that we may assume that U*(x) = x~x+q/p', since

increasing U increases only the left side of (3.1). Define r = 1 + q'/p'. Then
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r' = 1 + p'/q', r *S 2, and by the Hausdorff-Young theorem we have

(3.2) /" \f(x)Ux(x)\rVx(x)-r'dx   '

where !/,(*) = U(xyq'Ap''"\ Next, since |/(je)

(3.3)

The second integral in (3.3) equals

<c
\/r

r       ux(x)-rdx<f
J\f(x)\Ul(x)>s JUt(x) >i/H/lli

f 1/00 I'«**JRn

I /1|,, we have for s > 0,

[/,(*)"" áx.

/„
l/*í»' (P' + 9')/(/-'-9)

¿X.

í/»(jc)-*'A^-«)>í/||/||]

By the assumption U*(x) = x~x+q/p', this equals

'-"'/p'dx = 4-11/1LV^'^/ll/ll,

Combining these results gives

qs

(3.4) [ Ux(x)""dx^^r-j |/(jc)|dx.
J\f(x)\U,(x)>s Q s JR"

Now apply the Marcinkiewicz interpolation theorem [8, p. 183] to the strong type

result (3.2) and the weak type inequality (3.4) with t = \/q — \/p'. Since (1 — t)/r'

+ t = \/q, (1 - t)/r + t=l/p and t/,(*)<?~'" = U(x), this gives (3.1).

Lemma 2. If U(x) is a nonnegative function on R", \ {t: U(t) = x}\= 0 for all

x>0, S=\{t: U(t) >0}\< oo, L(x)=\{t: U(t)>x}\ and g(x) = L[U(x)], then

| {x: g(x) < a] | = min(a, S) for a > 0.

To prove this, observe first that since L[U(x)] and L[U*(x)] are equimeasurable,

it is sufficient to show that

(3.5) | {x: L[U*(x)] <a}\= min(a, S).

If x < S, U*(x) > 0 and the fact | {t: U(t) = U*(x)} |= 0 shows that L[U*(x)] =

| {t: U(t) > U*(x)} | < x by Lemma 3.4, p. 189 of [8]. By the definition of U*(x), we

also have L[U*(x)] > x for all x. Therefore L[U*(x)] = x for 0 < x < S. By the

definition, if x > S, then U*(x) = 0 and L[U*(x)] = oo. Combining these facts

proves (3.5) and completes the proof of Lemma 2.

4. Proof of Theorems 3 and 4. To prove Theorem 3, observe first that as in the

proof of Theorem 1 we may assume that f(x) = 0 almost everywhere on the set

where V(x) = oo and V(x) > 0 almost everywhere. We may also assume that the set

where V(x) < oo has positive measure; otherwise/(x) = 0 almost everywhere and

(1.1) is trivial. Then the second integral in (1.4) is positive for some r > 0. If the set

where U(x) = oo had positive measure, the first integral in (1.4) would be infinite

for all r > 0. Therefore, (1.4) implies that U(x) is finite almost everywhere.

We will first consider the case that the set where U(x) > 0 has finite measure and

for every r > 0 the set where U(x) = r has measure 0. Then define g(x) as in
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Lemma 2 and for every integer/ let Fy be the set where 2JBg(x) < [g(x)U(x)]p/q <

2j+ xBg(x). Then /_» \f(x) \qU(x) dx is bounded by 2" times the sum of

(4.1)

and

(4.2)

00

2 //
j = -ao   Ej V(t)-»2"~]~

f(t)e- dt

00

J = -<X     Ej

f{t)e-'*'dt
V(0<2*-'/_1

It is sufficient to show that each of these is bounded by

U(x)dx

U(x) dx.

(4.3)
/OO

\f(x)fV(x)dx
q/p

where c depends only onA,B,p and q.

To estimate (4.1), observe that it is bounded by

00

(4-4) c   2   / \[f(x)xv>vp-^(x)Y\"2^p'g(x)-i+"/p'dx.
J Bn

; = -oo   K

From Lemma 2, it follows that [\/g(x)]* = l/x for 0 < x «s S and [l/g(x)]* = 0

for x > S. Therefore [g(xyx+q/p']* < x'x+q/p'. Then Lemma 1 can be applied to

show that (4.4) is bounded by

c 2 ljq/p'
j=-co

Since q/p > 1, this has the bound

( |/(*)XK>2"->-'(*)rdx
JR"

Q/P

(4-5) / \f(x)fh(x)dx
J B"

i/P

where A is the function defined in (2.5). As shown in §2, h(x) < cV(x); this

completes the proof for (4.1).

To estimate (4.2), observe first that since 2> < T(x) = [g(x)U(x)]p/q/Bg(x) on

Ej, if follows that (4.2) is bounded by

/  / ,1/(01*
JR"  J2V(t)<T(x)p~]

(4.6) U(x)dx.

As in the estimation of (2.6) choose W(x), J and ry satisfying the conditions stated

there. Then (4.6) is bounded by

U(x) dx.(4-7) 2   / / ,1/(01*
j = .œ Jrj-]<T(x)*írJ J2W(t)<rf   '

By (2.9), the fact that V(t) > 0 almost everywhere and the fact that f(t) = 0 at

almost every point where V(t) = oo, it follows that the/th term in (4.7) is bounded

by

f U(x) dx
Jrj^x<T(x)

f[\f(t)\v(ty/p]v(t)-i/pdt
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where D} is the set of all t for which rf_2 < 2W(t) < rf_7xx. By Holder's inequality

this is bounded by the product of

(4.8)

and

(4.9)

Ir,-X<T(x)

U(x)dx I2W(t)<rf-x

V(t) -!/(/>-•)dt
q/p'

/ i/(o mo*
q/p

> r, j equals

Now the set where T(x) > rj_i is the set where U(x)pVqL[U(x)]-x+p'/q > Brj

Consequently if F = {y: yp'/qL(y)-]+p'/q > 5ry_,}, the set where T(x)

the set where U(x) E E. Therefore,

(4.10) f U(x)dx=[ U(x)dx=f U*(x)dx.
Jr^x<T(x) JU(x)ŒE JU*(x)£E

Next, observe that since L[U*(x)] = x on the set where U*(x) > 0, we have

(4.11) U*(x)dx=f U*(x)dx.f U*(x)dx sJ{xW(xy\p'/i->Brj_

Combining (4.10) and (4.11) and using the fact that 2W(t) > V(t) shows that (4.8) is

bounded by

L U*(x)dx L V(t)
-!/(/>-!)

dt
[J[xU*(x)]p'/i>Brj.xx J [JV(t)<rfS

By (1.4) this is bounded by A. Therefore (4.2) is bounded by

\q/p

q/p'

Ac   2
7--00 1

/ i/(o mo*JD,

Since the sets Dj are disjoint and q/p > 1, this is bounded by (4.3). This completes

the proof of Theorem 3 for the case that the set where U(x) > 0 has finite measure

and | {x: U(x) = r} | = 0 for r > 0.

Next we consider the case in which the set where U(x) > 0 has infinite measure

and | (jc: U(x) = r] |= 0 for r > 0. First note that if s > 0 and | {x: U(x) > s} \

= oo, then since p'/q > 1, the set where [xU*(x)]p/q > Brx and U*(x) > s has

infinite measure. Therefore, the first integral in (1.4) is infinite for all r, V(x) = oo

almost everywhere and the theorem is true trivially. Therefore, assume that | {x:

U(x) > s} |< oo for allí > 0 and define Un(x) = f7(x)if U(x) > 1/nand Un(x) = 0

if U(x) < \/n. Then since U*(x) is a truncation of U*, (1.4) is true with U*

replaced by U* with the same constants A and B. By the previous case (1.1) follows

with U replaced by U„ with c independent of n. The proof is completed by applying

the monotone convergence theorem.

Finally, if | {x: U(x) — r} |> 0 for some r > 0, choose Ux(x) so that U(x) <

2Ux(x) < 2U(x) for all x and | {x: Ux(x) = r} |= 0 for all r > 0. Inequality (1.4) is

true with U(x) replaced by Ux(x) and the same A and B. Inequality (1.1) follows
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with U replaced by Ux. Since U(x) ^ 2Ux(x) this implies (1.1) with the constant

multiplied by 2x/q. This completes the proof of Theorem 3.

To prove Theorem 4, observe that the sufficient condition in Theorem 3 for

(4.12) f  \f(x)p'v(x)-X/(p-X)dx l'P <c  ( \f(x)\q'U(x)-{/iq~l)dx
Jon J Bn

!/<?'

reduces to (1.5). Therefore, the hypothesis of Theorem 4 implies that (4.12) holds for

all integrable/, and (1.1) follows by duality.

5. Necessity proofs. This section consists of the proof of Theorem 5; Theorem 2

then follows as a special case. The basic fact needed for the proof is the following

lemma.

Lemma 3. If 1 < p < oo, 1 < q < oo, a > 0, U(x) and V(x) are nonnegative radial

functions on R" such that, as functions of \x\ , U is nonincreasing and V is nonde-

creasing and (1.1) holds for all integrable f with c independent of f, then there is a

constant B, depending only on a, n, p, q and the c in (1.1), such that for r > 0,

(5.1) [sup{x: [xU*(x)]p/q > Brx}] | {x: V(x)<r"-X} \<a.

Given positive numbers B and r, define

(5.2) M = M(B,r)=[sup{x: [xU*(x)]pVq > Bxr}]V".

The proof will consist of showing that if B and r are positive numbers such that

(5.3) [M(B,r)]"\ {x: V(x)<rp~x} \> a,

then B is less than a positive constant that depends only on a, n, p, q and the c in

(1.1). The conclusion follows since any B larger than this constant cannot satisfy

(5.3) for any r > 0 and, therefore, must satisfy (5.1) for all r > 0. We may assume

that a < (2y>T)" since (5.1) for one value of a implies (5.1) for all larger values of a.

To show that (5.3) implies that B is less than a positive constant for 0 < a <

(2/ Jñ)", fix such an a and B and r that satisfy (5.3). Define/(x) by/(x) = 1 for

\x\<ax/"/2M and/(x) = 0 for \x\>ax/"/2M. Since the real part of eixl is

greater than { if | x \ \ 11< 1, we have \f(x) \> i/Ä-/(0 * if I * Is* M/ax/". Since

a < (2/y¡ñ)", this implies that for \x\< M4h~/2 we have \f(x) \> DM~", where D

depends only on n and a. Since all x in a cube with side M centered at the origin

satisfy | x |< Mfñ/2, we have \{x: \ x |< Mfñ/2] \> M". Combining this with the

estimate of/then gives

(5.4) DM-
rM" 1X/,q r
/     U*(x)dx       <   / \f(x)\qU(x)dx

i/q

'\x\*iMjn~/2

Next, since U*(x) is nonincreasing, we obtain from the definition of M that

(5.5)

for 0 < x

(5.6)

U*(x)>(BrM")q/p /M"

M". Combining this with (5.4) gives

DM~"[BrM"] >/p' f   \f(x)\qU(x)dx
J B"

1/9
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Since V(x) is radial and nondecreasing and V(x) < rp  ' on a set of measure

greater than aM~n by (5.3), we have V(x) < rp~ ' for | x \< ax/"/2M. Therefore

\Vp
f   \f(x)?V(x)dx
JR"

r<p-X)/p[aM-"]Vp.

Combining this with (5.6) and (1.1) then gives

DM'"[BrM"][/p' < cr^X)/p[aM-"]Wp

which reduces to Bx/p' < cax/p/D. This completes the proof of Lemma 3.

To prove Theorem 5 for q < /?', let a — (2/n)" and B be as in Lemma 3. Fix r > 0

and for each positive integer/ define

fj(x) = V(xyx/(p-x\       \/j<V(x)<rp-x,

= 0,        elsewhere.

If fR»fj(x) dx = oo for some/, then | {x: V(x) < rp~x} | = oo. Lemma 3 then

implies that | {x: [xU*(x)]pVq > Brx) | = 0 and (1.4) follows for this r with A = 0.

Therefore, assume that fRnfj(x) < oo for all j. The proof will be completed by

showing that

rM" ~\\ r 1q/p'
(5.7) /     U*(x)dx        fj(x)dx        <A,

where M is as defined in (5.2) and A depends only on p, q, B, n and the constant in

(1.1). This is, of course, sufficient by the monotone convergence theorem. If

jR-fj(x) dx = 0, then (5.7) is immediate with A = 0. Therefore assume that 0 <

fR»fj(x) dx < oo. By Lemma 3 | {x: V(x) < rp~x) \<[2/Mn]", and since Fis radial

and nondecreasing, this implies that V(x)> rp~x if |x|> \/M{h~. Therefore, fj is

supported on |x|< \/M{ñ and since the real part of e'x'' is greater than \ if

| x 1111< \, we have

(5.8) \fj(x)\>y fj(t)dt

for | x | < M4ñ/2. Since the set where | x \ < MJñ/2 has measure greater than M",

(5.9) f    U*(x) dx < [ U(x) dx.
J0 J\x\<M]/h~/2

From (1.1), (5.8), and (5.9) we then conclude that

(5.10)
r T rMn 1 x/l r

/ fj(t)dt    /     U*(x)dx       <c /   \fj(t)fV{t)dt
jr„ L-'o YJRn

I/p

From the definition of fj we have

/ i¿(om(0* = /y;(o*.
JR" jr„

Using this in (5.10), dividing by [fR f¡(t) dt]x/p and taking the q power then proves

(5.7). This completes the proof of Theorem 5 for q *£ p'. For q > p' use the fact that

(1.1) implies (4.12) and apply the previous case to (4.12).
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6. Necessity counterexamples. The two examples given here are simple conse-

quences of the theorems of this section. To simplify the presentation, the theorems

and examples are given in one dimension though they are easy to generalize. The

example in Theorem 6 is a modified version of an example by Aguilera and

Harboure [1]. It shows that (1.4) is not a necessary condition for (1.1) for 1 < p < q

< 2. Unfortunately, it does not seem easy to modify this example to include the case

2 < q < p'. Therefore, a more complicated example is given which shows that (1.4) is

not necessary for 1 < p < q < p' and (1.2) is not necessary for 1 < p < q = p'. This

example was suggested by a result of Dahlberg [2] for fractional integrals; the proof

here, however, does not use Dahlberg's theorem. Counterexamples for 1 < q' < p < q

can be generated from those given here by duality.

That Theorems 6 and 7 do provide examples of pairs that satisfy (1.1) but not

(1.4) or (1.2) is shown after the statements of the theorems. The proofs of the

theorems are given after the description of the counterexamples.

Theorem 6. If U(x) is the characteristic function 'of U"=1[2",2" + \/n] and

1 < p < q < 2, then for integrable f,

(6.1)
/oo   , i •/?      r /.oo

\f(x)\qU(x)dx       <c f    \f(x)]pdx
I/P

where c is independent off.

Theorem 7. 7/ 1 < p < q < p', 0 < a < \/p', \/s = -a + \/p', A =

(1 - q/p')/(\ - q/s), D = (\- b)p/q(p - 1 - ap), {Jk}"k=x is a finite set of inter-

vals of length n'b, the intervals with the same centers as the Jk's with length 2nD + 1

are disjoint, and U(x) is the characteristic function of ö"k=xJk, then for integrable f,

(6.2)
/oo i '/?      r /oo

\f(x)\qU(x)dx       <c /     \f(x)\p\x\apdx
i/p

where c is independent of f, n and the choice of the Jk's.

It is easy to see that Theorem 6 provides an example of functions U and V that

satisfy (1.1) but not (1.4) for 1 <p =£ q < 2. With V(x) = 1 and r = 2, (1.4) requires

that [xU*(x)]p /q < 2Bx for almost every x. Since the set where the U of Theorem 6

is equal to 1 has infinite measure, U*(x) = 1 for all x > 0, and this condition

reduces to xp/q < 2Bx for almost every x. This is impossible for positive B,

however, since p'/q > 1.

For the examples based on Theorem 7, note first that since (1.4) reduces to (1.2) if

q = p', we do not have to consider (1.2) separately. Assuming the truth of Theorem

7, we first show that the functions U(x) and V(x) =\x\ap cannot satisfy (1.4) with

A and B depending only on p, q and the c of (6.2). This is easy to do since

U*(x)= 1 on [0, nx~b] and this implies that [xU*(x)]pVq > x/2 on [1, w1-*].

Therefore, with r = \/2B, the first term in (1.4) exceeds -1 + nx~h and the second

is a positive constant. Since A < 1, this shows that (1.4) cannot hold with an A

independent of«.

It is also easy to use Theorem 6 to generate a U(x) that satisfies (6.2) but which

violates (1.4) with V(x) —\x\ap for any positive A and B. To do this, choose F
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satisfying F > [ap'(\ — b)]'x, let/ be a positive integer and define c/(x) to be 2~J

times the characteristic function of the union of 2Ej intervals Jk of length 2~bEj with

the intervals of length 1 + 2DEj+x and the same centers disjoint. Then by Theorem 7

/oo r /.oo
\f(x) \qUj(x) dx < c2-A f    \f(x) Y\x\ap dx

q/p

with c independent of/. Adding these shows that (6.2) holds with U(x) = 2°°=1c7(x).

With V(x) = | x \ap, (1.4) reduces to

(6.3) ( U*(x) dx
J[xU*(x)Y'/l>Brx

(1 - ap'Y~x/ap' q/p'

Now since Uj(x) = 2 y on a set of measure 2Ej(X b), we have U*(x) > 2 y on

[l,2EJ{l~b)]. Therefore, with r = 2-JpVq/2B, the inequality [xU*(x)]p/q > Brx is

satisfied on [1,2EJ{X~b)]. With this r, then

2 f i/*(x) ¿x > 2><£-£fc-" = (¿Br)***""-^''.

Since r can be arbitrarily close to 0 and FA + 1 — E < 1 — 1/ap', this last inequal-

ity shows that (6.3) cannot hold for all r > 0. This pair, therefore, satisfies (1.1) but

not (1.4).

To prove Theorem 6, start with the fact that

f\f(x)\qU(x)dx=   Î f]"+l/"\f(x)\qdx.
r2"+i/nt tl

i J2"n=\   z

By Holder's inequality, the right side is bounded by

\q/P'

(6.4)
n=\

I
2"+1/m

\f(x)f'dx n i+q/p'

Now define the operator Sn by [S„f] = fx[2^2-+>yThen by the Hausdorff-Young

theorem, (6.4) has the bound

/oo
\Sj(x)\»dx

L    -00

Since q/p > 1, this is bounded by

2
«=i

q/p
n -\+q/p>

r 2 np/p'-p/q\Snf(x)\p
n=\

dx
q/p

Now apply Holder's inequality to the sum to get

/:
2 \sj(x)\

P/2

dx

q/p\
V   n(2p/p--2p/q)/(2-p)

n=\

q/p-q/2

It is easy to verify that q < 2 implies that the exponent of the n in the second sum is

less than -1. Therefore, the second sum is finite and Theorem 5 [7, p. 104] gives the

bound c | /_°^ \f(x)f dx \q/p. This completes the proof of Theorem 6.
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To prove Theorem 7, observe that by use of the substitution g(x) = [/(x) | x |a]

that (6.2) becomes

/oo "11/9 f  /.oo
\Iag(x)\"U(x)dx       <C f    \g(x) dx

i/p

where

U*) = /
g(t)

oo    X — /
ll-a

dt

is the usual fractional integral. Because of the Hausdorff-Young theorem, it is

sufficient to prove that

(6.5)
/oo r /-oo

\Iag(x)\qU(x)dx<c f    \g(x)Ydx
q/p'

where c is independent of g, n and the choice of the Jks. Dahlberg in [2] gives a

necessary and sufficient condition on U(x) so that (6.5) holds if q — p'; in particu-

lar, this gives a necessary and sufficient condition on U(x) for (6.2) to hold if

p — q = 2. To prove Theorem 7, however, we will prove (6.5) directly for the

asserted functions U(x).

To prove (6.5) for a U of the type described in Theorem 6, fix an n and a

collection {Jk}k=x of intervals satisfying the hypotheses. The left side of (6.5) is

bounded by the sum of

(6.6)

and

(6.7)

2*2 / \Iagk(x)\qdx

2"î f \Ia[g(x)-gk(x)]\"dx,
k=iJA

where gk(x) — g(x) on the interval of length 2nD + 1 with the same center as Jk and

gk(x) = 0 elsewhere. By Holder's inequality and the fact that | Jk |

that (6.6) is bounded by

n   , it follows

29„-ft(i-9A) 2

k=\
[ \iagk(x)\'dx

q/s

Now apply Theorem 1 of [7, p. 119] and the definition of A to obtain the bound

cn-i+q/p' 2
k=\

)J_J*k(x)\f dx

Now apply Holder's inequality to the sum; this gives

2 /    \gk{x)fdx

q/p'

-l+q/pJ

fc=l    -oo

q/p'

n 1-9//»'

Since the gk's have disjoint support, this completes the proof that (6.6) is bounded

by the right side of (6.5) with c independent of n, g and the choice of the F^'s.
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To estimate (6.7), start with the fact that (6.7) is bounded by

•2/,/
A:=l    Jk     -

00 |g(0-g*(0

X - t
¡i-a

dt dx.

Holder's inequality applied to the inner integral gives the bound

q/p'„     r      r00 ,       i'?     r

2*2/ / u(o-g,(or*    /
dt

k=\ \x-t\>nu\X t\"
(i-a)

q/p

dx.

The hypothesis a < \/p' implies p(\ — a) > I; therefore, the last integral is finite.

Replacing that integral by its value, performing the outer integration and using the

definition of D shows that (6.7) is bounded by

c  IL T r°° ~\i/p'
-1 \g(t)-gk(t)fdt       .
" k=\lJ-oo J

Since all the integrals are bounded by f™x\g(t)f dt, this shows that (6.7) is

bounded by the right side of (6.5). This completes the proof of Theorem 7.
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