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SHRINKING COUNTABLE DECOMPOSITIONS OF S3

BY

RICHARD DENMAN AND MICHAEL STARBIRD1

Abstract. Conditions are given which imply that a countable, cellular use decom-

position G is shrinkable. If the embedding of each element in G has the bounded

nesting property, defined in this paper, then S3/G is homeomorphic to S3. The

bounded nesting property is a condition on the defining sequence of cells for an

element of G which implies that G satisfies the Disjoint Disk criterion for shrinkabil-

ity [SI, Theorem 3.1]. From this result, one deduces that countable, star-like

equivalent use decompositions of S3 are shrinkable—a result proved independently

by E. Woodruff [W], Also, one deduces the shrinkability of countable bird-like

equivalent use decompositions (a generalization of the star-like result), and the

recently proved theorem that if each element of a countable use decomposition G of

S3 has a mapping cylinder neighborhood, then G is shrinkable [E; SI, Theorem 4.1 ;

S-W, Theorem 1].

1. Introduction. Let G be an upper semicontinuous (abbreviated use) cellular,

countable decomposition of S3 (countable means that G has only countably many

nondegenerate elements). Under what circumstances is S3/G homeomorphic to S3,

i.e., is G shrinkable? It has been shown [S2, Main Theorem] that no conditions on

the topological nature of the nondegenerate elements of G are sufficient to guarantee

that G is shrinkable. Conditions on G, then, must restrict the allowable embeddings

of the elements of G.

In this paper, we describe a property of an embedding of a cellular set in S3 called

the bounded nesting property which is defined in §5. This property restricts the

depth of nesting of certain curves on the boundary of each cell in a defining

sequence for the cellular set. Each curve is in the intersection of a disk with a cell

boundary. The main theorem in this paper is the following one.

Bounded Nesting Theorem 5.3. Let G be a countable, cellular, use decomposition

of S3. If each element of G has the bounded nesting property, then S3/G is homeomor-

phic to S3.

This theorem allows us to deduce as corollaries most known theorems about

shrinkability of countable decompositions of S3. Also it implies more—for example,

the star-like equivalent case, stated below, which was recently proved independently

by E. Woodruff [W].
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Star-like Theorem 6.1. Let G be a use decomposition of S3 into points and

countably many nondegenerate elements {g,},e„ where for each i in w, there is a

homeomorphism A,: S3 -» S3 so that A,(g,) is star-like. Then S3/G is homeomorphic to

S3.

In addition, the Bounded Nesting Theorem encompasses the case of bird-like

equivalent elements—an extension of the star-like equivalent result. Also, the

Bounded Nesting Theorem implies the recent theorem, which follows from

[E; SI, Theorem 4.1 ; S-W, Theorem 1], that a countable, cellular use decomposition

is shrinkable if each element has a mapping cylinder neighborhood.

The Bounded Nesting Theorem 5.3 is a result which depends on the Disjoint

Disks Property for shrinkability of O-dimensional, cell-like use decompositions of S3

[SI, Theorem 3.1]. The bounded nesting property is a condition on the sequence of

defining cells for an element which allows one to prove that the Disjoint Disks

Property is satisfied for a countable decomposition of elements with the bounded

nesting property.

§2 contains statements of the Disjoint Disks Property results which are used in

this paper. §3 gives examples illustrating those features of a defining sequence of

cells which allow application of the Disjoint Disks results. §4 develops prehminaries

associated with the bounded nesting property. §5 contains the proof of the Bounded

Nesting Theorem. §6 contains the star-like, bird-like, and mapping cylinder applica-

tions of the Bounded Nesting Theorem.

2. The DDP in S3 [SI]. In this section we describe some criteria for shrinkability

of certain cellular, use decompositions of S3. All these criteria demonstrate that the

cellular, use decomposition G in question satisfies Bing's Shrinking Criterion [Bl]

and hence is shrinkable, i.e., S3/G is homeomorphic to S3.

Consider a O-dimensional, cellular (or cell-like) use decomposition G of S3, and a

triangulation T of S3. By [SI, Theorem 2.1], there is a homeomorphism of S3,

restricted by any given saturated open cover of S3, which moves the nondegenerate

elements of G off the 1-skeleton of T. If mesh T is small, and one wishes to shrink

the elements of G, it suffices to produce a homeomorphism A: S3 -» S3, restricted by

a saturated open cover, so that for each element g E G, h(g) does not intersect

nonadjacent 2-simplexes in the 2-skeleton of T. In [SI], the following Disjoint Disks

Property was defined, reflecting the facts that disjoint 2-simplexes of T(2) could be

handled in pairs, and that moving the 2-simplexes off common elements of G is as

good as doing the reverse.

Definition 1. A disk D' in S3 is obtained from a disk D by a simple replacement

of subdisks if there are disjoint subdisks {E¡}"=x on D and {E[}"i=x on D' where

D' - \j"í=xe; = d- u;=1£,..
Definition 2. The union of the nondegenerate elements of a decomposition G

will be denoted by NG.

The following theorem is a criterion for shrinkability of O-dimensional decomposi-

tions of S3 proved in [SI].
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Theorem 2.1. Let G be a O-dimensional, cell-like (or cellular), use decomposition of

S3. Then S3/G is homeomorphic to S3 if and only if for each saturated open cover of

NG and pair of disjoint tame disks Dx, D2 with (Bd Dx U Bd D2) n NG= 0, there are

disks D\,D'2 such that:

(1) D'x and D2 are obtained from Dx and D2, respectively, by simple replacement of

subdisks;

(2) all replacement subdisks of D'x, D2 are in the given saturated open cover of NG;

and

(3) no element g E G intersects both D'x and D2.

The following corollary of Theorem 2.1 reflects how Theorem 2.1 is used in

dealing with countable decompositions. Its proof [SI, Theorem 4.1] is based on the

fact that the union of the elements of G that intersect two disjoint disks is compact.

Corollary 2.2. Let G be a countable, use cellular decomposition of S3. Then G is

shrinkable if and only if each element g in G satisfies the following Property (a) ("a"

stands for the ability to cut off a pair of disks from g without creating new intersections

of the pair of disks with other elements of G):

Property (a). For each 3-cell C containing g in its interior, each pair Dx, D2 of

disjoint tame disks whose boundaries miss g, and e > 0, there are disks D'x, D2 such

that:

(1) D'x and D2 are obtained from Dx and D2, respectively, by an e-approximation

followed by simple replacement of subdisks;

(2) all replacement subdisks of D[, D2 are in C;

(3) not both D\ and D2 intersect g; and

(4) if an element y E G intersects both D\ and D'2 then y also intersects both Dx and

D2.

3. Examples concerning Property (a). Under what conditions does a cellular set

satisfy Property (a) of Corollary 2.2? Providing an answer to this question is a major

portion of this paper. We begin.

First note that no set of conditions on the topology of a cellular set g above can

insure that g has Property (a). This fact follows from the result below.

Theorem [S2, Main Theorem]. Let (g,},eu be a collection of nondegenerate

continua, each of which admits a cellular embedding in S3. Then there are cellular,

disjoint embeddings (A,: g, -» S3}ifEa so that the decomposition G of S3 whose

nondegenerate elements are {A^g,)},^ is a cellular, use decomposition of S3 for which

S3/G is not homeomorphic to S3. In fact, {hi(gi)}ieu could be chosen to be a null

sequence.

Therefore, conditions on a cellular set g designed to ensure that g has Property (a)

must be conditions on the embedding of g. The conditions formulated in this paper

are conditions on a defining sequence of 3-cells for g. Let us begin by defining the

standard set-up associated with Property (a) as follows:

Set-up ({C,},eu, [Pj}j=i, A). Let g be an element of a cellular use decomposition G

of S3. Let {C,},6(0 be a sequence of PL 3-cells containing g and let A be a PL ray in
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C0 — g so that:

(i)*=n(e„ç;
(2) for each i G u, Ci+i C Int C,;

(3) for each element y in G, if y n Bd C,;¥= 0, then y fl C¡+1 = 0 ; and

(4) for each /' E u, A n Bd C, = one point.

In addition, we will be concerned with the components of (Dx U D2) H (C0 — g)

that intersect Bd C0. Hence, let {Pj}J=\ be PL, connected, disjoint, relatively closed

subsets of C0 — g — A so that for eachy = 1,... ,r:

(i)Pj nBdCO7¿0;

(ii) Pj is a 2-manifold with boundary where the boundary equals Pj D Bd C0;

(iii) P. can be embedded in a disk;

(iv) Pj is in general position with respect to Uíea)Bd C,;

(v) if /, K are two components of P- D Bd C, and /, 7f are in the same component

of Pj n C¡, then /, K are in the same component of 7^ D (C, — C,+,);

(vi) if y E G, H is a component of P, n (C, - C,+ 1), y n Bd C, =£ 0 and y n 77

7^= 0, then 7/ n Bd C, ̂  0.

Each component Pj is called a principal component.

This completes the definition of Set-up ((C,}l6u), (7^}yr=1, /I).

We will use Set-up ({C,},eu), {P.]£=1, v4) to help us in finding replacement disks as

required in Property (a). Our method will be to find simple closed curves J of

Pj n Bd C, and cap them off on Bd C¡. In order to accomplish this while satisfying

Property (a), it will be useful to see how J separates Pj.

Definition. Let Set-up ({C,},eu,{Pj}j=i, A) be given. Let / be a simple closed

curve in P. n Bd C¡. Then Ej is the disk on Bd C, bounded by J that does not

contain A n Bd C¡. Also Fj is the closure of the component of P, — J that does not

contain P. D Bd C0. (Note that condition (v) on Py guarantees that Fj is well

defined.) Finally, if Int Ej n 7^ = 0, let 7^ be the component of (C0 — g) — (Ts, U

7^) that does not contain the arc A.

We now give two examples which illustrate features of a Set-up that are associated

with the ability or inability to do disk replacements as required for Property (a).

Good Case. Suppose Set-up ({C,},eu, {Pj}rj=x, A) is given with the following

property:

For each simple closed curve J of Pj• n Bd C,(j — l,...,r; i E a):

(i) Int Ej Ci Pj— 0 and, for emphasis, the redundant;

(ii) for each curve K in Fj D Bd Ci+m (m > 1), Int EKE Fj (see Figure 3.1).

In this situation, there is a new Set-up ({C,},Gw, {Pf}rj=x, A) so that

(a) each PJ is obtained from P- by the process of replacing 7^'s by £/s and

(b) if an element y of G intersects both PJ and P'k, then y intersects P- and Pk.

Proof. Denote by Py the component of C0 — g — Pj that does not contain A.

Order the {Py}}=, so that for each; = l,...,r - 1, P, n (Uk>JPk) = 0. Suppose

{Jkyk=x is a collection of simple closed curves in Pj n Bd Cy. Then let PJ be the

component of (Py - Usk=xFJt) U U^=]7i/t that contains P, n Bd C0.

This collection of P,"s satisfies the conclusion. In particular, conclusion (b)

follows from hypothesis (ii).
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Figure 3.1

A Set-up with the properties above arises if g is a PL embedded complex in S3,

disks DX,D2 are PL in general position with respect to g and {C,}/6w are PL regular

neighborhoods of g. Then the {-?/}/= i are the components of (7), U D2) D (C0 — g)

that contain a point on Bd C0 which can be joined to Bd Dx U Bd D2 by an arc on

Dx U D2 — Int C0. Changing each P- to Py can be seen to produce disks D\, D'2 by

replacement of subdisks in a manner satisfying Property (a). This example then

contains the ingredients in showing that countable, use cellular decompositions G of

S3 whose elements are tame polyhedra are shrinkable.

Bad Case. Consider the biggest element g in Bing's minimal example of a

nonshrinkable, null sequence, cellular use decomposition [B2]. Construct a Set-up

({C,},ea), {P,, P2}, A) where the C,'s are standard neighborhoods of g and P, and P2

are the intersections of disjoint meridional disks of the first defining torus with

C0 — g. Examine a curve J of P, n Bd Cj and note how the curves of Fj D Bd G+,

are badly nested with each other and with curves from P2 n Bd C+1, demonstrating

the failure here of hypothesis (ii) of the Good Case.

4. Separation properties of principal components {Pj}j=x. In this section we

investigate how principal components intersect the BdC,-'s and describe some

separation and nesting properties of various E/s, 7^'s, and F/s. In the Good Case

of §3, we were allowed to cap off a principal component because of its separation

properties in C0 — g. The first lemma below specifies a circumstance in which a part

of a principal component can be cut off on a Bd C, without danger of having a

nondegenerate element intersect a pair of principal components which it did not

intersect before.

Lemma 4.1. Let Set-up ({C,},ew, {PJYj=\, A) be given, let P be a principal compo-

nent and let J be a simple closed curve of P n Bd C, such that Int Ej n ( U/= \PJ)= 0.

Suppose K is a component of Fj n Bd Ci+m (m > 1) such that Int EK E F}. Then if an

element y of G intersects EK and Pk for some k, then y intersects F} and Pk. (See Figure

4.1.)

Proof. By property (3) of Set-up ({C,},e„, {P,};=1, A), y n Ej = 0. But Fs U E}

separates Int 7% from (UJ=xPj — P). Therefore, the result follows from the con-

nectedness of y.
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Figure 4.1

The next lemmas demonstrate how nesting of curves of P n Bd C, are related to

those of P n Bd Ci+m. One of the difficulties we face in this process is the problem

of handling the fact that a principal component does not typically go straight

through a Bd C¡. That is, P n (C0 - Int C,) is not generally connected, although by

condition (v) of the Set-up, only one component of ? n (Q - Int C,) intersects

Bd C0. In order to deal with this problem, we define first curves below.

Definition. Given Set-up ({C,},6u, {Pj}j=\, A), a curve/ of (Bd C,) n Py is a first

curve of (Bd C¡) n Pj if and only if J is on the component of Py D (C0 — Int C,) that

intersects Bd Q.

Because of this local oscillation problem of P around Bd C,, we will describe the

nesting of a curve J of P n Bd C, not by looking directly at J on Bd C„ but instead

by looking at how first curves of UPy n BdC,+m are nested in first curves of

FjnBdCl+m.
Remark In the Set-up ({C,},e„, {PJ}rj=x, A) the words innermost, outermost, and

nesting, for curves J on Bd C,, refer to relationships among the disks Ej.

Lemma 4.2. Let Set-up ({C,},Sü), {P}jL,, A) be given, let P be a principal compo-

nent, let J be a simple closed curve of P D Bd C, where (Int Ej ) D Fj = 0, and let K

be outermost on Bd Ci+m among first curves of Fj D Bd Ci+m (m > 1). Then a collar of

K in EK lies in Fj. (See Figure 4.2.)

Figure 4.2
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Proof. Let F be the component of (Ej U Fj) n (C0 — Int Ci+m) which contains

Ej. No component B of (Fj — F) H (C0 — Int Ci+m) separates F from the arc A

because condition (v) of the Set-up ensures that B n Bd C¡, = 0. Therefore an arc a

on Bd C,+m from /I D Bd C,+m to a point on 7C, whose interior misses F, must pierce

each component of Fj n (C0 — Int C,+m) an even number of times. Since A is not in

Fj, an exterior collar of K on Bd C,+m must also be outside Fj, therefore a collar of K

in EK must be inside py.

The next lemma expresses the fact that pockets cause nesting of first curves.

Lemma 4.3. Let Set-up ({C,},ew, {Pj}j=x, A) be given, let P be a principal compo-

nent, and let J be a curve in P D Bd C¡ where (Int Ej) D Fj= 0. Let K be a curve of

Fj n Bd Ci+m (m > 1) with Ekn Fj= 0. Then for each first curve L of FK D Bd Ci+n

(n > m), there is a first curve M of(Fs — FK) C\ Bd Ci+n so that L E EM. (See Figure

4.3.)

BdC

BdC

!+&/

Figure 4.3

Proof. Since EKC\Fj— 0, FK C\ Fj — 0. Assume that L is outermost on

Bd Ci+„ among the first curves of FK n Bd C,+„. By Lemma 4.2, EL contains a collar

of L in FK, therefore an exterior collar of L on Bd Ci+„ is in Fj. Hence no collar of L

in EL is in Fj, so by Lemma 4.2, L is not outermost on Bd C,+„ among the first

curves of Fj n Bd C,+„. This proves the lemma.

The next lemma also deals with nesting of first curves, but this time with

nonpocket curves.

Lemma 4.4. Let Set-up ((C,},eu, {Pj}J=x, A) be given, and let P be a principal

component. Suppose J E (Bd C, fl P) where (Int Ej) n Fj = 0. Let K be a curve of

Fj n BdCi+m(m> I) such that Int EK E Fj and let L be a curve of EK n (UrJ=iPj)

such that LJ=K.

Then for every first curve M of FL n Bd Cj+n (n > m), there is a first curve N of

(Fj - FL) n Bd C¡+„ so that M E EN. (See Figure 4.4.)
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Figure 4.4

Proof. Note first that FL E Fj. Therefore, the component of FL n (C0 — Int Cl+n)

which contains L must be separated from A by the component of (7J, U Fj) n (C0

— Int C,+„) which contains Ej. This proves the lemma.

5. The Bounded Nesting Theorem. We are now ready to state and prove the

Bounded Nesting Theorem. In the previous section, we saw how principal compo-

nents intersect the BdC,'s. Here we assert that if the nesting of first curves is

bounded, the principal components can be cut off by repeated uses of Lemma 4.1.

The nesting of first curves is formalized in the following definition.

Definition. A Set-up ({C,},e„, {PjYj-\, A) has bounded nesting if and only if there

is an integer M such that for each i E w and set of first curves {Jk}"k=xon Bd C, with

EjkEEJk+i(k=\,2,...,n-\),n<M.

Our objective is to reduce the intersections of UrJ=lPj with the BdC,'s by

changing both the P-'s and the C,'s. We measure the difficulty we have in removing a

curve / from P D Bd C, by a notion of complexity defined below. The proof of the

curve elimination Lemma 5.2 is accomplished by induction on complexity.
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Definition 1. Let ({C,}/eu, {Pj})=\, A) be a Set-up, P a principal component, and

K a first curve of P D Bd Ck. Then K has gz'ríA g(7C ) equal to the maximum number

n for which there exist first curves {J¡}"=x in Int Ti^withTiy C EJ¡+ (i — \,...,n — 1).

Remark. If / is a curve of P fl Bd C, (/' 3s 1), then 7^ is not a disk if and only if

Fj n Bd Ck ¥= 0 for each k > i.

Definition 2. Let Set-up ({C,},eu, {P}}Li, ^4) be given with bounded nesting. If/

is a curve of P n Bd C,- (/' > 1) for which Fj is not a disk, then the complexity c(J) of

J equals niin •>,- max{g(7C) | K is a first curve of Fj fl Bd Ck for some k >j). If Fj is

a disk, we define c(J) = -I.

For a curve J above, let m(J) be an integer for which the following statement is

true: if K is a first curve of Fj n Bd Ck and A: > w(/), then g(K ) < c(J).

Lemma 5.1 provides the beginning step of the inductive proof of the curve

ehmination Lemma 5.2.

Lemma 5.1. Let ({C,},eu, {Pj}rj=x, A) be a Set-up with bounded nesting and let J

be a curve of P D Bd C, (i > 1) with F} a disk.  Then there is a new Set-up

({C/}iew, {PjYj=x, A) with bounded nesting such that:

(a)/£Bde/;
(b)forO<k<i,C'k = Ck;
(c)({JrJ=xPj n BdC/) C ((UrJ=xPj) n BdC,);

(d)fork > i, C'k = Ck+m for some fixed m > 1; and

(e) iAe «ew complexity c'(L) = c(L) for each curve L of U Pj D U^ew Bd C¿.

Proof. Since Fj is a disk, there is some integer m> I so that 7^ n C,+m_, = 0,

so define C^ = Ck+m for A: > i, and define C^ = Ck for 0 < Ä: < /'. Let K be a curve

which is innermost on the disk Fj among the curves of 7^ fl Bd C¡. Alter Bd C, to

obtain Bd C, by replacing EK by a disk parallel to 7^ and sufficiently close such that

({CJ, €¡¡MjBa, {Pj}j=\, A) is a Set-up. Now Bd C, has fewer intersections with Fj

than Bd C, had. Note that the 3-cell C, bounded by Bd C, contains g since (FKU EK)

n A = 0. Repeat this process until we obtain a 3-cell C[ such that Bd C[ n Fj = 0.

Note that since for k > /', C'k = Ck+m, the complexity of any curve L of U7>: D

U Bd C'k is unchanged and the Set-up has bounded nesting.

Lemma 5.2 (Curve Elimination). Let Set-up ({C,},ei0,{7^=1, A) be given with

bounded nesting. Let P be a principal component and J be a component of P n Bd C¡

(i > 1) where Int Es D F3 = 0. TAe« íAere ex/'jíj a new Set-up ({C/},Sw, {P/}y=i, ^4)

iucA that:

(1) ({Qie„. {^/};=i. -4) nos bounded nesting;

(2) for each j, PJ n (C0 - C.) = P7 n (C0 - C,);

(3)/(¿P/nBdC/;
(4) eacA P/ « obtained from Pj by repeatedly finding a curve K as in Lemma 4.1, and

replacing FK with EK;

(5) ifyEG intersects P'k and P/, then y intersects Pk and Ps;

(6)fork < i, C'k = Ck;

(7) (u;=1p/) n Bd c; c (u;=1p,) n Bd c,.;
(8) /Ae new complexity c'(L) < c(L) for each curve L of UPJ fl U^g^Bd C^.
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Proof. The proof proceeds by induction on the complexity of /. Suppose

c(J) = -1. Then Fj is a disk and Lemma 5.1 implies the desired conclusions.

Assume that Lemma 5.2 is true for each curve K which satisfies the hypotheses of

Lemma 5.2 and with c(K) < c(J). We show that it is true for/.

We prove this by eliminating all curves of Fj n Bd Ct+, by applications of Lemma

5.2 as applied to curves on Bd Ck for k > i. After several such applications, the new

Fj will not intersect the new Bd Ci+X at all, so Fj will be a disk, which is a previously

considered case.

Case 1. Int Ej C\ UP, = 0.

Let K be an innermost curve of Fj n Bd Ci+ x, thereby satisfying the hypotheses of

this lemma.

If EK E Fj, then replace FK by EK and adjust Bd Ci+, slightly near EK to eliminate

the curve K from Fj fl BdC,+1. Lemma 4.1 implies that the new Set-up satisfies

conclusion (5). The other conclusions of Lemma 5.2 as applied to K are easily

checked.

Claim. If EK n Fj = 0, then c(K) < c(J).

Proof of Claim. Let k > max{m(/), m(K)} and let / C (7^ n BdQ) be a

first curve with g(L) = c(K). By Lemma 4.3, there exists a first curve M of

(Fj - FK) n Bd Ck such that L C EM. So g(M) > g(L) and the Claim is proved.

Therefore, K can be eliminated by induction. Case 1 is completed by repeatedly

removing innermost curves Kas above until Fj D BdCi+x = 0. Case 1 is proved.

Case 2. Int E} n UP;■¥= 0.

Let Tí be an innermost curve of Fj n Bd Ci+ x. If EK n Fj = 0, then c(K) <c(J)

as was shown in Case 1. In this event K can be eliminated by induction. Suppose,

therefore, that Int EK E Fj. Let L be an innermost curve of Int EK fl U Py.

Claim. c(L) < c(J).

Proof. Let k > max(w(Z.), m(J)}. Let M be a first curve of FL n BdQ for

which g(M) = c(L). By Lemma 4.4, there is a first curve N of (Fj — FL) n Bd Ck

with M E EN. Therefore g(M) < g(N) and so c(L)<c(J) and the Claim is

proved.

Therefore, all curves in Int EK can be eliminated by induction. If K remains, then

Int EK n UP, = 0. Since K E F7, c(K) < c(J). So Case 1 allows us to eliminate

K.

Case 2 is completed by repeatedly removing innermost curves K as above until

Fj fl Bd C,+, = 0. This finishes the proof of Case 2 and the lemma.

This lemma allows us now to state and prove the Bounded Nesting Theorem. First

we give a definition of what it means for an element to have the bounded nesting

property. The definition below is more complicated than is ordinarily necessary;

however, it is used for one of the applications. The simpler version, which is more

important to understand, is obtained from the definition below by replacing (ii) and

(iii) below with the following condition:

(ii)' {PjYj=\ equals the set of components of (Dx U t32) n (C0 — g) that contain a

point on Bd C0 which can be connected to Bd Dx U Bd D2 by an arc in Dx L) D2 —

Int C0.
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The fancy definition below is used only in the mapping cylinder application,

Theorem 6.3.

Definition. Let G be a cellular, use decomposition of S3. An element g in G has

the bounded nesting property if and only if for each pair of disjoint tame disks DX,D2

with (Bd Dx U Bd £>2) n g = 0 and e > 0, there are PL disks Dx, D2 and a Set-up

({C,},6u, {PjYJ=x, A) with bounded nesting such that:

(i) Dx, D2 are e-approximations of DX,D2;

(ii) UJ=,Py n Bd C0 contains every point of (73, U t52) n Bd C0 which can be

joined to Bd Dx U Bd 732 by an arc on DXL> D2- Int C0;

(iii) for each component B of (Dx U t52) n (C0 - g) that intersects Bd C0 and can

be joined to Bd Dx U Bd 7)2 by an arc on DXU D2- Int C0, there is a P- so that

B n Bd C0 = Pj, fl Bd C0 and Py is e-homeomorphic to a subset of 5.

Definition. A cellular, use decomposition G of S3 has the bounded nesting

property if and only if each element of G has the bounded nesting property.

Bounded Nesting Theorem 5.3. Let G be a countable, cellular use decomposition

of S3 with the bounded nesting property. Then S3/G is homeomorphic to S3.

Proof. It suffices to prove that each element g of G has Property (a) of Theorem

2.2. Let Dx, D2 be tame disks with (Bd Dx U Bd D2) n g = 0. Let Dx, D2, and

Set-up ({C,-}(6(1), {PjYj-i, A) be those guaranteed by the fact that g has the bounded

nesting property. Repeated use of Lemma 5.2 allows us to produce a new Set-up

({C,'}iea, {PJ)j=x, A) which is obtained from Set-up ({C,},ea), {Py};=1, A) satisfying

the conclusions of Lemma 5.2 such that UrJ=xPJ flg= 0. Let the disks D[

(i = 1,2) required in Property (a) be obtained from D¡ (i = 1,2) by first deleting

those points of Di which are separated from Bd D¡ on D¡ by Bd C0 and then adding

in each PJ that intersects what remains. Since, by the conclusion of Lemma 5.2, each

PJ is obtained from P, by replacing Fj's by 7s/s, one sees that the 7),"s are obtained

from the 73,'s by simple replacement of subdisks. The other requirements for

Property (a) are also incorporated in Lemma 5.2, so the theorem is proved.

6. Star-like equivalent and other applications. Many theorems about shrinkability

of countable, cellular decompositions of S3 follow from the Bounded Nesting

Theorem. One new result, established independently by E. Woodruff, is the star-like

equivalent case.

References below to "straight" in S3 exploit the natural correspondence between

R3 and S3 minus a point away from the relevant sets.

Definitions. 1. A compact set g in S3 is star-like if and only if there is a point

p G g so that for each straight ray px starting atp, px n g is an interval or a point.

2. A compact set g in S3 is star-like equivalent if and only if there is a

homeomorphism A: S3 -* S3 so that A(g) is star-like.

Star-like Equivalent Theorem 6.1. Let G be a countable use decomposition of

S3, each element of which is star-like equivalent. Then S3/G is homeomorphic to S3.
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Proof. We show that G has the bounded nesting property. Let g be a nondegener-

ate element of G, let 7), and D2 be disjoint tame disks with (Bd 7), U Bd D2) fl g =

0, and let e > 0. Let A: S3-»S3 be a homeomorphism so that A(g) is star-like and

A | S3 — g is PL, and let 8 > 0 correspond to e via the uniform continuity of A"1. Let

p be the point from which A(g) is star-like, and let {Ci}ieu be a defining sequence of

ideally star-like 3-cells for A(g), that is, each ray from p intersects Bd C, in exactly

one point, C,+1 ClntC, for each i Eu, and g= n,eiá)C,. Assume that C0 n

A(BdT), U Bd7)2) = 0. Let Dx and 732 be disjoint PL disks that are 8-

approximations of h(Dx) and h(D2), respectively, and are in general position with

respect to Bd C, for each i E a so that (Bd Z>, U Bd D2) n C0 = 0. Let {/$=, be

the set of components of(Dx U752)n(C0 — g) that contain a point on Bd C0 which

can be joined to Bd Dx U Bd D2 by an arc on Dx U D2 missing Int C0. We assume

that Dx U D2 miss an endpoint q of A(g) by some distance d, and we also assume

that C0 is inside a ¿-neighborhood of A(g). Let A be the half open interval (q, r]

where r =pqD Bd C0. The triple ({C,},eu, {P,}7r=1, A) satisfies properties (1) and (2)

of a Set-up as defined in §3 and we can assume property (3) by upper semicontinu-

ity. Property (4) holds since each C, is ideally star-like and properties (i)-(iv) are

obvious. Properties (v) and (vi) can be obtained by eliminating cells from the

defining sequence. Therefore, we have a Set-up ({C,},ew, {P}J_,, A) as defined in

§3. Furthermore, properties (i) and (ii') of the bounded nesting property (see §5) are

obvious so it remains to exhibit bounded nesting.

Suppose {Jk}"k=x is a set of first curves on BdC, with Ej ElntEJ+ for

k = 1,...,«— 1. Choose a point x of Int Ej^ and a point v of Bd C, — EJn, so that

the rays px and py each intersect each 2-simplex of Dx U D2 in at most one point.

Let a be a point on the ray px and A be a point on py so that a and A are outside a

ball containing 75, U 732 U C0, and let Q be a polygonal path from a to A outside

this ball. The polygonal simple closed curve 5 = pxa UßU byp intersects each disk

Ej exactly once and, therefore, links each curve Jk. Since the Jks are first curves on

P,'s which can be joined to Bd Dx U Bd D2 missing Int C0, they bound disjoint disks

on Dx U 7?2. Therefore S intersects Dx U t32 at least n times. On the other hand, all

intersections of 5 with Dx I) D2 are on the segments pxa and pyb, each of which can

intersect each 2-simplex of Dx U 732 at most once. Therefore, n is bounded by twice

the total number of 2-simplexes in Dx U D2. This fact proves that Set-up

({c/}¿ew. [Pj)j=u A) nas bounded nesting.

We finish by observing that the Set-up ({h-\Ct)}ieo, {A-'(Py)};=1, A"1^)) also

has bounded nesting since A is a homeomorphism. Also observe that h~x(Dx),

h'x(D2) are e-approximations of Dx and D2 because of the choice of 8.

This proof is modified below to deal with bird-like equivalent elements (defined

below). Since every star-like set or polyhedral cellular set is bird-like, the following

theorem is a proper generalization of the Star-like Equivalent Theorem and the tame

cellular polyhedra theorem [E; SI, Theorem 4.1 ; S-W, Theorem 1].

Definitions. 1. A compact set g in S3 is bird-like (see Figure 6.1) if and only if it

is definable by PL 3-cells {C,},eu with the properties that:

(a) there is an integer m such that given two points x and v on Bd C,, there is a

polygonal arc from x to v in C, with at most m 1-Simplexes;
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(b) for each pair of disjoint tame disks Dx, D2 with (Bd Dx U Bd D2) D g = 0

and e > 0, there are PL, disjoint e-approximations Dx, D2 of Dx, D2, respectively,

and an integer n such that there exists a PL ray A in Cn — (g L) Dx U7)2) such that

for each k > n, A n Bd Ck is one point.

2. A compact set g in S3 is bird-like equivalent if and only if there is a

homeomorphism A: S3 -* S3 so that A(g) is bird-like.

Figure 6.1

Bird-like Equivalent Theorem 6.2. Let G be a countable use decomposition of

S3, each element of which is bird-like equivalent. Then S3/G is homeomorphic to S3.

Proof. Proceed as in Theorem 6.1 to obtain Set-up ({C,},eu, {P,}/=1, A), omitting

a finite number of C,'s in order to find the ray A, and renumbering the C,'s to start

at 0. We proceed below to show that this Set-up has bounded nesting.

Let B be a ball containing C0 U Dx U t32, and let p be a point of S3 — B. There is

an integer í so that for each x E Bd C0 — (Dx U 732), there is a polygonal arc from x

to pin S3 — Int C0 that intersects Dx U 732 in at most s points.

As in the star-like case, suppose {Jk}"k=x is a set of first curves on BdC, with

Ej E Int Ej for k — 1,... ,n — 1. We seek to produce a bound for n. Choose a

point x of Int Ej very close to /,, and choose a point y of Bd C, — Ej very close to

/„. Let A and c be PL arcs in S3 — IntC, from x and y to points x' and y',

respectively, on BdC0 so that (b I) c) C\ (Dx I) D2) = 0. These arcs can be con-

structed near the components of (C0 — Int C,) n (Dx U D2) since /, and /„ are first

curves. Let d and e be PL arcs in S3 — Int C0 from x' and y', respectively, to p, each

of which intersects (Dx U 732) in at most 5 points. Let/be the PL arc from x toy in

C, guaranteed by the fact that A(g) is bird-like. In particular, / has at most m

1-Simplexes each of which intersects a 2-simplex of Dx U D2 at most once. The

polygonal simple closed curve 5 = bdecf intersects each disk E} exactly once and

therefore links each curve Jk. The Jk's bound disjoint disks on Dx U 732, therefore S

intersects Dx U 732 at least n times. On the other hand, all intersections of S with

Dx U t52 he on d U e U /, so n is bounded by s + s + m -j, where y is the number of

2-simplexes in 73, U D2. This completes the proof that the nesting is bounded. Thus

the Bounded Nesting Theorem 5.3 completes the proof of the bird-like theorem.

Another result, which includes the tame polyhedra case, is the following one,

which can be derived from [E; SI, Theorem 4.1 ; W, Theorem 1].
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Mapping Cylinder Theorem 6.3. Let G be a countable use decomposition of S3

each element of which has a mapping cylinder neighborhood. Then S3/G is homeomor-

phic to S3.

Proof. Let g be a nondegenerate element of G, let Dx and D2 be disjoint tame

disks with (Bd 7), U Bd D2) n g = 0, and let e > 0. Let C0 be a PL mapping

cylinder neighborhood of g so that:

(1) C0 — g is PL homeomorphic (via A) to S2 X (0,1 ];

(2) the function /: C0 - g -» g defined by f(h(z, t)) = lim,^0A(z, /) is well

defined and continuous;

(3) diam( A({z} X (0,1 ])) < e for each z E S2;

(4) there is an arc A = h({z} X (0,1 ]) so that A n (7), U D2) = 0 ;

(5) for each element y E G and for each integer k > 1, if y n A(52 X {l/yt}) ^ 0,

then y fl A(S2 X {1/*+ 1})= 0.

Let Bd C, = A(S2 X {\/i + 1}) and let Dx and 732 be disjoint e-PL approxima-

tions of D, and D2, respectively, which miss A and are in general position with Bd C,

for all i E to. Let {PiYj=\ be the components of (Dx U 732) n (C0 — g) that intersect

BdC0.

Let k be an integer > 2 so that if / and K are components of (Bd C0 n P) for

some P, then / and K are in the same component of P n A(S2 X [l/k, 1]). For each

Pj and for each first curve L of Pj fl BdCk_x, replace FL by A(A"'(L) X (0,1]) to

obtain A. This change produces a new Set-up ({C,},Ew, {P,}j_,, A). The new Set-up

has bounded nesting since the number of curves of (Urj=xPj) n BdC, (/' E w) is

bounded. Since the new Set-up was obtained from the original Set-up in accordance

with the conditions in the definition of the bounded nesting property, we see that g

has the bounded nesting property. Thus the Bounded Nesting Theorem 5.3 implies

that G is shrinkable.
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