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CONSTRUCTING APPROXIMATE FIBRATIONS

BY

T. A. CHAPMAN AND STEVE FERRY1

Abstract. In this paper two results concerning the construction of approximate

fibrations are established. The first shows that there are approximate fibrations/):

M -» S2 which are homo topic to bundle maps but which cannot be approximated by

bundle maps. Here M can be a compact 0-manifold or some topological «-manifold,

n > 5. The second shows how to construct approximate fibrations p: M -» B whose

fibers do not have finite homotopy type, for any B of Euler characteristic zero. Here

M can be a compact Q-manifold and B only has to be an ANR, or M can be an

«-manifold, n s= 6, and B must then also be a topological manifold.

1. Introduction. Let E and B be locally compact separable metric ANRs and let p:

E -» B be a proper map, i.e., the preimages of compacta are compact. We say that p

is an approproximate fibration provided that given any X and maps F: X X [0,1] -» B,

f: X -> E for which Fix,0) = pfix), then for every e > 0 there exists a map F:

X X [0,1] -> E such that F(x,0) =/(x) and pF(x, t) is e-close to F(x, t), for all

(x, t) E X X [0,1]. This concept was introduced by Coram and Duvall in [10] as a

generalization of the notion of a Hurewicz fibration. It has been studied extensively

by several authors because approximate fibrations seem to arise more naturally than

do Hurewicz fibrations or bundle maps when one studies certain topological

manifold problems.

In this paper we will only be interested in approximate fibrations p: E -* B for

which E = Mk, k < oo, where Mk is a closed topological vV-manifold for k < oo, and

is a compact Hilbert cube manifold (i.e., (2-maniMd) for k — oo. (Recall that a

Q-manifold is a separable metric manifold modeled on the Hilbert cube Q.) Our

main results are Theorems 1 and 2 where we show how to construct examples of

approximate fibrations which are homotopic to bundle maps but which cannot be

approximated by bundle maps, and also examples of approximate fibrations with

nonfinite fibers.

In [17] Husch showed that an approximate fibration p: Mk -* Sx can be ap-

proximated arbitrarily closely by a bundle map iff it is homotopic to a bundle map,

6 < k =£ oo. By a bundle map we mean a locally trivial bundle map with fiber an

ANR. The following theorem shows that some restrictions are necessary in order to

extend this result to more complicated bases. It also gives a negative answer to

question QM15 of [15].
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Theorem 1. For any k, 5 < k < oo, there exists an approximate fibration p:

Mk -» S2 which is homotopic to a bundle map but which cannot be approximated

arbitrarily closely by bundle maps (or even Hurewicz fibrations).

Remarks. (1) In the g-manifold case the fiber of p: M°° -» S2 can be taken to be

any finite complex F for which K_xZ-nx(F) i= 0, where K_x is the lower algebraic

K-theoretic functor of Bass [2]. Calculations of Carter assure us that K_xZttx(F) =£ 0,

for7T1(.F) = Z2X Z7[3].

(2) It is also true that if Kx_nZnx(F) t= 0, then the proof of Theorem 1 gives us

an approximate fibration p: M°° -* S" with fiber F which is homotopic to a bundle

map but which cannot be approximated arbitrarily closely by bundle maps.

(3) In the finite-dimensional case the fiber of p: Mk -» S2 can be taken to be any

closed manifold Fk~2 for which the duality involution, ~ : K_xZitx(F) -» K_xZirx(F),

which is induced by the involution x -» x~x on irx(F), does not act trivially or by

multiphcation by -1. Fortunately for n = 2 the example wx(F) = Z2 X Z7 of Carter

satisfies this property [3].

(4) Also for the finite-dimensional case if Fk~" is chosen so that ~: Kx_nZtrx(F)

-> Kx_nZ-!Tx(F) does not act trivially or by multiphcation by -1, then the proof of

Theorem 1 gives us an approximate fibration p: Mk -> S" with fiber F which is

homotopic to a bundle map but which cannot be approximated arbitrarily closely by

one.

(5) Certainly it would be nice to have techniques and calculations at our disposal

which would extend Theorem 1 to include bases which are more complicated than

spheres.

In order to state our next result we will have to recall some facts about

approximate fibrations. If p: E -* B is an approximate fibration of compact ANRs

and B is connected, then the homotopy fiber of p is shape equivalent to all of the

point-inverses of p. Also the homotopy fiber of p is finitely dominated, i.e., is

homotopy dominated by a finite complex. These facts follow easily from Proposition

2.3 of [6], or the reader can construct his own proofs. So it becomes a problem to

determine which finitely dominated complexes can be realized as the homotopy

fibers of approximate fibrations p: Mk -* B. In [12] Ferry showed that if F is any

finitely dominated complex, then there is an approximate fibration/»: M°° -» Sx with

homotopy fiber F. In [14] Ferry constructed an example of an approximate fibration

p: Mk -* S1, 6 < k < oo, whose homotopy fiber is nonfinite, i.e., does not have the

homotopy type of a finite complex. The question was then raised of the possibility of

obtaining approximate fibrations with nonfinite fibers over bases more complicated

thanS1 [15.QM13].

Theorem 2. For any k, 6 < k *£ oo, there exists an approximate fibration p:

Mk -» B with nonfinite fiber, where

(1) B is any compact connected ANR having Euler characteristic zero, ifk — oo,

(2) B is a closed connected n-manifold, k — n > 4, having Euler characteristic zero,

if k< oo.
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Remarks. (1) In the infinite-dimensional case the proof of Theorem 2 actually

yields the following stronger result: // B is a compact connected ANR and F is a

finitely dominated complex with Wall finiteness obstruction a(F) £ KüZ<nx(F) which

satisfies x(B)o(F) = 0 (x = Euler characteristic), then F is the homotopy fiber of

some approximate fibration p: Mx -» B.

(2) In the finite-dimensional case the proof of Theorem 2 actually yields the

following stronger result: // B" is a closed connected manifold and F is a finitely

dominated complex for which a(F) = u + (-l)k~"fi, for some ¡i £ K0Zirx(F) and

where ~: K0Z<nx(F) -* KqZttx(F) is the duality involution induced by the involution

x -» x"1 on trx(F), then there is an approximate fibration p: Mk -» B" whose homotopy

fiber has finiteness obstruction equal to a(F) provided that x(P)o(F) = 0.

(3) A related problem is to determine just what finiteness obstructions are

realizable in fibers of approximate fibrations of the above type. Specifically we ask:

If B is a compact connected ANR and G is a finitely presented group, what elements of

K0ZG can be realized as the finiteness obstruction of the homotopy fiber F of some

approximate fibration p: M°° -* B, where itx(F) — G? It is not hard to show that for

any such p: Mx -* B we must have i^xi^)oiF) = 0, where i is the inclusion

F =* M and i+: KQZmxiF) -> K0Zitx(M) is induced by itx(F) -* itx(M). Thus if

irx(F) -* irx(M) has a left inverse, then it follows that x(B)-o(F) = 0 and so by

Remark (1) above we have a complete determination of all possible a(F)'s in this

case. Even if irx(F) -» itx(M) does not have a left inverse then it is still possible to

conjecture that x(B)o(F) must be zero. For example one can show that if p:

M°° -» S2 is an approximate fibration with fiber F, then 2a(F) = 0. The general

case seems difficult.

(4) As in Remark (3) above there is the realization problem for finite-dimensional

manifolds. Again it seems difficult.

2. Preliminaries. All spaces in this paper will be locally compact, separable and

metric. If ht: X -» Y is a homotopy, 0 ^ t < 1, and p: Y -* B is a map, then n, is said

to be &p~x(e)-homotopy provided that each set {pht(x) \ 0 < t < 1} has diameter < e.

A proper map /: X -» Y is said to be a p'x(e)-equivalence provided that there is a

proper map g: Y -> X so that gf is proper (/?/)_1(e)-homotopic to id^ and fg is

proper p_I(e)-homotopic to idr. If Y = B and p = id, then / is simply called an

e-equivalence.

For every pair of maps f,g:X->Y and A C Y we say that f — g over A means

that/_1(^4) = g~x(A) and the restrictions/I/"1^), g \ g'x(A) are equal. For a given

base B and maps/: X -> Y, p: X -> B and q: Y -> B, we say that f is fiber preserving

(f.p.) if qf = p.
If /: X -> y is a map of compacta, then we define the mapping cylinder of/, Mf, to

be (X X [0,1]) u Y/~ , where u means disjoint union and ~ is the equivalence

relation generated by (x, 1) ~ fix). We will represent Mf as the union of X X [0,1)

and T, where Y is the base and X = X X {0} is the top. The collapse to the base is the

retraction c: AL -> Y defined by c | Y — id and c(x, i) = fix).

Numerous concepts and results from ö-mamfold theory will be used in the sequel

such as Z-sets, Z-set unknotting, the Triangulation Theorem, and the Classification
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Theorem which relates the study of homeomorphisms on g-manifolds to simple

homotopy theory. We refer the reader to [8] for the appropriate ö-manifold theory.

A closed subset A of a g-mamfold M is said to be clean if A is a g-manifold and

its topological boundary, Bd(A), is also a g-mamfold which is collared in A and also

in M — À (À = topological interior of A). Similarly a closed subset A of a PL

manifold M is said to be clean if A is a PL submanifold which satisfies the above

conditions and which lies in the interior of M.

We use R" to denote Euclidean n-space, with Rx = R, and we use T" = Sx

X ■ • ■ XSX to denote the «-torus. For any r > 0 we define B" = [-r, r]".

Recall from [9] that to each homotopy equivalence /: X -» Y of compact poly-

hedra (or compact ANRs [8]) we can assign a torsion t(/) E Wh(y) which

vanishes iff / is a simple homotopy equivalence. We will use several standard facts

from simple homotopy theory such as the Sum Theorem, the formula for the torsion

of a composition, etc. An excellent reference for all of this is [9].

We indicated in §1 that for each finitely dominated polyhedron X we can assign

an element a(X) E K0Zitx(X) which vanishes iff X is homotopy equivalent to a

compact polyhedron. For simplicity we write K0Zvrx(X) = K0(X) and by direct

summing over path components we can extend the definitions to include noncon-

nected spaces. Thus K0 (as well as Wh) becomes a homotopy functor from the

category of spaces and maps to the category of abelian groups and homomorphisms.

We will need the Sum Theorem for the Wall obstruction o(X). A good reference for

this is [19, Chapter VI].

3. Proof of Theorem 1 (infinite-dimensional case). Before getting into the proof of

Theorem 1 it will be convenient to establish the following lemma. Choose a point

x0 £ S2 and identify R2 with S2 — {x0}. In this section we will alternately use tr to

denote projection to T2, R2 and S2. The meaning should be clear from context.

Lemma 3.1. For every e > 0 there exists a 8 > 0 so that if f: M -» R2 X F is a

m~x(8)-equivalence, where M is a Q-manifold and F is a compact Q-manifold, then

there exists a compact Q-manifold N and a <n'x(e)-equivalence g: N -» S2 X F for

which g = f over B2 X F.

Proof. We will use mapping cylinder tricks that are similar to those used in [13].

Without loss of generality we may assume that / is an inclusion and M is a Z-set in

R2 X F. Also we may assume that for certain specific values of t which arise in the

following proof, M n (5,2 X F) is clean in M. In particular it follows that the set

X = M U [(S2 — B2) X F] is a compact g-manifold because it is the union of the

compact ô-manifolds M n (B¡ X F) and (S2 - È2) X F which meet in the Q-

manifold M n (3B32 X F) which is a Z-set in each. Since/is a 7r_1(r5)-equivalence it

follows that X -» S2 X F is a 7r_1(5')-domination rel M, i.e., there is a ^"'(S'j-homo-

topy ht: S2XF^ S2 X F for which n0 = id, h,\M = id, and hx(S2 X F) C X.

(The homotopy h, comes from [4] by using a controlled version of the homotopy

extension theorem and the size of 8' depends on the size of 8.) Let e = n, | : X -> X

and form the mapping telescope, Se, which is the quotient space obtained from the

disjoint union

■••u(*X [-1,0]) u (XX [0,1]) u (XX [1,2]) u ••■
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by identifying (x, n) in X X [n — 1, n] with (e(x), n) in X X [n, n + 1]. Note that

Se is just the union of a countable number of copies of the mapping cylinder Me.

Here is a picture:

In a natural way Se may be set-wise identified with XX R (noncontinuously).

By the proof of Theorem 3.1 of [13] there is a homotopy equivalence H: Se -»

S2 X F for which H(x, 0) = x, for x E X, and H(x, t) = x, for all (x, î)inMX R.

This is a (nonproper) ^'(¿'^-equivalence, where the size of 8" depends on the size of

8'. If i: X -> Se is defined by /(x) = (x, 0), then we will construct N and a nonproper

(7r//)"'(e')-equivalence k: N -> Se for which A: = /' over H'X(B2 X F), where the size

of e' depends on the size of 8". Once this is done we can define our desired g:

A^S2XFbyg = /iX

Consider the decomposition X = Xx U X2 where Xx = X — (È25 X F) and X2 =

X D (B25 X F). By our assumption that M D (5|5 X F) is clean in M we conclude

that Xx, X2 and Aq = À", D X2 are all ö-manifolds. For 5 sufficiently small we have a

decomposition Se = Se L) iX2X R), where ex = e | : Xx -* X,. The homotopy equiv-

alence # transfers the homotopy domination X -r» S2 X F rel M to give a homotopy

domination Xe* Se rel M. (We are identifying X with /(A") in Se.) Using this it is

easy to see that (for 8 small) Xx •» Se is also a homotopy domination, thus the Wall

obstruction a(5e ) K0(Se¡) is defined. We have

aiSe) = aiX0 XR) = a(A"2 Xü) = 0,

so by the Sum Theorem for the Wall obstruction we conclude that j*o(Se ) = 0,

wherey'„: K0(Se¡) ~* ̂ o(^)IS induced byy: Se¡ «♦ Se.

If S is small enough the homotopy equivalence H, along with the functorality of

K0, provides us with a homomorphism

*: K0iSe) - ¿„(S,, U (X2 - (¿24 X F)) X r)

so that /„, = </)/*, where / is the inclusion Se¡ =* Sei U ( A"2 - (¿24 X F)) X R. From

this we conclude that l¿>(Se¡) — 0, and therefore

a(Sei U (A-2 - (y3224 X F)) XR) = 0.

This means that the map /: X =* Se can be extended to our desired homotopy

equivalence k: N -» Se by adding a compact polyhedron or, equivalently, a compact

g-manifold to X - (i224 X F) to make

X - (¿24 xF)^seiu{x2- (¿224 Xf))xi

into a homotopy equivalence. It is easy to get k to be a (7r/i")"l(e')-equivalence

simply by choosing the identification R2 = S2 — {x0} so that the diameter of

S2 - B\ is small.    D
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Proof of Theorem 1 (infinite-dimensional case). We start by choosing any

compact connected g-mamfold F for which K_xZwxiF) ¥= 0. Since K_xZitx(F) is a

direct summand of Wh(F2 X F) = ~WhZirx(T2 X F) [1] we can choose a compact

g-manifold Mx and a homotopy equivalence /,: Mx -» T2 X F whose Whitehead

torsion, t(/,), is a nonzero element of the subgroup K_xZmx(F) of Wh(F2 X F).

Such torsions are invariant under passage to standard finite covers, so we may

assume that /, is a ^"'(ej-equivalence, where m = proj: T2 X F -* T2 and ex is a

small number (compare with Lemma 7.3 of [6]).

Let e: R -> Tx be the covering map defined by e(x) = ev,x, thus giving the

covering map e" = e X • • • Xe: R" -» T". Form the pull-back,

h .
M2     -*      R2 X F

I I e2 X id

f,
Mx     -»     F2 X F,

where Ai2 C M, X (F.2 X F) consists of those elements (x, y) of M, X (F2 X F)

for which /i(x) = (e2 X id)( y). The map f2 is a projection map and it is a

77_1(e2)-equivalence, where e2 depends on e,. Also the map M2 -» A/, is an immer-

sion, and therefore Ai2 is a g-manifold. These are standard facts about the pull-back

construction which have appeared several times in the literature (see, for example,

the proof of Theorem 2 of [6]). Using Lemma 3.1 we can find a 7r~'(e3)-equivalence

/3: M3 -» S2 X F where M3 is a compact ß-manifold, /3 =/2 over B2 X F, and e3

depends on e2. For A: large and e3 small we can choose a clean manifold C C M3

which lies in ffx((S2 — Êf) X F) for which the inclusion-induced homomorphism

Wh(C) -> Wh(Af3) is surjective.

We can find a compact ß-mamfold C containing C as a Z-set so that there exists a

strong deformation retraction r: C -» C whose torsion, r(r) E Wh(C), is sent to

- t(/3) E Wh(S2 X F) under the composition

Wh(C) -* Wh(M3) i* Wh(52 X F).

Let M — M3 U C (sewn together along C), which is still a (?-manifold, and let /:

M -* S2 X F be the homotopy equivalence obtained by first retracting C to C via r,

and then applying/3. Observe that/is a i7"'(e)-equivalence, where e is small if k is

large and e3 is small. Also we have t(/) = 0 by the formula for the torsion of a

composition [9, p. 72], so/is homotopic to a homeomorphism n: M -> S2 X F by the

Classification Theorem of [8]. In the language of [6] the map wf: M -> S2 is

e'-fibration, where e' is small if e is small. Thus by Theorem l of [6] we can choose e'

small enough so that w/is close to an approximate fibration/»: M -» S2. We have a

homotopy p ^ mf ̂ irh, the latter map being a bundle map. So we will be done

when we have shown that p is not close to a bundle map.

That p is not close to a bundle map is a consequence of the proof of Theorem 2 of

[6]. We outline the proof. Embed Sx X Rx in S2. Restricting/? to the inverse image of

Sx X Rx gives an approximate fibration over Sx X Rx. Controlled engulfing and



CONSTRUCTING APPROXIMATE FIBRATIONS 763

Theorem 1 of [6] produce an approximate fibration over T2 and a controlled

homotopy equivalence from the total space of this approximate fibration to T2 X F.

The torsion of this homotopy equivalence lies in Wh(F2 X F). A major portion of

the proof of Theorem 2 of [6] consists of showing that the K_x component of the

torsion is independent of the original embedding and of the wrapping up process.

It is now clear that p is not approximated by a bundle map. If this were possible,

then one could easily perform the embedding and wrapping up process so that the

F_, component of the resulting torsion would be zero. On the other hand, the

process can clearly be performed in such a way as to recover the original manifold

Mx and homotopy equivalence/,, so the K_x component of the torsion is nonzero.

4. Proof of Theorem 1 (finite-dimensional case). In this section we will be dealing

with PL n-cobordisms (W, N) and it will always be understood that dW = d0W U N,

where dQW n N = 0. Also we will always have a given proper map m of N to some

base space B, and by a 7r~'(e)-sdr (sdr = strong deformation retraction) we will

mean a proper retraction/: W -> N which is (7r/)~'(e)-homotopic to id^ reí N. As in

our treatment of the infinite-dimensional case in §3 it will be convenient to first

establish an extension lemma. Our basic notation is the same as in §3: m denotes

projection to T2, R2 or S2, and we assume the identification R2 = S2 — (x0).

Lemma 4.1. For every e > 0 there exists a 8 > 0 so that if iWk+x, R2 X F) is an

h-cobordism (k > 5), /: W -» R2 X F is a ir-x(8)-sdr, and d0W =* W is a (wfyx(8)-

equivalence, then there exists an h-cobordism (V, S2 X F) and a 7r~x(e)-sdr g: V -» S2

X F for which d0V •» V is a (mg)'x(t)-equivalence and g = / over Bx X F

Proof. Using the geometrical connectivity result of [18, p. 308] we may assume

that W is a handlebody structure on F2 X F consisting of two layers of handles of

indices k — 2 and k — 1, where the image of each handle under the map ■nf: W -> R2

has a small diameter. Let W be the union of S2 X F and all handles of W which

meet (mf)'x(B2). Then W is a handlebody structure on S2 X F and the restriction

/| : W — S2 X Fis a 7r-'(S)-equivalence over F22 X F. It then follows from the trick

on p. 324 of [18] that we can alter this handlebody structure over (S2 — B2) X F to

form a new n-corbordism (V, S2 X F), and if S2 — È2 has a sufficiently small

diameter there is a 7r_'(e)-sdr g: V ^> S2 X F which fulfills our requirements.    D

Proof of Theorem 1 (finite-dimensional case). We follow fairly closely the

proof of the infinite-dimensional case of §3. Choose a compact connected manifold

Fk~2 for which the duality involution ~: K_xZttx(F) -* K_xZitx(F) does not act

trivially or by multiplication by -1. As indicated in §1 all we need to do is choose

7r,(F) = Z2 X Z7 to fulfill these requirements. Thus we can choose an element

t £ K_xZttx(F) C Wh(F2 X F) for which

- , [ t     if A: is even,

l-t     if A: is odd.

Now form an n-cobordism (Wx, T2 X F) such that there exists a sdr/, : Wx -> T2 X F

which has torsion t. This of course means that \WX ■* Wx is also a homotopy

equivalence. Here \WX denotes the other boundary component of Wx. If u: T2 -» T2
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is any standard finite cover we can form the pull-back

h
W2     ->      T2XF

I I u X id

Wx      -*      T2 X F.

If m is a large enough cover we conclude that/2 is a i7"'(e2)-sdr, where e2 is a small

number. By the same token it follows that we can also choose u large enough so

that d0W2 =* W2 is a (7r/2)"'(e2)-equivalence.

The next step is to form the pull-back,

h        .
W3     -*     R2XF

I i e2 X id

W2     ->     T2X F.

Then (W3, R2 X F) is an n-cobordism, /3 is a 7r~'(e3)-sdr, and d0W3 ̂  W3 is a

(7r/3)"'(e3)-equivalence, where e3 depends on e2. Using Lemma 4.1 we can find an

n-cobordism (W4, S2 X F) and a 7r'(e4)-sdr/4: W4 -» S2 X F for which d0W/ =* H7,

is a (7r/4)"'(e4)-equivalence and /4 = /3 over F,2 X F, where e4 depends on e3. If r is

large and e4 is sufficiently small we can find a clean PL submanifold Ck of d0W4

which lies in fA~x((S2 — B2) X F) and for which the inclusion-induced homomor-

phism Wh(C) -» Wh(W4) is surjective. Let (C, C) be an n-cobordism reí 3C for

which the torsion of the sdr j: C -» C is sent to -t(/4) under the composition

Wh(C) -» Wh(W4)(/^* Wh(52 X F).

Let  W= (T4UC (sewn together along C), which defines a new n-cobordism

((f.^XF). The sdr /: W -> S2 X F, which is defined by first retracting C to C

and then applying/,, is a 7r"'(e)-sdr for e small provided that r is large and e4 is

small. Also we have r(f) — 0, so by the s-cobordism theorem the cobordism

(W, S2 X F) is trivial, i.e., (W, S2 X F) is homeomorphic to (S2 X F X [0,1],

S2 X F).
i */     ,

Let M = d0W and note that, in the language of [7], the composition M =-> H7 -> S

is an e'-fibration, where e' is small if e is small. By Theorem 1 of [7] we conclude that

•nfi: M -» 52 is close to an approximate fibration p: M -> 52. Since the cobordism

(H7, 52 X F) is trivial we conclude that/7 is homotopic to a bundle map. We will be

done when we have shown that p is not close to a bundle map. To do this we can

multiply everything by Q to obtain ö-manifolds, and then repeat the proof of the

corresponding g-manifold assertation of §3. To carry this out we need to know that

the torsion of the composition dQWx =» Wx -» F2 X F is nonzero. Recall from [16, p.

273] that we have the formula r(y) = (-ifRJ), where /: F2 X F «** Wx and ":

Wh(JP,) -» ^h(Wx) is the duality involution that is compatible with the one on
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K_xZirx(F) that has already been mentioned. From this it is easy to calculate

r(/,y) = t + (-l)*+1f, which is nonzero by our choice of t.    D

5. Controlled finiteness theorems. The purpose of this section is to establish two

results (Theorems 5.2 and 5.3) which will be needed in the proof of Theorem 2.

Specifically we will examine the following question: // B is a compact connected

polyhedron and F is a finitely dominated polyhedron, when is there a compact

polyhedron K and a p'x(e)-equivalence K -» B X F, wherep = proj: B X F -» B and e

is smalll In Theorem 5.2 we show that this is true iff x(F)-o"(F) = 0, where

a(F) £ K0(F) is the Wall obstruction of F and x(F) is the Euler characteristic of B.

Theorem 5.3 is merely a refinement of Theorem 5.2 with dimension estimates.

Before we establish these results we will first have to prove a lemma. For notation

let F be a compact connected polyhedron and let p: E -* B be a PL map which is an

approximate fibration, where F is also a compact polyhedron. For a fixed

basepoint * E B we assume that there is a retraction r: E -» p'x(*). Now let /?,:

F, -» B be another such PL approximate fibration so that Ex contains F as a

subpolyhedron and so that there is a f.p. retraction /, : £, -» F which is f.p.

homotopic to id reí E. This can be rephrased by saying that /, is a f.p. sdr. For each

simplex A C B (in a fixed triangulation of F) the homotopy equivalence /, | :

/>7'(A) ->p~\A) gives us a torsion t(/, |) £ Wh(/?~'(A)) and we let ta be the image

of t(/, I) in Wh( />"'(*)) under the composition

Wh(/r'(A)) - Wh(F) Z Wh(/r'(*)).2

If F, is any subcomplex of B, then we inductively define tb¡ £ Wh(/?"'(*)) by

tb — tb + ta ~ T3A> where Bx = F2 U A and A (1 B2 = 3A. It is easy to show that if

t(/,) E Wh(F) is the usual torsion of/,, then t(/,) is the image of tb under the

composition Wh(/>"'(*)) -» Wh(F).

Lemma 5.1. If tb = 0, then for every e > 0 rAere ex/jte a homeomorphism h:

Ex X Q -> F X <2 wA/'cA is (p ° proj)~x(e)-homotopic to/, X idß.

Proof. There is a trick of trading adjacent cancelling torsions which will be

useful. To explain this we look at the simplified case B = [0,1] (a single 1-simplex)

and show how torsions can be traded to concentrate tb over *, which we take to be

1 E [0,1]. In what follows all torsions are in Wh(/?"'(*)). Choose a fine subdivision

of [0,1], 0 = r0 < r, < • • ■ < t2k+x = 1, and form F2 = F, U ( U"0+U,), where the

A¡ are disjoint compact polyhedra so that A¡ meets F, in the subpolyhedron p'x(t¡).

Also we want there to be a PL sdr r¡: A¡ -* p~x(t¡) so that

(l)r(r2i) + T(fx\pxx(t2i)) = 0,0<i<k,

(2)T(r2(+,) + T(r2,.) = 0,0<i<A.

The sdr's r¡ piece together to give us a PL sdr f2: E2 -* F, so that/>2 = pxf2: E2-^> B

is a PL approximate fibration. By (2) we have formed F2 by adding torsions to F, in

adjacent cancelling pairs. It follows from the Classification Theorem of [8], along

2 The reader should note that this is an isomorphism.
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with Z-set unknotting, that f2XiáQ: E2 X Q -» F, X Q is (/>, ° proj)"'(e)-homo-

topic to a homeomorphism, where the size of e is determined by the mesh of the

partition {r,} of [0,1]. This homeomorphism is constructed by piecing together k + 1

homeomorphisms with disjoint supports, each support containing a cancelling pair.

For the remainder of this case we examine /,/2: F2 -» E. The situation is now

somewhat improved because the torsion of each/,/21 : p2x(t2i) -» p'x(t2i) is 0 by (1)

above. The next step is to trade off the torsions

t2í=/,/2| 'P2l(lhiA2i+2]) ^p-\[hi,hi+2\),       0</<*- 1,

-r2k=flf2\--P-2]([t2kA])-*p-{([t2kA]).

Observe that by the Sum Theorem we have t0 + t2 4- • • • +t2Ic = tb. Now choose an

additional subdivision c2, < t2i < d2i, 1 < /' < k, where c2i and d2i are close to t2i.

Just as F2 was formed from F, we now form

f3 = f2u    U c\ u    U A •

It is easy to choose PLsdr's Ci -» y2"1(c2() and D, -» p2x(d2i) which piece together to

give a f.p. sdr/3: E3 -» E2 for which

(1) T(/3 | C,) + (T0 + • - • +T2,_2) = 0, 1 < i < k,

(2) t(/3 | D,) -(%+••• +T2,_2) = 0, 1 « i < k.

If we definep3 = p2f3: E3 -> B, then/>3 is a PL approximate fibration. Since we have

added torsions to F2 in adjacent cancelling pairs we conclude that f3 X id: E3X Q

-» F2 X g is (/>2 ° proj)"'(e)-homotopic to a homeomorphism, where e can be made

as small as we want by choosing the differences d2i — c2j small. For the remainder of

this case we only have to consider/,/2/3: E3 -» E. We still have the torsion of each

/1/2/31 : P^ihi) ~* P'xihi)zero- But> moreover, we now have the torsion of

/1/2/3I 'P3\[tv,t2l+l)) ^P~\[ht>hi+i\)

zero, and the torsion of

fxfih\:p?([hkA])^p-xi[t2kA\)

is t0 + • • • +T2k. So what we have done so far is to show how to concentrate tb over

[r2¿, 1]. It is clear that by applying the same ideas again we can construct a PL

approximate fibrationp4: F4 -> B and a f.p. PL sdr/4: F4 -» F3 so that:

(l)/4 X id: F4 X Q -» F3 X Q is ip ° proj)"'(£)-homotopic to a homeomorphism,

where the size of e depends on 1 — r2/t;

(2) the torsion of /,/2/3/4 | : /»¿'(^z) -> P~\t2i) is 0, for all i;

(3) the torsion of /,/2/3/41 : p?dt2„ t2i+2]) -+ p-\[t2i, t2i+2\) is 0, for all i;

(4) the torsion of/,/2/3/4|: Pîx(\.t2k,l\)-*p~x([t2k,l]) equals the torsion of

Thus the torsion of/,/2/3/4: F4 -» F is concentrated over *.

We now use the above ideas to finish the proof of the lemma. For arbitrary B we

can trade torsions to concentrate rB over *. By this we mean that there is a PL

approximate fibration/?': F' -» B and a f.p. PL sdr/': E' -* F, so that:

(1) /' X id: F' X Q -» F, X g is (/>, ° proj)~'(e)-homotopic to a homeomor-

phism, where e is small;
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(2) t((/?')"'(A) -*  /7"'(A)) is 0, where A is any simplex in B(r) which does not

contain * (F(r) = rth barycentric subdivision of B, r large);

(3)

r((Pr\à)™P-W) =t((/»')",W/- /»-'(•)) =rB, I

where A is any simplex in F(r) which does contain *.

Since we are given tb = 0 we have t((//)~'(A) -» /»"'(A)) = 0, for all simplices A

in B(r). We will use this to show that/,/' X id : E' X Q ^ E X Q is homo topic to a

homeomorphism, where the size of the homotopy in F is determined by the

diameters of the simplices in F(r). If r is large enough this homotopy must then be

small enough to fulfill our requirements.

By the Classification Theorem of [8] it follows that each

/,/'Xid|:(/)-1(A)XÖ-Jp-'(A)Xß

is homotopic to a homeomorphism. If it is true that each (//)~'(9A) is a Z-set in

(p')~x(A) and each /r'(9A) is a Z-set in p~x(A), then it is easy to use the

Classification Theorem and Z-set unknotting to build a homotopy of /, /' X id to a

homeomorphism which is block-preserving, i.e., the restriction of this homotopy to

each (/>')~'(A) X Q has image in p~x(A) X Q. Since the A's are simplices of F(r) we

are done. If the Z-set property is not satisfied, then we can construct new PL

approximate fibrations/5': É' -> B,p: É -* B and CE maps a: É' -> E', ß: É ^> E so

that

(1) a and ß are block-preserving,

(2) each (p')-'(9A) is a Z-set in ( /5')-'(A),

(3) each (/5)-'(9A) is a Z-set in (p)~x(A).

(To see how to define F for dim F = 1 we first let p~\v) — p~x(v), for all vertices

v. Then for A a 1-simplex we define

/r'(A)=/r'(A)u(/r'(9A)X[0,l]) 1

(union along /r'(9A) = /t'(9A) X {0}), where /T'(A) is sewn to /5"'(9A) along

/?"'(9A) X {1}. In general the construction is inductive.) Now a and ß stabilize to

near homeomorphisms [8, p. 105], and the block-preserving property (1) assures us

that we have appropriate small control in B. So all we need is a homeomorphism A:

É' X Q -» F X Q for which the following diagram (p ° proj)~'(e)-homotopy com-

mutes:

F'X Q -> ÉXQ

a X id | l ß X id

/l/'Xid
E' XQ -» EX Q

This is easily obtained by first noting that there is a map H: Ë' -» F which is

block-preserving and for which /?// is block-preserving homotopic to /, fa. Then
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H\ : (p') '(A) -» (p) '(A) has zero torsion, for ail simplices A of F(r), and we can

now use Z-set unknotting to obtain a homotopy of H X idgto a homeomorphism.

D
We are now ready for our main result. In the following statement F will be a

compact connected polyhedron and p will denote projection to B.

Theorem 5.2. If F is a finitely dominated polyhedron, then the condition x(B)a(F)

= 0 is necessary and sufficient that for every e > 0 there exists a compact polyhedron K

and a p~x(e)-equivalence K -> B X F.

Proof. If such a K exists, then we have a(B X F) = 0. By an induction on dim B

it is easy to use the Sum Theorem for the Wall obstruction to prove that a(B X F)

— i*XÍB) ' aiF), where /: F -* B X F is defined by /'(x) = ( * , x). But / has a left

inverse, so by the functorality of a we have x(F) • oiF) = 0.

For the other half of the result we assume that x(F) • a(F) = 0. Since F is finitely

dominated there is a compact polyhedron X and maps d: X -» F, u: F -> X for

which du: F -» F is homotopic to idF. Let e = ud: X -» X and form the mapping

telescope, Se, which was introduced in the proof of Lemma 3.1. We also need the

mapping torus, Te = Me/~ , where ~ is the equivalence relation on the mapping

cylinder Me which is generated by (x,0)~e(x). If exp: R-> Sx is defined by

exp(x) = e"'*, then it follows from the proof of Theorem 3.1 of [13] that there are

homotopy equivalences H: Te -> F X Sx and H: Se -* F X F for which the following

diagram commutes:

I

71

//

//

FXR

J-id X exp

FX 5'

The map Se -* Te is the obvious covering map obtained by identifying each (x, t) in

Se with the equivalence class of (x, r) in Me/~ .

By reversing the ends of F we similarly obtain the reverse mapping telescope, S~,

which is pictured as follows:

Note that rays of each mapping cylinder go from right to left. Similarly we obtain

the reverse mapping torus, T~', and we obtain homotopy equivalences H_: T~ -» F X

S1, H_: S~ -* F X R for which the following diagram commutes:

s;

i

t:

H.

H_

FXR

I id X exp

FX5"
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In the natural set-wise identification Se = X X R we observe that each X X [n, n + 1]

is a copy of Me with XX {n + 1} being the base. In the natural set-wise identifica-

tion S~ = X X R we have each X X [n, n + 1] also a copy of Me, but X X {n} is

now the base. The maps H and H_ are actually proper homotopy equivalences which

preserve the induced orientations. We can choose a homotopy inverse of H_, H~x:

F X Sx -» T~, and a proper homotopy inverse of H_, H:X:FX F ^ S;, so that H:x

covers H'x.

Armed with the above notation we are now ready to make use of Lemma 5.1. If e

is chosen to be PL, then Te and T~ are compact polyhedra. Thus the projection maps

q: B X Te -» F and q_: B X T~ -> B are PL approximate fibrations. We also have a

f.p. homotopy equivalence, id X H~XH: B X Te -» B X T~ An order to apply Lemma

5.1 to this map it should, strictly speaking, be a f.p. sdr. By stabilizing B X Te (i.e.

multiplying by a large cell) we could easily replace H'XH by a sdr, so we will assume

that Lemma 5.1 applies to id X H~XH. To use Lemma 5.1 we need to know that

tb = 0, and by the Sum Theorem it follows that tb = x(F)t(//_"'//). We showed in

[5] that the image of tíH:xH) in Wh(FX Sx) under the isomorphism (#_)„:

Wh(F/) -» Wh(F X Sx) is just oiF), where F0(F) is identified with a subgroup of

Wh(F X Sx) in the usual way [11]. Since xiBMF) = 0 we have tb = 0.

Now using Lemma 5.1 there is a homeomorphism h: B X TeX Q -> B X T~ X Q

which is iq_ ° proj)"'(e)-homotopic to idB X H'XH X iàQ. This homotopy lifts to a

proper homotopy idB X H:XH X idß « A", where h: B X Se X Q -> F X 5; X Q is a

homeomorphism. Choose A large enough so that A~'(F X X X [ N, oo) X Q) lies in

B X X X (0, oo) X Q. Define

M = (FX A"x[0,oo) X Q) n (A""'(F X A" X(-oo, A] X £))).

This is a compact g-mamfold. The triangle

F X Se X Q     -»     F X 5; X g

proj\ i/proj

F

e-commutes, so using mapping cylinder collapses in Se and S/ we observe that the

inclusion M^FXSeXf2isa 7r"'(e)-equivalence, where it = proj: F X SeX Q ->

F. Then the composition

id X ÄX id proj

M^BXSeXQ     -*     BXFXRXQ -> BX F

is a/>"'(e)-equivalence, and since M can be triangulated we are done.    D

For the proof of Theorem 2 we will need the following version of Theorem 5.2

with dimension estimates.

Theorem 5.3. For every integer m there exists an integer n so that if F is a finitely

dominated polyhedron of dimension < n and B is a compact connected polyhedron of

dimension < n, then the condition x(F) • a(F) = 0 w necessary and sufficient that for

every e > 0 there exists a compact polyhedron K of dimension < m and a p'x^-equiva-

lence F - BXF.
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Proof. We can modify the proof of Theorem 5.2, being careful that the dimen-

sions do not grow too large. First we note that since F is finitely dominated and

dim F < n, we can choose the dimension of the dominating compact polyhedron X

to be < n. This just uses the fact that any map of F into a polyhedron can be

homotoped into the n-skeleton. The next change in the proof of Theorem 5.2 comes

when the homeomorphism A is constructed. We will replace this with a compact

polyhedron Z and CE-PL maps a: Z -> B X Te, ß: Z^BXT; such that ß is

(o_)"'(e)-homotopic to (idB X HzxH)a. Also we want dim Z to be bounded in terms

of n. Once we have done this we lift a, ß to à: Z -» F X Se, ß: Z -» F X S~, and

our desired compact polyhedron K is

K= ÔT'(F X A"x[0,oo)) PI ßxiB X XXi-cjo, N]),

for N a large integer.

To construct Z and the CE-PL maps a, ß we need to improve Lemma 5.1. Using

the notation of Lemma 5.1 suppose that dim F, dim F, and dim F are all < n. We

want to prove that if tb = 0, then for every e > 0 there exists a compact polyhedron

Z, dim Z<m, and CE-PL maps a: Z — F,, ß: Z -» F so that ß is/r'(e)-homotopic

to/,a. Of course m should depend only on n. Recall that the strategy used in Lemma

5.1 was to use a trick of trading adjacent cancelling torsions so that we were

eventually reduced to the case in which the torsion of /, | : />,'(A) -» />~'(A) is zero,

for all simplices in F(r). We first explain how to redo this trick in the context of our

desired improvement of Lemma 5.1.

Suppose that ax, a2 £ F are close together and we have defined E2 = Ex U Ax U

A2, where there are sdr's Ai -* pxxia¡) which piece together to yield a f.p. PL sdr f2:

E2^> Ex. This gives us a PL approximate fibration p2= pxf2: E2-> B. Also we

assume that the torsions of f2\ : p2x(ax) -* pxx(ax) and f2 \ : p2x(a2) -> p'xx(a2) add

up to zero in Wh(/>"'(*)). Thus they add up to zero over a small polyhedron F in F

which contains a PL arc from a, to a2. This means that/2 | : p2x(P) -*p\~x(P) has

zero torsion, and so we can find a compact polyhedron W and CE-PL retractions u:

W-^p2x(P), v. W^p-x\P). Define F3 = F2 U W, sewn together along p2x(P),

and define f3: E3 -> F2 by f3 \ W = u and f3 = id otherwise. Now/>3 = p2f3: E3 -* B

is still an approximate fibration and the torsion of /,/2/31 : p3x(a¡) -»p'x(a¡) equals

the torsion of /,/2 | : p2x(a¡) -» p'x(a¡), for i — 1, 2. Also the torsion of /,/2/31 :

p3xib) -»p~xib) equals the torsion of/, | : p'xx(b) -»p'x(b), for all b ¥= ax, a2 in F. So

in the context of trading adjacent torsions the space F3 is as good as the space E2.

However we now have the advantage that v extends to a CE-PL map v: E3 -» F, for

which t5 is homotopic to/2/3 via a homotopy whose image in F is small provided that

the diameter of F is small. So if the lemma is true for p3: E3 -> B it is also true for

px:Ex -*B.
The above comments tell us that we can now use the torsion trading trick to

reduce ourselves to the special case in which the torsion of each/, | : p\x(A) -» /r'(A)

is zero. We will inductively build our desired Z and CE-PL retractions a: Z -* F,, ß:

Z -» F. For each / let F, denote the /-skeleton of F. Note that for each vertex v of F0,

the inclusion/T'(d) =*/>,'(«) has torsion 0. Thus by expanding eachpxx(v) we can
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form a compact polyhedron Z0 and CE-PL retractions a0: Z0 -* F,, ß0:

(/»,a0)_'(F0) U E^E so that ßo((PiOt0yx(v)) = p~x(v), for each v in F0. This

completes the first step of the induction. Next note that for each 1-simplex A of F,,

the inclusion (pß0)~x(A) -* (pxa0)'x(A) has torsion 0. Thus by expanding each

(pxa0)~x(A) we can form a compact polyhedron Z, and CE-PL retractions

«,: Z, -> Z0,       ß,: (/^„a,)"'^,) U F -» (/».a,,)"'^,,) U F

so that ß, takes each (/>,a0a,)~'(A) to (/?,a0)~'(9A) U /r'(A). By composing these

maps with a0 and ß0 we retrieve CE-PL retractions

a0ax: Z, - F,,        ß0ß,: (pxa0axy\Bx) U F -» F.

This completes the second step of the induction. It should now be clear how this

process can be continued to eventually find our desired Z and CE-PL retractions

a,ß.    D

6. Proof of Theorem 2 (infinite-dimensional case). We start by treating the case in

which F is a compact connected polyhedron. Choose a finitely dominated poly-

hedron F, with Wall finiteness obstruction a(F) £ K0(F), for which x(B)'c(F) —

0. By Theorem 5.2 there is a compact g-manifold M and a w"'(e)-equivalence/:

M -» B X F, where 77 = proj: B X F -> B and e is small. Then nrf: M -» F is an

e'-fibration, for e' small, and so by Theorem 1 of [6] mf is close to an appropriate

fibration p: M -> B. Homotopic maps have homotopy fibers which are homotopy

equivalent, sop has fiber F.

For the general case in which F is a compact connected ANR we form B X Q and

write B X Q = B' X Q, where B' is a compact polyhedron. Let F be a finitely

dominated polyhedron for which x(ß) ■ "(F) = x(^') " a(F) = 0, and use the above

case to get an approximate fibration p': M -* F' with fiber F. Then p' X id:

A/Xß^F'X(2 = Fis also an approximate fibration with fiber F.    D

7. Proof of Theorem 2 (finite-dimensional case). In the language of [19] our first

step is to choose a PL manifold Ww, w > 5, which has a single tame end 00 and an

end invariant ct(oo) £ K0trx(co) which is an obstruction to putting a boundary on W.

Recall that such a W has the property that mx is stable at 00 and for each cofinite

subcomplex K of W, K is finitely dominated and its finiteness obstruction is just

a(oo) (up to sign). By [19, Chapter VIII] all such elements of a given F0w,(oo) can be

realized in this manner, and if we have 7r,(oo) = Z257, then we can choose a(oo) so

that ct(oo) + (-iy~xaioo) ¥= 0, where ": F07r,(oo) -» F07r,(oo) is the duality involu-

tion [19, p. 118].

For our next step we will need a construction from [14] which provides us with an

open neighborhood U C W of 00 for which there is an approximate fibration a:

C/->F such that a"'([0, 00)) is a closed neighborhood of 00. Here is a brief

description of how U arises: Using engulfing it is possible to perform the twist-

gluing operation of [20] to wrap up the ends of a neighborhood V of 00 to obtain a

compact manifold Nw+X  and a 5-fibration u: N -> Sx, for 8 small. Applying
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Theorem 1 of [7] we see that u is close to an approximate fibration t>: A -» S1. The

pull-back

4 le

A     ->     Sx

provides us with an approximate fibration v: Ñ -> F for which £>~'((-l,l)) is

identified with a "sizable" open subset of V. Then engulfing enables us to stretch out

this open set to obtain an identification of all Ñ with an open neighborhood U of oo

which approximately fibers over F as desired. Note that U is finitely dominated and

it has two tame ends, oo_ and oo+ = oo. Write U = K_UK+ , where K_ and K+ are

closed subcomplexes for which K_Q a"'((-oo, 1]) and K+ C a"'([-l, oo)). By the

Sum Theorem we have a(U) = a(K_) + a(K+), thus a(U) = a(oo_) + a(oo) (up to

sign). By the duality formula of [19,p. 119] we have o(oo_) = (-l)w_1<x(oo). Since we

have chosen a(oo) so that a(oo) + (-l)M'~'a(oo) ¥= 0 we conclude that U is not

homotopy equivalent to a finite complex.

Now consider the product B" X W, there B" is our given base manifold of

Theorem 2 which has Euler characteristic zero. We are going to carve out of F X W

an approximate fibration/?: Mk -» F, where k = n + w — 1 and the homotopy fiber

of p is U. To do this we apply the Approximate End Theorem of Quinn [18] to the

map 77 = proj : B X W -» B. In what follows it will be helpful for the reader to be

acquainted with §7 of [18] in which the Approximate End Theorem is established.

For the time being we will specifically assume that the obstruction which occurs at

the bottom of p. 319 of [18] is zero, and show how this yields our desired

approximate fibration p: M -» F. Since this obstruction is zero we can carve up

B X W into A-cobordisms where the projection of the homotopies to F are small.

More precisely we can find compact clean PL submanifolds Nx, N2 of F X U so that:

(1) 9A, = 9_A, U 9+ A, and 9A2 = 9JV2 U 9 + A2;

(2) A, n A2 = 9+A, = 9_A2;

(3) 9_A, C F X a-'((-3,-2)),9+A, C F X q~\(-l, 1)), 9+A2 C F X a"'((2,3));

(4) F X 9-i((-2,-l)) C A, C F X q'\(-3,1));

(5)F X a-'((l,2)) C A2 C F X q-\(-l,3));

(6) there are 7r~'(5)-sdr's of A, onto 9_A, and onto 9 + A,;

(7) there are 77~'(5)-sdr's of A2 onto 9_A2 and onto 9+ A2.It then follows that there

is a w"'(Ô)-sdr of F X U onto 9 + A,. Since t¡: B X U -* B is a Hurewicz fibration we

conclude that tr \ : 9 + A, -> F is a 5-fibration whose homotopy fiber is also U. By

Theorem 1 of [7], w \ 9+ A, is close to an approximate fibration p: 9 + A, -» F with

homotopy fiber U. This completes the proof of Theorem 2 in case the obstruction

vanishes. We now show that this obstruction vanishes so that we can construct our

desired "controlled" A-cobordisms.

The first step is to construct a clean neighborhood A C F X W of oo for which

(A, 9A) is (n + w — 3)-connected. In the uncontrolled case we just use Siebenmann's

thesis [19], but we want to do this with control in F so we use §7 of [18] to construct
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A so that (A, 9A) is (8, n + w — 3)-connected for some small 8 (i.e. all the

homotopies have diameters < 8 in the F-coordinate). We want to carve out of this a

clean neighborhood A, C A of oo for which (A,, 9A,) is (e, n + w — 2)-connected

for some small e. Once this is done we can proceed as in [18] to finish the argument.

We first choose another A' C A which is much closer to oo so that (A', 9A') is also

(8,n + w — 3)-connected, and then perform a small deformation of the handlebody

structure so that

N - iN')° = 9A U {in + w - 3)-handles} U ((n + w - 2)-handles}

and so that each handle is small. ("Small" generally refers to measurements made in

the F-coordinate.) Let A be the union of 9A and the given (n + w — 3)-handles, and

consider the kernel of the boundary map of Z7r,(oo)-modules,

9: trn+w_2iN - (A')°, A) -» ir^.^A, 9A).

Recall from [18, p. 319] that mn+w_2(N - (N')°, A) may be regarded as a geometric

Z7r,(oo)-module G and there is a small projection u: G -» G for which Im» = Ker 9.

Precisely what is needed is the following: There is another geometric ZTrx(cc)-module

G" and a small deformation E: G © G' - G © G' so that F(Ker 9 © G'x) is freely

generated by a subset of the preferred bases of G and G', where G'x C G' is freely

generated by a subset of the preferred basis of G'. This condition can be met by merely

assuming that Ker 9 is stably free with control in F, i.e., there are geometric modules

GX,G2 and a small isomorphism G, s Ker 9 © G2. The deformation E comes from

Lemma 5.4 of [19] and it is small provided that the data which is plugged into the

proof in [19] is small.

Recall in the uncontrolled case of [19] it is shown that if A has the homotopy type

of a finite complex, then Ker 9 is stably free, i.e., there are geometric modules GX,G2

and an isomorphism Gx = Ker 9 © G2. We claim that the same proof gives us a

small isomorphism (and therefore Ker 9 is stably free with control) provided that we

plug in the additional data that there is a compact polyhedron K and a 7r~'( ̂ -equiv-

alence K — N, for some small 8. The dimension of K must be bounded in terms of

n + w, for when one examines the uncontrolled proof of [19] he finds that layers of

cells are attached to A to build its dimension up to dim K, and each time a new

layer is attached some control is lost in F. So there only remains the problem of

obtaining K. If we choose a closed polyhedral neighborhood FC W of oo for which

F X F C A, then Theorem 5.3 tells us that there exists a compact polyhedron K'

and a 7r"'(5equivalence K' =* B X P. Since A — (F X F)° is a compact poly-

hedron, then our desired K is obtained from K' simply by attaching a finite complex.

D
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