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SCATTERING THEORY AND THE GEOMETRY OF

MULTI-TWISTOR SPACES

BY

MATTHEW L. GINSBERG1

Abstract. Existing results which show the zero rest mass field equations to be

encoded in the geometry of projective twistor space are extended, and it is shown

that the geometries of spaces of more than one twistor contain information concern-

ing the scattering of such fields. Some general constructions which describe space-

time interactions in terms of cohomology groups on subvarieties in twistor space are

obtained and are used to construct a purely twistorial description of spacetime

propagators and of first order <t>4 scattering. Spacetime expressions concerning these

processes are derived from their twistor counterparts, and a physical interpretation is

given for the twistor constructions.

1. Introduction. Twistor space was introduced by Roger Penrose in 1967 [18] as a

new arena in which to analyze the behavior of conformally invariant systems.

Over the past fourteen years (see, for example, Penrose [21 or 24]), this program

has met with a great deal of success, and it has been possible to describe a variety of

physical phenomena in terms of twistor geometry. Penrose's nonlinear graviton

construction [22], for example, describes self-dual solutions of the vacuum Einstein

equations in terms of deformations of twistor space. Ward [31] has described

self-dual Yang-Mills fields in terms of vector bundles over twistor space, and this

result has led to the solution of the Yang-Mills equations on S4 by Atiyah, Hitchin,

Drinfeld and Manin [1].

Penrose also shows in [19 and 20] that the zero rest mass field equations are

encoded in the geometry of projective twistor space. A considerable refinement of

this work appears in Eastwood, Penrose and Wells [6]. It has been suggested by

Penrose [25] that these ideas may be extended to deal with interactions of massless

fields, and such an extension is the aim of this paper.

§2 will give a brief description of twistor space and summarize the work in [6]. The

inner product pairing will be described in §3, and it will be shown that this pairing

can be described in terms of the geometrical structure of the product of two twistor

spaces. This work, from an analytic rather than a geometric point of view, also

appears in [5].

The main result of the paper is Theorem 4.1, which generalizes the inner product

construction to one which can be applied to arbitrary products of projective twistor

spaces. As an example, a geometrical description of first order <f>4 scattering is given.
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§5 reinterprets the earlier constructions in terms of nonprojective twistor spaces

and uses the results to define a " universal" propagator which propagates fields of

any positive helicity.

§6 returns to spacetime, giving explicit calculations of the free space spin-0

propagators for massless fields and of the <i>4 amplitudes. Symmetries of the free

space helicity n/2 propagators are discussed, and we conclude by giving a physical

interpretation of the geometrical objects with which we have been dealing in §7.

The results of this paper are of two types. Theorems deal with tools and

constructions which are purely mathematical in nature, while propositions discuss

their applications to physical situations. This paper is an extension of earlier work in

[5,8,9 and 10]. The author would like to thank Mike Eastwood, Andrew Hodges,

Stephen Huggett and Roger Penrose for many illuminating discussions.

2. The Penrose transform. Twistor space T is a 4-dimensional complex vector space

equipped with a Hermitian form <D of signature (+, +, —, — ). Projective twistor

space P = P(T) is the space of lines in T, and is thus isomorphic to complex

projective 3-space CP3. Complexified compactified Minkowski space M is the

Grassmannian of 2-planes (i.e., 2-dimensional complex vector spaces) in T. If we

define the projective primed spin bundle F to be the flag manifold of lines in 2-planes

in T, we get natural projections:

F

P M

A point x E M gives rise to a line Lx s fiv~x(x) in P, and it is not hard to see that

all lines in P are of this form. Two points x, y E M are null-separated if and only if

the associated lines Lx and Ly intersect, and it is this observation which underlies the

analysis of conformally invariant systems using twistor geometry.

We will denote a twistor by Z" = (Z°, Z1, Z2, Z3); taking the Z" to be homoge-

neous coordinates on CP3; we will use Z" to denote a projective twistor as well. It

will often be useful to rewrite a twistor (or projective twistor) as a pair of spinors

[17], Z" = (uA, irA,). Points of complexified Minkowski space M7 will be denoted by

xa = (x°, x1, x2, x3), or by xAA' as in [17].

For U an arbitrary region in M, we will denote p.v'x(U) by U", following [6]. For

example, if U is the forward tube

M+ = [xa — iy" E M1 such that x",ya are real and j»" is

timelike and future pointing},

it can be shown that M+" = P+ , the set of projective twistors satisfying <J>(Za) > 0.

Similarly, for the backward tube

M~ = [xa — iy" E M1 such that xa,ya are real and^a is

timelike and past pointing},

we have M~" = P~ , the set of projective twistors such that <D(Za) < 0.

We denote the dual of T (as a complex vector space) by T*, and set P* = P(T*);

an element of dual twistor space will be written Wa — (t\A, £A'). Lines in P* again
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correspond to points in M; for a given x e M, the associated line in P* will be

denoted Lx , since it is easy to see that Lx is the line in P* orthogonal to Lx. For U

a region in M, the associated region in P* will be denoted "U; "M+ = P*~ , and
»M- = P*+

All of these ideas are explained in more depth and with greater clarity in Wells

[32] or in Hughston and Ward [15]. The latter reference especially contains informa-

tion on a wide variety of topics in twistor theory.

Let [/ C M'. By a zero rest mass (zrm) field on {/of helicity n/2, we will mean, as

in [17], a spinor-valued symmetric holomorphic function <¡> on U satisfying:

(2.1) vAA'<t>A>...B> = 0    forn>0,

D</> = 0    forn = 0,

V^V»4. ..ß = 0    forn<0

where </> has \n\ spinor indices, vAA' = d/dxAA,, and D = VAA'vAA-. We will

denote by Zn(U) the group of helicity n/2 zrm fields on U.

We now turn to projective twistor space, and let £ denote the hyperplane section

bundle over P. If we fix dual twistors Aa and Ba, transition functions for £ E

H\P- ; 0*) are given by

,        s r 2-A
(2-2) /u=z7'

where ZA denotes ZaAa, etc., and /,2 is defined on the intersection of the sets

Ux = {ZA 7e 0} and U2= [ZB ¥= 0}, which cover P~ if the line joining^ and B

in P* lies entirely in P*~ . We can represent £ as an element of HxiP; 0*) similarly,

by using more than two sets.

We write 0(A:) for the sheaf over P of germs of sections of £~k. A section/of 0(&)

can be thought of as a holomorphic function of a nonprojective twistor, homoge-

neous of degree k in its argument:

(2.3) Z«a//3Za = kf

(Z"d/dZa is the homogeneity operator on twistor space). Similar sheaves are

defined on P*.

It was discovered by Penrose [23] that zrm fields can be naturally described in

terms of elements of sheaf cohomology groups on P, and a comprehensive discussion

of this matter can be found in [6]. The main result of that paper is as follows: Let

U EM. U will be called suitable if:

(1) U is Stein;

(2) H\U; Z) = H2(U; Z) = 0; and
(3) for any Za E U", vpTx(Za) (MJ is connected and Hx(vprx(Za) n U; Z) = 0;

and similarly for any Wa E "U.

Proposition 2.1. Suppose that U EM is suitable. Then there are natural isomor-

phisms

(2.4) H\U"; 0(-n - 2)) - Z„iU) * Hxi"U; 0(n - 2)).
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Proof. See [6].    D

The isomorphisms of Proposition 2.1 are known collectively as the Penrose

transform. Since M+ and M~ are easily seen to be suitable, we have

Corollary 2.2.

(2.5) n\P+ ; 0(-n - 2)) - Z„(M+ ) - H\P*~ ; 0(n - 2)),

#'(P" ; 0(-n - 2)) a Z„(M- ) « //'(p*+ ; S(« ~ 2)). □

The description in [6] shows clearly that the zrm field equations (2.1) have been

encoded into the geometry of the mapping p: F -> P.

Later in this paper, we will also need a description of massless fields in terms of

cohomology groups on regions of nonprojective twistor space. This problem has been

addressed by Eastwood [4], and the remaining results of this section are his.

Let it: T — {0} -» P be the natural projection. For a region U C P, we will denote

tr'xiU) by Ü. Motivated by (2.3), we define "homogeneous" sheaves 5C(n) via the

short exact sequence on T:

(2.6) 0^%in) -^0^0-^0,

/-Z-3//3Z-n/

so that sections of %(n) are homogeneous functions of the twistor Za.

Theorem 2.3 (Eastwood). For U C P, there is an exact sequence

0 - H\U; ein)) - H\Ü; %in)) - Y{U; 6(b)) - //2(C/; 0(b))

- H2iÜ; 0(b)) -. H\U; 0(b)) -*•••.

Proof. The direct images of the sheaves %in) can be evaluated by Laurent

expanding an arbitrary holomorphic function along the fibers of m. Application of

the Leray spectral sequence [11, §11.4.17] and the generalized Gysin cohomology

sequence [11, §1.4.6 or 28, §9.5] then gives the desired result. Details are in [4].    D

3. Twistor propagators. Suppose we are given two massless fields

(3.1) ^EZn{W)    and    0 E Z^lvP).

There is then a well-known pairing [7] which assigns to \p and 6 a complex number

known as their inner product which we will denote (0|>//). (Our notation here is

nonstandard, as ( 6 \ \p ) is linear in both of its arguments. It is more usual for it to be

complex conjugate linear in the first argument, so that the inner product of the states

in (3.1) would be (6 \ \p), with 6 E Z„(M+).) By Corollary 2.2 (more accurately, its

analog on the closures of the forward and backward tubes), we conclude the

following.

Proposition 3.1. For any integer n, there is a natural pairing

(3.2) íí1(Pt;0(-b-2))®í/1(P^;0(b-2)) ^ C.    D

It would be more satisfactory to have a purely twistorial proof of this result, rather

than one depending on a spacetime evaluation of the inner product as in [7]. This

should be possible, since if f(Z) and g(Z) are representative cocycles for the
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cohomology elements in (3.2), the scalar product of the corresponding states is given

(informally) by

(3.3) <f)fiZ)giZ) DZ,

where DZ — eaßySZa A dZß A dZy A dZs is the canonical (up to choice of e)

(3,0)-form homogeneous of degree 4 on CP3. We will denote by e the nonprojective

version of this form; e = eaßySdZa A dZß A dZy A dZs E A4(T).

Theorem 3.2. Let X be a complex manifold, and § and 9" sheaves over X. Then for

U, V open in X, there is a natural pairing

(3.4) H'(U; S) 8 HqiV; 9 ) -» Hp+q+\U U V; S 8 9" ),

¿enoreo"

(/.*)-/•*■

This pairing has the following properties:

(1) ///¿y /ne restriction to U of an element of HP(U U F; S), inen/- g = 0.

(2)/-g = (-l)^+1g-/.

Proof. We define f-g to be 3*(/U g), where /U g is the usual cup product,

given by a map

HpiU;§)®HqiV;c$)-*Hp+qiUn F;S<S>9"),

and 3* is the coboundary operator in the Mayer-Vietoris sequence

(3.5)     ->HkiU;9l)®HkiV;qi)^HkiUn V; 91 ) ^Hk+\U n F;^)

^Hk+\U; %) © Ä*+1(K; 91) -» • • ■

(where 91 = S ® 9" ). Statement (1) follows from the exactness of the sequence (3.5),

while (2) follows from the facts that / U g = (-l)pqg U / and 3* is antisymmetric.

D

We will refer to this pairing as the dot product. It can be shown [8] that this

operation is induced by multiplication of Cech representatives.

An obvious extension of the dot product to the closed sets P+ and P~ gives a

precise meaning to the expression/(Z)g(Z) in (3.3). To interpret the intergration,

we need

Theorem 3.3 (Serre [26]). Suppose that X is an m-dimensional compact complex

manifold, and let k be the canonical bundle over X. Then for any line bundle

i E HX(X; 0*), there is a canonical isomorphism

(3.6) Serre: H"iX; 6(f)) - Hm~p*iX; 0(k£-')),

where Hm~p*iX; S) denotes the dual of Hm~piX; S) as a complex vector space.   D

The canonical bundle over CPm is ßm, the bundle whose sections are (w, 0)-forms.

The choice of (for example) the 4-twistor eaByS is equivalent to an identification of
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ß3 with 0(-4) on P, and we have

Corollary 3.4. Subject to an identification of ßm with Q(-m — 1) on CPm, there

are canonical isomorphisms

(3.7) Serre: #m(CPm; 0(-n - m - 1)) « #°*(CPm; 0(n)),

i/ie /a/ier space ¿ezBg an im^")-dimensional complex vector space.    D

(3.7) provides us with an isomorphism Serre: #3(P; 0(-4)) = C, and the inner

product pairing is now given by

(3.8) //'(F; 0(-n - 2)) 8 Hl( P^ ; 0(n - 2)) -» C,

(/,g)-Serre(/-g).

In addition to (3.8), it should also be possible to interpret the inner product as a

pairing

(3.9) HxiPT; 0(-n - 2)) 8 //'( P*^ ; 0(-n - 2)) -* C.

In fact, this is a more natural construction than the previous one if we are interested

in evaluating expressions such as (\p\\p). The reason for this is that the natural

interpretation on twistor space of the complex conjugation of zrm fields is as a map

(3.10) Hxi P^; 0(-n - 2)) -* ̂ '(P^; 0(-n - 2)),

rather than as a map

H\ P^ ; 0(-n - 2)) -» //'( P^ ; 0(n - 2)).

We will construct the pairing (3.9) by reducing this problem, in a sense, to the

previous one. There are two-point fields <i>_„(x, y) such that for \p and 6 as in (3.1),

(3.11) (dix)\^ix))= (6ix)\<S>_nix, y)\^y)).

In other words, the inner product of \¡> and 6 can be calculated by evaluating the

inner product of \¡/(y) and </>_„(x, y) to obtain a zrm field 4>(x), and then taking the

inner product of this field with 6. We will refer to the <i>_„ (and to their twistor

counterparts) as propagators, saying that they propagate or mediate the inner

product.

On spacetime <i>0 is given by

(3.12) <t>0(x,y) = l/(x-yf,

while the other </>„ are

(3.13) <t>nix,y) = i"VAA,---VBB.<t>0   forn>0,
y-^-'

n times

<!>nix, y) = i-i)'" Vaa' ■ • • Vflg;^o   for n < 0,

-n times

where all of the derivatives are with respect to x and the resulting fields can easily be

shown to be symmetric in their spinor indices and to satisfy the zrm field equations

in both x and y. Since it is clear that the <f>„ are well behaved for x E M~ and

y E M+ (implying (x — y)2 ¥= 0), we conclude that they correspond to elements

(3.14) ^ E H2iPx X P*   ; 0(-n - 2,-n - 2)),
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where we have abused notation by using the same symbol for both the spacetime

and the twistor versions of the propagators. Where confusion is possible, we will

write </>„(x", ya) or <S>„(Xa, Ya). To obtain (3.14) we used an easy generalization of

Corollary 2.2 to spaces of more than one twistor; the subscripts on the twistor spaces

serve to indicate which twistor space is associated to which spacetime variable.

We now obtain (3.9) by noting that, for / E H1^; 0(-n - 2)) and g £

HX(P* + ; 0(-n - 2)),/•<(,_„• g E H6(P X P*; 0(-4,-4)) - C.

As before, this description is slightly unsatisfactory, and we would prefer to have

one in which spacetime arguments do not appear. It is clearly sufficient to construct

the propagators (3.14) from twistor considerations alone. As a preliminary step in

this direction, we have

Proposition 3.5 (Eastwood and Ginsberg [5]). The twistor propagators

$n(Za,Wa) satisfy

(3.15) gfï^A+i    and   ^ = Z>„+1.

Proof. This is a straightforward matter of interpreting the relations (3.15) on

spacetime. For example, the operator 3/3Za gives rise to a map

H\P- ; 0(-n - 2)) - tf'(P" ; 0a(-n - 3)),

and the effect of this map on the associated zrm fields is described in Penrose [21] or

Eastwood [2]. Using their results, it can be shown that (3.15) is nothing more than a

reformulation of (3.13); the details are in [8].    D

We now have

Theorem 3.6 (Eastwood and Ginsberg [5]). The relations (3.15) characterize the

twistor propagators <i>„ up to scale.

Proof. Although this is an important result, the details of the proof are of no

special interest. They can be found in [5].    D

We see from this theorem that the relations (3.15) lead to a purely twistorial

characterization of the inner product pairing (3.9). Unfortunately this result, as it

stands, is completely useless for practical calculation. In order to actually evaluate

the inner product of two zrm fields, we need to construct the twistor propagators

explicitly.

To do this, note that (3.15) implies

(3.16) W^ = {Z-W)*_l = 0,

since <j>_2 is homogeneous of degree 0 in Wa. This is in some sense to be expected,

since the pairing (3.9) is given informally for n = 1 by (in analogy with (3.3)) [25]

(3.17) U,g)^j>
f(Z)g(W) DZ A DW,

ZW

and if we multiply the integrand in this expression by ZW, the singularity in Z • W

vanishes and the contour over which the integral is taken becomes homologous to

zero [30]. This is reflected in (3.16).
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We now define ambitwistor space Q [3] to be

(3.18) fi-PXP* n {Z-W=0},

and take fi~ to be the intersection of S2 with P~ XP*~. There is a short exact

sequence on P   X P* _

z • w P
(3.19) 0 -> 0(w, b)   -» 0(m + 1, n + 1) ̂ 0ß-(w + 1, b + 1) -» 0,

leading to a long exact sequence containing the segment

(3.20) Hpiti- ; 6(m + 1, n + 1)) i^+1(P" XP*" ; 0(m, n))

Z * ff
-* ^+1(P- XP*- ; 0(m + 1, n + 1)).

We now have the following.

Lemma 3.7. Suppose tf< E Hpiü~ ; 0(w + 1, n + 1)) extends to an open neighbor-

hood of ti~ in P" XP*" . Then

(3.21) H = _i_.^.

Proof. This is an easy consequence of the Cech description of the dot product

which was given in the paragraph following the proof of Theorem 3.2.    D

We also have

Proposition 3.8. There exists a <i> E Hx(ti~ ; 0) such that <f>_, = 8<p.

Proof. This is a consequence of (3.16) and the exactness of (3.20).    D

These two results are very suggestive. If <J> in Proposition 3.8 were to extend to an

open neighborhood of fi~ in P~ XP*" , we could then form, for n > -1,

(-l)"+1(n+l)!

(z-wy
ti n\ a - y~ii    y" ^ i ■  .
(.3-22) <t>„-       ,_   „.n+2     •*.

and would have, for example,

3<fr„_ (-!)> +2)! (-ir+'(n+l)!   3<fr   .. „,.
3za"  iz-wy+3   a        iz-wy+2   *ztt     an+l'

provided that 3<¡>/3Z" = 0. This leads to the following.

Proposition 3.9. Suppose that <b E #'({/; 0) for some neighborhood U of ß    in

P" XP*   satisfies

(3-23) & = 0 -   3*3Za dWa '

The twistor propagators <bn are then given, up to scale, by (3.22) for n > -1.    □

The relations (3.23) suggest that 4> is an invariant which can be obtained by

examining the geometry of the space ñ~. We think of ß~ as a fiber bundle, with

base P*~ and fiber the intersection of P~ with the plane in P dual to a fixed
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WaEP*~. Since such a plane contains a line in P+ but not one in P~, it is not

hard to see that the fibers are contractible, so that Hp(iï~ ; Z) « HP(P*~ ; Z).

P* is itself a fiber bundle, with base S4 and fiber S2. P*~ is that portion of this

fibration lying over a hemisphere £4, and it follows that HP(P*~ ; Z) - HP(S2; Z).

Thus //°(fi~ ; Z) » Z - H2(Q~ ; Z), and the remaining groups vanish. Similar con-

siderations show that H2(Q; Z) =* Z © Z, a result which will be of use to us later.

The short exact sequence on ß~

e

(3.24) O^Z^0^0*^O,

/-» exp(27n/)

therefore gives rise to an exact sequence

Hl(Q~ ; Z) = 0 -» Hxitl- ; 0) -» #»(0" ; 0*) - Z = i/2(ß" ; Z).

It follows that <i> corresponds to some line bundle e(<¡>) on fi" with vanishing Chern

class.

Since 6(m, n) has Chern class m + n over ß~, a natural choice for this Une

bundle is 0(1,-1). If we fix twistors A" and Ba such that the Une joining them lies

entirely in P+, transition functions for 0(1, -1) are given by

AW ZB

BW ZÄ'

and these actually define a Une bundle with vanishing Chern class in a neighborhood

of Q~ . We therefore set

/,«\ I   ,    I AW ZB(3.25) ^ = _log|____

verification that 3<i>/3Z" and d<¡>/dWa are coboundaries is now straightforward. It

follows that the <j>n are given explicitly by

/,,,* (-l)"+1(n+ 1)!   ,    [AW ZB

(3-26) ^'UzV'H^r?
for n > -1. (A version of this result appears in SparUng [29].) We will often write

this as

(3.27) <f>„ = (Z.HO„+2.log(0(l,-l)),

where

X*

are known as bracket factors [25], and the factor of 1/2w/' is incorporated into the

notation log(0(l,-l)).

4. Geometric constructions. The construction of the twistor propagators at the end

of the last section is a special case of a much more general procedure. Here is the

basic result.
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Theorem 4.1. Let X be a complex manifold such that the Chern mapping

c: Hp-xiX;e*) -+ HpiX;Z)

is surjective for a fixed p. Let i- be a line bundle over X, and suppose that A E X is the

zero set of some section f E T( X; £). If Hp~ X(A ; Z) = 0, then for any integer n > 0,

there is a natural map

(4.1) P„: H"(X,A;Z) - H"{X; 0(rn"')).

We will denote P0 by P.

Proof. The cohomology sequence of the pair (X, A) is, in part,

Hp-\A;Z) = 0^HpiX,A;Z) -» H»iX,Z) ^HpiA; Z),

so that HpiX, A;Z)=* kerp: HP(X, Z) -> HP(A; Z). Let g E HP(X, A; Z) C

HP(X; Z); we have the commutative diagram

Hp-xiX;6)   ->    Hp~\X-,e*)    ^     HPiX;Z)    -*   0

íp I p Ip

Hp~xiA;Z) = 0     -*    Hp-xiA;6)    ^    Hp~xiA;e*)    '->    HpiA;Z)    -»     0

where the rows are exact, and can therefore find a g E Hp~xiX; 0*) with eg = g.

Since c'pg = pg = 0, there is a unique h E HP~X(A; <Q) such that e(h) = pg.

It is easy to see that n is well defined on a neighborhood of /I in X, and we define

(4.2) P„(g)=(f)H+l-heH'(Xi6(t--1)).

Since

//'+1(X; 0) C ker[- (/)„+,]: Jï'->(i4; 0) - H"{X; ©(r""')),

P„(g) is independent of the choice of g made in defining n.    □

The key geometrical group in this theorem is the relative cohomology group

Hp( X, A ; Z), rather than Hp( X — A ; Z), which has been more usually investigated

in this sort of problem [30]. This difference is more apparent than real, since p will

generally be equal to the complex dimension of the space X, in which case these

groups are isomorphic to each other by Lefschetz duahty [28].

As an application, we have

Proposition 4.2. Let X=P~XP*~ , and i = 0(1,1). Then the zero set of

f=ZWisü~, and H2(P~ XP*- , ß" ; Z) ^ Z. If k is the generator of this group,

then

$n = Pn+x(k) e H2iP~ XP*- ; 0(-b - 2,-B - 2)).

Proof. H2(P~ XP*- ; Z) =* Z © Z, and it is not hard to show that restriction

takes (m, n) E H2(P~ XP*" ; Z) to m + n E #2(ST ; Z) « Z. (1,-1) therefore

generates the relative cohomology group H2(P~ XP*- , ß~ ; Z), and since the

Chern class of the Une bundle B(m, n) over P- XP*- is (m, n), we see that we can
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take g = 0(l,-l)in the proof of Theorem 4.1. The remainder of that proof is now

seen to be a simple generalization of the construction at the end of the last section.

D

RecalUng (3.27), the inner product pairing of (3.9) is now given as

(4-3)

^(F; 0(-n - 2)) 8 //'( P*^ ; 0(-n - 2)) - C,

(/,g)-Serre(/- (Z • W)_n+r4> ■ g)

and, in hght of condition (1) of Theorem 3.2, we see that necessary conditions for

this pairing to be nondegenerate are that 0 E i/'(fí" ; 0) does not extend to an

element of P~ XP*- and that the <f>„ do not extend to all of P X P*.

The reason log(0(l,-l)) does not extend to P- XP*- is simply that the Une

bundle 0(1,-1) does not have vanishing Chern class on P~" XP*-, and therefore

cannot be pulled back along the map e in (3.24). Meanwhile, if we try to use

Theorem 4.1 to extend <>„ to all of P X P*, we find that since H2(Q; Z) =* Z © Z =

tf2(PXP*;Z),

(4.4) H2iPXP*,u;Z)^0,

and the theorem cannot be appUed. A careful investigation of this problem reveals

that the difficulty is that there are points x, y E M such that there is a twistor Za on

Lx the dual planes of which contain all of Ly\ this is in turn equivalent to

(x — y)2 = 0. Thus (4.4) is simply a restatement of the fact that the spacetime

propagators are singular for (x — y)2 = 0.

Another problem to which we can apply Theorem 4.1 is that of <j>4 scattering. To

first order, this is a point interaction of four spin-0 zrm fields, and the ampUtudes in

spacetime are given by

(4-5) /k(x)X(x)^(x)o(x)í/4x,

where 0, \ E Z0(M+) are incoming and k, ^ E Z0(M-) are outgoing:

"-/OU \ /   4>~P(Ya)

o~tix")/    X x~giza)

In twistor terms, we expect to find a map

(4.6)        //'(P^;©^))®/^!^;©^))

®#'( Pj^ ; 0(-2)) 8 h\ P7 ; 0(-2)) -» C.

Informally, this is given by [25]

<">  ^■^^Tx^W^T)DW^XADY^Z-
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In analogy with the inner product, we conclude that a twistor description of first

order <#>4 scattering wiU follow from the construction of a "<f>4 propagator"

(4.8) <¡>4 E H\p:~Px~ XP;- XP/ ; 0(-2,-2,-2,-2)).

In Ught of (4.7), we expect (¡>4 to satisfy

(4.9) iX-W)<t>4 = iZ-W)4>4 = iX-Y)<¡>4 = (Z-y)<>4 = 0.

As in (3.16), it follows that we can find a

a E H3(Q~X X P;- XP/ ; ©(-1,-1,-2,-2))

such that <i>4 = (X- Wyx ■ a. Now

o = (z-y)<i»4 = Y^-[(z-y)a],

but (Z- Y)a E H\ii~x X P*~ XP/ ; 0(-l,-1,-1,-1)), and since

H3(v;~ XP/ XP/" XP/ ; ©(-1,-1,-1,-1)) = 0,

it follows that

• -^: H\üwx XP/- XP/ ; ©(-1,-1,-1,-1))

-» #4(p*- XP/ XP;" XP/ ; ©(-2,-2,-1,-1))

is an injection. It follows that (Z • Y)a = 0, so that a = (Z • T)"1 • t for some

(4.10) t E H2ia~x XQ-; ©(-1,-1,-1,-1)).

We have presented these arguments in some detail because they cannot necessarily

be extended. The process of reducing the cohomology degree by one while redefining

the form on a subvariety is connected to integration over an Sx in (4.7), and the

physically meaningful contour for (4.7) is not an Sx X Sx bundle over anS'XS1, but

an Sx X S1 bundle over an S2. This is described by Hodges [12], and summarized in

[8,§V.l].
Instead, we apply Theorem 4.1. We first define the intermediate spaces

(4.11) / = (ñ/xxn-)n{z.ir=o},

/ = (ß-,xß-) n (x-y = o},and

K = mj.

The comments of the preceding paragraph amount to the observation that t is not of

the form (X- Y)~x-iZ- Wyx-p for any p E H\K; 0). In fact, H\K; 0) = C [8],      ,

so any p E H°iK; 0) extends to Q¡~x X Q~ , and t cannot be of this form.

We do, however, have the following

Lemma 4.3. (Z • W)(X- Y) is a section of the line bundle 0(1,1,1,1) over ti~x XQ~ .

// we set

(4.12) S- ss(0- Xfi-) n [iZW)iX- Y) = 0},

then

(4.13) tf2(ßZxXß-,Z-;Z)-Z.
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Proof. Since 7/'(ß   ; Z) =* 0 and ß   is connected,

i/2(ß- Xß- ; Z) « #2(ß- ; Z) © #2(ß- ; Z) ^ Z © Z.

Now, 2- is the union of the intermediate spaces / and /, so we have the exact

sequence

(4.14)   HxiK; Z) -» #2(2- ; Z) -> #2(/; Z) © H2iJ; Z) -» #2(tf; Z) -»

/ is a fiber bundle, with base P,*- XP/- XP/ n{Z- Y = Z- W = 0} and fiber

(1° £ P" such that X-W=0). The fiber is contractible, and the base is again a

fiber bundle, with base P*- XP/ n{Z- W= 0} = ß-z and (contractible) fiber

{7a E P*- such that Z • 7 = 0}, so H2(I; Z) - i/2(ß- ; Z) a & #2(/; Z) a Z sim-

ilarly.

if is also a fiber bundle, with base ß-^ and fiber {(Za, Ya) E ß/z such that

ZW=Y-X=0). The fiber is contractible, so HX(K; Z) = 0 and H2{k; Z) = Z.

(4.14) now becomes

0   -*   #2(2- ;Z)   -»    Z©Z    -       Z      -»   •••,

(w, n)    -»   ni + n

where we have identified the final map by considering the fibrations more carefully.

It follows that H2(H~ ; Z) ^ Z, and we can identify the restriction mapping from

ß~x X Q" to 2- as

i/2fcxSl;z;Z)^2(r;Z),

(m, n) -> w + n.

Since /Í '( 2 " ; Z) = 0, the lemma follows.    D

The other assumptions of Theorem 4.1 are easily verified, and if we take k to be

the generator of #2(ß/x X ß- , 2- ; Z), then

(4.15) Pik) G 1^(0" XU"; ©(-1,-1,-1,-1))

is the desired element r.

If we consider the Une bundles ©(/, k, I, m) on p*- XP/ XP/- XP/ , their

Chern classes when restricted to ß/x X ß~ are (j + k,l + m), and when restricted

further to 2- are/ + & + / + m. A possible choice for t is therefore

log(©(l,0,0,-1)).
ZWXY

It can be fairly argued at this point that although this construction leads to a map

(4.6), we have no reason to believe that it corresponds to the <i>4 construction (4.5).

We will deal with this point in §6, where we will show that

(4.16) *4=*VzVT

does in fact correspond to the four-point field known to mediate </>4 scattering

(Hodges [13] and also [8]). We will also justify the appearance of 2- in Lemma 4.3

from a physical point of view (K may seem a more natural selection).
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5. Nonprojective spaces. Since the bracket factors (3.28) are not defined for k < 0,

the exphcit expression (3.27) for the twistor propagators </>„ does not apply if n < -1.

The construction of such an expression is our aim in this section.

An obvious choice is to define the bracket factor (x)0 by

(x)0 = logx,

since this has the key property d(x)0/dx — (x)x. We would then have

(5.1) <i>_2 = log(Z-WO-log(0(l,-l)).

Unfortunately, there are problems with this definition. log(Z- W) is not homoge-

neous in its arguments; a more serious difficulty arises because of the multi-valued

nature of the logarithm.

We can deal with the homogeneity problem by pulling <¡> — log( 0(1,-1 )) E

//'(fi- ; 0) back to the nonprojective space ß- . We will abuse notation and write

(5.2) ÎEff'(Û-;0)

as well; in fact, <f> E HX(Û~ ; 3C(0,0)).

We now have

(5.3)

<*>„ = iZ-W)n+2-<¡> E H2(A- XT*- ; %i~n - 2,-n - 2)) E #2(T- XT*- ; 0)

for b > -1. It is not hard to see from Theorem 2.4 that for n > 1,

(5.4)

H2iJ- XT*- ; %(-n -2,-n- 2)) « i/2(P- XP*- ; 0(-n - 2,-n - 2)),

and this enables us to recover the inner product pairing (3.9) from the elements (5.3).

Alternatively, we can construct a pairing

(5.5) //'(r; %i-n - 2)) 8 #'( T*^ ; DC(-b - 2)) -» C

directly by noting that for (/, g) E ff'iT^; %(-n - 2)) 8 Hl(T**; %(-n - 2)),

/■ </>_„• g E H6(T X T*; %(-4, -4)) C H6(T X T*; 0). In addition, there is a natural

map

(5.6) J:H\T;6)^C

given by taking/ E H3(T; 0) to

(5.7) //AE

where e E A4T is as in §3 and we integrate the 7-form/ A e over an S1 surrounding

the origin in C4. The map (5.5) is thus given by

if,g) -///*-„ g-
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This gives the same value as the construction in §3 by virtue of the following

Lemma 5.1. The following diagram commutes:

-, /        „ /      ^ \        Serre
¿73(P;©(-4))-^.C

#3(T;©)'

In addition, fir*: i/3(P; 0(n)) -> C is the zero map for n ¥= -4.

Proof. See Penrose [21].    D

Since it* and dot product clearly commute, it follows easily that the nonprojective

construction gives the usual value and also that 0 + <#> E HX(Û~ ; 0).

For n < -1, we are now led to look for

(5.8) <i>„Etf2(T-XT*-;0),

which we require to satisfy the relations (3.15), and also

(5-9) Wa^- = Z°^=(-n-2)*n.

In fact, for n < -2 we wiU have

(z- w y"~2

since, for n < -3, this imphes

**k-n,(z-wr~3,   , (z-wy-2   i   i
dr~W-   i-n-iy.   </>-2+    (-n-2)!    W'[zlP' +

W _o

= **>«+, + (-„-2)!(z ' W)       * = ^A+"

because (Z • W)~"~3 is entire and the dot product annihilates entire functions.

If we define

-00

(5.11) <>+=! <P„ = <t>0 + <t>.x+ez^_2EH2(T~XT*-;e),
k=0

we have the following

Proposition 5.2. Letf E HX(W; 0(-m - 2)) and g E HX(P*+; ©(-« - 2)), where

m,n>0. Then

(5.12) J«'M+-«'g=\0, "m*n,
J {\g\f)     ifm = n,

where (g\f) denotes the inner product of the states corresponding to fand g.

Proof. This is an immediate consequence of the definition (5.11) and Lemma 5.1.

D
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In other words, é+ is a "universal" propagator for zrm fields of nonnegative

helicity.

We are left with the problem of finding an explicit expression for é_2. (5.1) is still

no good, since if we set

(5.13) B~ =T-XT*- -ß-,

then ZW E H°(B~ ; ©*), and we have the exact segment

(5.14) 0 -> H°iB~ ; 0) -> i/°(fi- ; ©*) - Z = H\B~ ;Z).

Unfortunately, Z • W has nonvanishing Chern class (its Chern class generates

HX(B~ ; Z)), and log(Z • W) therefore cannot be used as an element of H°(É~ ; 0).

Nonetheless, (5.1) does satisfy formally the key equations

9<fr-2 _      **;       . H-2 _      Za

dz*'iz-w)'*' dWa~ iz-w)'4*'   ^

dé,     ZW dé,
z"lEß=zTw*=l* = 0>     ^ = 0'

and we shall therefore continue to attempt to find a suitable interpretation for it.

Suppose that we were able to assign a precise meaning to the expression

(5.15) iZ-Wf

as an element of H2(T~ XT*- ; 0*). Formally, we would then have

(5.16) log[{Z-wY]=logiZ-W)é-

This hardly appears to constitute progress, since there are now sheeting problems in

both (5.15) and (5.16). However, we can expect to deal with (5.16) by evaluating the

Chern mapping ¿72(T" XT*- ; ©*) -> tf 3(T" XT*- ; Z); the key to the construc-

tion of (5.15) is the following

Theorem 5.3. // /': Z -> 0 is the natural injection, then there is a k E HX(Û~ ; Z)

such that é = ikE HX(Ù~ ; 0).

Proof. Recall that transition functions for e(é) are given by

AW ZB
fn

BW zl

defined on 17, n U2, where Ux = {A ■ W ZB ¥= 0} and \J2 = {BW ZA ^ 0}

cover ß- . Since A ■ W Z■ B E H°(ÜX; 0*), fX2 is a coboundary nonprojectively, and

e(é) = 0 E HX(Ü~ ; 0*).

It follows from the usual exact sequence

tf'(ß- ;Z) -7/'(ß" ; 0) ^HxiÛ~ ; 0*)

that é is in the image of i.    D

As in the projective case, T- is a fiber bundle over E4, where the fiber is no

longer a CP1 but is instead C2 — {0}. ß- is a fiber bundle over T- , with fiber a

deformation retract of C*. It foUows that HP(T~ ;Z)^HP(S3; Z), and HX(Ù~ ; Z)

=* Z. Just as é does not extend to either all of ambitwistor space or to P- XP*- , so
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we have

HxiÛ~ ; Z) * 0 =* //'(T- XT*- ; Z).

(ß is a deformation retract of an S5 bundle over an S7.)

For any complex manifold X, there is a natural map

(5.17) H°iX; 6*) ® H°iX;Z) ^ H°iX; 6*),

The potential sheeting problems in (5.15) are a reflection of the fact that this does

not extend to a map

H°iX; 0*) 8 H°iX; 0) -> //°(Z; 0*),

(/,gWg,
since /g need only be defined on the universal covering space of X. In light of

Theorem 5.3, however, we do not expect this difficulty to materialize.

The map (5.17) induces a cup product-type pairing

U:HpiX;6*)®HqiX;Z) - Hp+qi X; 0*).

As in the original construction of the dot product, we have

Lemma 5.4. Let X be a complex manifold, and U and V open in X. Then there is a

natural pairing HpiU; 0*) 8 H%V\ Z) -* Hp+q+x(U U V; 0*), denoted (/, k) ->/\

such that if for k extends to U U V, then fk = 0.    □

It follows that (Z-Wfis indeed well defined as an element of H 2(T" XT*-;©*).

Unfortunately, we have the foUowing

Proposition 5.5. The Chern class of (Z- W)* is given by the dot product of the

generators of HX(B~ ; Z) and HX(Ù~ ; Z), and this dot product is nonzero.

Proof. We have the commutative diagram

H°iB-;6*) ^ H\É~ ;Z)

if* W

#2(T" XT*- . g*)      %     H3iT~ XT*- ; Z)

where we have taken é E HX(Û~ ; Z). It follows that c[(Z- W)*] = c(Z ■ W)é-

However, it is easy to see that é generates HX(Û~ ; Z), and we have already remarked

that c(Z ■ W) is a generator of HX(B~ ; Z).

To show that this dot product is nonzero, we consider the following exact

sequence due to Leray [16]:

(5.18)

H2(B;Z)     -    Hl(Q- ; Z)     ^*     H\l~ XT*- ; Z)     ^     H3(B;Z)     -»    H2(Û~ ; Z)

o -» z -» zez -» z -* o
k -+ (k,-k)

(m, n) -» m + n
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It is not hard to see that the map D „, is simply dot product with a generator of

HxiB~ ; Z), and since n„ is an injection, the proposition follows. In fact, using the

coordinates of (5.18), the Chern class of ( Z • W f is ( 1, -1 ).    D

It is again tempting to discard (5.16) at this stage, but let us first see if it is

possible to make precise the sense in which it is correct.

There is a sheaf map over T- XT*"

d: 0* -> 0a,

given locally by

(5 19) e/__LJy
K       ' 2midZa'

such that the following diagram commutes:

Similarly, we define d*: ©* -> 0" by e' - \/2vi df/dWa.

dinduces a map d: H2(T~ XT*- ; ©*) -> H2(T~ XT*- ; 0a), and

(5.20) d[iW-zY]=^.é=Waé_x=^ = d[eié_2)],

d*[(^-zY]=~é = Z"é.x=^ = d*[eié_2)].

We have shown the following

Proposition 5.6. Let p = e(é_2)/(Z ■ W)+ E H2(T~ XT*   ; ©*). Then

(5.21) dti = d*n = 0,

and

(5.22) c(p) = (-l,l).

Further, for any p satisfying (5.21) and (5.22), </>_2 is thepullback along e of n(Z- Wy>.

(Thispullback is unique, since H2(T   XT*- ; Z) = 0.)

Proof. (5.21) follows from (5.20), and we also have

ein) = ceié.2) - ceiZ • FF)* = (-1,1).

Conversely, given p satisfying (5.21) and (5.22), it is not hard to see that

(l/2fl7')log[p(Z- W)*] satisfies (3.15) and, by Theorem 3.6, must therefore be equal

to é_2.    □

In practice, there will generally be derivatives involved in the construction of the

spacetime fields associated to any positive homogeneity propagator, and an exphcit

representation of p is not needed. We wiU, however, give a purely twistorial

construction of it.
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Theorem 5.7. Let p: X -> B be a fibration of a complex manifold X, where B is

n-dimensional and noncompact. If we fix k E H"+X(B; Z), then there exists an element

v E H"(X; ©*) such that dv = 0 and c(v) = p*k E Hn+x(X; Z), where d is as in

(5.19).

Proof. We have the exact segment

(5.23) H"(B; 0) -* H"(B; 0*) -* H"+xiB; Z) -* Hn+xiB; 0).

The last group vanishes because B is only n-dimensional, and the first group also

vanishes, by virtue of a theorem due to Siu [27] which states that H"(B; S) = 0 if B

is n-dimensional and noncompact and S is coherent analytic. (5.23) therefore

becomes

c:HniB;6*) ~ Hn+xiB; Z),

and we can pick v0 E Hn(B; 0*) such that c(vü) = k. Since H"(B; 0) = 0, dv0 = 0

(d being defined as in (5.19)).

We now set v — p*(v0). Since the diagram

H"iB;6*)     -»    Hn+xiB;Z)

ip* ip*
H"iX;6*)     -*    Hn+xiX;Z)

commutes, c(v) = p*k. In addition, if we extend the coordinates on B to a set of

coordinates on X, it is clear that p* and d commute in a suitable sense, so that

dp = p*dp0 = 0.    D

We wiU refer to v as a c(v)-normalizer for X. If c(v) generates H"+X(X; Z), we will

simply call v an n-normalizer for X.

Corollary 5.8. Let L be a line in P. Then T — L has a 2-normalizer.

Proof. P — L is a C2 bundle over a CP1, where the base is the set of planes

through L and the fiber is the C2 obtained by removing the line L from such a plane.

Nonprojectively, T — L is a C2 bundle over C2 — {0}, and we therefore see that

H3(T-L;Z)^H3(C2- {0};Z)^Z.    D

The projection from T — L to the base is given explicitly by

p:T- L^ L± ,

z" -. eaßySZaAßßy,

where LL is the Une in P* dual to L and A and B are arbitrary distinct twistors on

L.

Proposition 5.9. Let é be a generator of HX(Û~ ; Z) and v and v* 2-normalizers for

T~ andT*' respectively. The twistor propagators are then given by

(5.24a) én = iZ-W)n+2-é  forn>-l,

forn < -2.<5-24b>      *- = T^iyrbe -tzwy
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Proof. We have already established (5.24a). For (5.24b), we have

c(£)=c(f*)-c(f) = (-1,1),

-div)
V

0 = i/*| —
V

Now apply Proposition 5.6.    D

The notation in (5.24b) obscures the fact that é_2 obeys the fundamental equations

(3.15). Another way to think of this construction is as follows: Suppose %= {[/,}

covers B~ - (Z- W¥= 0} D T" XT*- in such a way that log(Z- W) is well be-

haved on each U¡. Now log(Z- W) E C°iB~ ; 6) is a 0-cochain on É~ which does

not, of course, satisfy the cocycle condition, since log(Z- W ) is not globally defined

on B . Similarly, log(Z- W)-é E C2(T~ XT*- ; 0) also does not satisfy the

cocycle condition, as log(v*/v) £ C2(T- XT*-; 0) does not. However, we can

choose the logarithms so that log(Z- W)é + log(v*/v) does satisfy the cocycle

condition, and dlog(v*/v)/dZ" E C2(T- XT*- ; 0O) is actually a coboundary, as

is dlo%(v*/v)/dWa. The first of these statements follows from the fact that

c[v*(Z- WY/v] = 0, while the second is a consequence of d(v*/v) = 0 = d*(v*/v).

We can therefore rewrite (5.24b) as

(5.25) à„
_ (z-wy"~

log(Z-FF)-* + log— for n < — 2.
i-n-2)\

Proposition 5.10. The universal propagator of Proposition 5.2 is given explicitly by

1 1
<i>+ =

ZW iz-wy
é ,zw logiZ-W)-é + log- D

6. Spacetime expressions. It is possible to evaluate simple scattering amphtudes

directly using methods such as those of the last two sections, but to see that we are in

fact performing the usual spacetime calculations, we need results such as the

following

Proposition 6.1. The twistor propagator <í>o(^»> Z") corresponds to the spacetime

field l/(w — z)2, up to proportionality.

(6.1)

Proof. The field associated to <i>0 is given by [15]

1      /       AWAAZ.    ÍAWZB

(2*i ):

t      AWAAZ,

7     iz-w) BW ZA

If we choose coordinates -r\A for Lw and vA> for Lz, and set nA' = (w

becomes

2)     Va- this

(6.2)

where fi-v = p.A vf

1 1
,3

(277/)     (w

•*', Ap

Ap A Av,    I u.a. ß

z?7"  (

pA'V , ¿in — fiA, d\xA , etc. If we now write
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(6.2) becomes

1 1 r    dudv I a + u b + v

^zY2<77u~^vT2 og\ ¿t^ IT7i2„i)3 iw-zY' i

Integrating by parts gives

1 _J_ r dudv I      1_1_\

(2tt/)3 (w-z)2^m_ü' a + u     b + u>

" (277/ )2 (w - z)2 ® "' a + u      b + u>~ -rriiw-z)2'

The final integration is over a contour which separates the two poles because the

original interpretation of the logarithm in (6.1) was as an //'.    D

Of course, l/(w — z)2 is none other than the usual propagator for massless scalar

fields. Similarly, we have

Proposition 6.2. Letw,y E M+ and x, z E M- . Alow set

(6.3) aAA' = (x - w)AA',

cAA' = ix-y)AA',

dAA' = iz-y)AA',

and

A   A- — a       °AC-CBA'a

If t = Xa' A, is the trace ofX, and A = [Xa b (Xa,b, + XB.A,)]X/1 is the discriminant of its

characteristic equation, then the A-point field associated to é4 is (up to proportionality)

(,A, log((f-&)/(, +A))
V-V 2^A •

Proof. We must evaluate

i, «x 1     J. AW A AX A AY A AZ       ,    ,„„ „
(65)    ^~7?P—(*• w)iz-Y)iz.w)ix. Y)^ieiho,o,-i)y

As in (6.2), this becomes

1      X A£AAttAA£AAp ,    ,„,, n n    ,„

= 7-4^   Y Wt   .Mfld.o.o.-O)
(2iri) 7 (w • "A77 'P)(a • P)(CT ■A " ")

= 7-^^(  XAAxg  ^g(e(i,-0),
(2tt/) 2~(wo')(7r-X-a)

where we have changed variables a few times and integrated over two simple poles.
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We now assume without loss of generahty that

— (i).   *-(>)   -   *»=(•    J).
(6.6) becomes

1

f
op OJ

-log
a + p fe + j

1     ^   dpds   I    1 _j;
fi2<nifY s(f~ e) \P~S     fP~es)      \b+pä + s

log
a + p b + s

1       r      ¿fe        ,    I a + s b + s\

(27r/)2yH/-e)

1       /      dis

A log

b + s a -t

a + j es + ß

log
es + fa s + b

es + fb s + à

i2-ni)2rsif-e)    *\b + ses+fa)-

Examination of the original logarithm shows that the branch cuts in the above

expression connect a + s = 0 to es + fa = 0 and connect b + s = 0 to es + fb = 0;

the contour surrounds each of these cuts. Since the logarithm jumps by 27rz from one

side of the cut to the other, the field is given by

1

27T/ J-fa/e      J-ß/e

ds ^ 1 log(e//)

sif — e)      "ni    f-e
1 .   ÍInA^Xlog(7TÄ □

It has been shown by Hodges [12,13] that this field does, in fact, mediate é4

scattering.

It is also possible to give direct twistorial proofs of well-known spacetime results.

For example, we have

Proposition 6.3. The twistor propagators én E H2(P~ XP* ; ©(-b -2,-n — 2))

correspond to fields é„(x, z) satisfying

(6-7) </>„(x,z) = (-ir</>„(z,x).

Proof. We need the following lemma.

Lemma 6.4. Let A be the diagonal in P X P, and suppose that

XiX, Z) E H2iP X P - A; ©(-2,-2))

satisfies X(X, Z) = +A(Z, X). Then X corresponds to a two-point field k(x, z) with

k(x, z) = ±k(z, x).

Proof.

Ax, z) =j>pxzXiX,Z)AX A AZ

= +<£pzxXiZ, X)AX AAZ

= ±<£pzxXiZ, X)AZ A AX= ±«(z,x).    D



scattering and twistor geometry

Proof of Proposition 6.3. We set

X* = (pA,fiA,).

It is easy to show that é„(w, z) corresponds to the same zrm field as does

(6.8) i-iy«A>--wB,VA--'nirt«(W,Z)

3 3

811

(-0"^'---%'
duA        3w

H2(P~ X P*- ; 6A.. ■B'A-B

Bà0iW, Z)

(-2,-2))

where we have extended én to P   XP*  . (This is possible since, for example,

H'(T- X T*^ n {Z • W = 0}; Z) « Z.)

If é'0 E H2(P+ XP* + ; 0(-2, -2)) is a positive-frequency propagator, we can

consider

é0iW, Z)-é'0iW, X) E H5iPx+ X p* X P/ ; ©(-2,-4,-2))

* H2(PX+ X Pz- ; ©(-2, -2))    (Serre duality).

We thus set

(6-9) ux,z) = é0iw,z)-é'0iw,xy,

>p0iX, Z) E H2(PX X P/ ; 0(-2, -2)) corresponds to the same zrm field as é0 does,

and \¡/0 extends to P X P — A. The extension to P/ X P/ is given by

(6.10) UX,Z) = é'0iW,Z)-éoiW,X).

Combining this result with (6.8) and Lemma 6.4, we see that we want to show

(6.11)       (-l)V---^
da*

-j%(x,z)

= (-ir(-ir+W---^e7---A^o(z,x).
dv' dvl

The left-hand side of this equation is

(-1)"
L dio"duA duB

■à'0iW,X)

= (-!)"
er     af

,-Va ■■•Vb<S>oÍw,Z)<f>'oiW,X).

Since

ar [é0iW,Z)é'0iW,X)]=0,
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we can "integrate by parts" n times to get

3i-l)ni-l)né0iW,Z)

= à0iW, Z)

31A' d^A
■Vb à'oiW, X)

*A' /v
dvA

_3
dv—b^W, X)

Pa-'-Pb'
dv'

■—BUx,z).
ov

(6.11) therefore reduces to ^0(Z, A') = -%(X, Z), or, by (6.10),

é0iW, Z)-é'0iW, X) = -é'0iW, X)-é0iW, Z).

This follows immediately from the fact that H2 's anticommute under dot product.

D

7. Physical interpretation. The primary purpose of this paper has been to show

that certain geometrical objects defined on products of twistor spaces can be used to

describe interactions of massless particles on Minkowski space. The specific exam-

ples we have given have dealt with two such objects,

éEHx{Ü-;Z),

used in the description of the twistor propagators, and

LÛ HX(Û xù-n{(Z-W)(X-Y) = 0};Z),

which can be used in an analogous fashion to describe é4 scattering. We conclude by

describing a possible direct interpretation of these objects on spacetime.

Consider, for example, the twistor propagator

1
(7.1)

used in the construction

«J»-,
Z   W

à

Hxi P+ ; 0(-3)) 8 Hxi P*+ ; 0(-3)) -* C,

(/.gHSerret/^-g).

The appearance of the factor 1/Z- W (as in (7.1)) in this construction dates back to

Penrose [25]. By using Cauchy's theorem, he shows that this factor corresponds to

the fact that the fields / and g are interacting at a point. Indeed, the Feynman

diagram for this process is:

g(wa)

fiza)

We therefore assign a physical interpretation to (7.1) as follows:

(a) The fact that é is defined on (Z ■ W = 0} indicates that the Za particle and the

Wa particle are interacting.
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(b) The inclusion of the factor 1/Z- IT indicates that the interaction is pointUke.

The é4 propagator

(7-2) <#> = x-W' ZY   ZWXYU

can be analyzed similarly. Since ZW X ■ Y = 0 if and only if ZW =0 or

^•7=0, we have:

(a) The Xa and Wa particles are interacting, as are the Za and Ya particles.

Furthermore, either the Z" and Wa particles or the Xa and Ya particles are also

interacting.

(b) All of the interactions are pointUke.

In fact, this is just enough information for us to conclude that all four particles are

interacting at a point, and that the associated Feynman diagram is:

If we were to replace (a) with

(a') All pairs of particles corresponding to a twistor and a dual twistor are

interacting,

we would in some sense have "overdetermined" the system. It is for this reason that

2- (and not K) appears in Lemma 4.3. (See also the comments in the paragraph

preceding Lemma 4.3.)

There are a variety of directions in which one could proceed at this point. More

involved first-order processes should be considered, such as Möller scattering, which

is discussed in [21]. The creation-annihilation channel

(7.3)

should be tractable, while the exchange channels
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which suffer from an infrared divergence, may not be. In Compton scattering

(treated by Hodges [14]), on the other hand, it is only the sum

which is physically meaningful, rather than the individual diagrams such as (7.3) and

(7.4). It will be interesting to understand this geometrically.

Finally, higher-order processes will need to be dealt with. Since constructions such

as those we have described necessarily give weU-defined maps into C, twistor

descriptions of these processes should be free of the divergences which appear in

quantum field theory.
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