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CONJUGATE FOURIER SERIES ON CERTAIN SOLENOIDS

BY

EDWIN HEWITT AND GUNTER RITTER1

Abstract. We consider an arbitrary noncyclic subgroup of the additive group Q of

rational numbers, denoted by Qa, and its compact character group 2a. For 1 < p <

oo, an abstract form of Marcel Riesz's theorem on conjugate series is known. For/in

Sp(2a), there is a function/in S„(2a) whose Fourier transform (/)(a) at a in Qa

is -i'sgna/(a). We show in this paper how to construct / explicitly as a pointwise

limit almost everywhere on 2a of certain harmonic functions, as was done by Riesz

for the circle group. Some extensions of this result are also presented.

1. Introduction

(1.1) Notation. This paper may be regarded as a sequel to [7], in which we

established convergence and divergence theorems for Fourier series on a class of

compact Abelian groups. The symbols N, Z+ , Z, Q, R, and C denote the positive

integers, nonnegative integers, integers, rational numbers, real numbers, and com-

plex numbers, respectively. The symbol T denotes the circle group. We will parame-

trize T as {exp(2772'r): - \ < t < \}. The symbols [a, b] and ]a, b[ denote the closed

interval {t G R: a < t < b] and the open interval {t G R: a < t < b), respectively.

Intervals [a, b[ and ]a, b] are defined similarly. For z G C, we write sgn z = z/\ z | if

z =5^ 0 and sgnO = 0. For t E R, [r] denotes the greatest integer not exceeding t.

Letters c, c',cx,... denote positive constants, which may vary from one occurrence

to another.

We have to deal with integrals over four different measure spaces. To keep track,

we will frequently write expressions like 11 / \\PtX> which means the ß norm of the

function / over the measure space X. The symbol ß log+ C( X) denotes the set of all

measurable functions/on the measure space X such that |/| max(log(|/|),0) is in

S ,(*").
All notation not explained here is as in [8].

(1.2) 77ie groups Qa and 2a. We will study conjugate Fourier series on the

character group of an arbitrary noncyclic subgroup of the additive group Q. Up to

isomorphisms,    all   such   groups   are   described    as   follows.    Let   a =

(a0, a,, a2,... ,an,...) be a fixed infinite sequence of integers all greater than 1. Let

(1) A0=l,   Ax=a0,   A2 = a0ax,...,    An = a0ax ■ ■ ■ a„_,,....
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Let Qa be the set of all rational numbers l/Ak for / G Z and k E Z+ . Plainly Qa is a

noncychc additive subgroup of Q. We will write Q* for the semigroup of nonnega-

tive numbers in Qa.

According to the Pontrj agin-van Kampen duality theory, the character group of

Qa is a compact AbeUan group, which we denote by 2a. The (continuous) character

group of 2a is again Qa. We require a specific presentation of 2a. First consider the

group Aa of a-adic integers. This group consists of aU infinite sequences x =

(x0, xx, x2,...,xn,...) where each x¡ belongs to the set (0,1,..,,a, — 1). The sum

x + y is defined by adding coordinatewise and carrying quotients. See [8, Chapter

II,§10,(10.2),p. 108] for details. Let u be the element (1,0,0,...,0,...) and 0 the

element (0,0,0,..., 0,... ) in Aa.

We will later use the subgroups A0, A,, A2,... of Aa, defined by A„ = (x G Aa:

x0 = xx= • ■ ■ = x„_x = 0}. Thus A0 is Aa itself, and A0 ¿? A, ^ A2 ^

Normalized Haar measure Xn on A„ is the product of the measures Oj(A) =

(\/aj)carà(A) on the factors {0,1,... ,a}■— 1} of A„.

We present the group 2a as the set [- \, j[ X Aa, with addition defined by

(2) (j,x) + (í,y) = (s + t-[s + t + Í\,x + j+[s + t + è]u).

The sets

(3) t4(0,0)= {(f,x) G2a:|i|<l/2A:andx0 = x1 = ••■ = xk__x =0}

ik G N) are a complete family of neighborhoods of the neutral element (0,0) of 2a.

NormaUzed Haar measure p on 2a is the product of Lebesgue measure X on [- A, {[

and normalized Haar measure X0onAa = A0.

Now consider any element a — l/Aj of Qa. We define xtt as the complex-valued

function on 2a such that

(4) X„(',x) = exp

oc

2-ni— \t +  2 xvAi

where we agree that 2%0xyAl, means 2¿=¿x„v4„. It is easy to see that each xa is a

continuous character of 2a, that the characters xa separate the points of 2a, that

Xa+ß = XaX0> and mat Xa ls me function identically 1 if and only if a = 0. Thus Qa

is the character group of 2a and 2a is the character group of Qa.

We will consider Aa as being the subgroup {(0,x): x G Aa} of 2a. The measures

\0,Xj,X2,... are thus singular probability measures in M(2a). The characters xa

defined in (4) are characters of A a as well as of 2 a (simply compute xa(0,x)). It is

clear that the xa comprise all of the continuous characters of Aa and that the

character group of Aa is isomorphic with Qg/Z. Thus we have a specific presentation

of 2a and its characters, and are in a position to study in detail the behavior of

Fourier and other trigonometric series on 2a.

(1.3) Conjugate Fourier series on T. In this paper, we extend to the groups 2a the

principal facts about conjugate Fourier series on T. We briefly recall these facts.

Given/in S ,(T) and n G Z, we write as usual

(1) fin) = [l/2fiexpi2trit))expi-2irint) dt.
•'-1/2
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Theorem A (Privalov [10,11]). Let f be a function in C,(T). Then
00

(2) Um   2   -isgnkfik)rMexpi2<nikt)=fiexpi2'nit))
rîl k = -oc

exists for almost all t G [- ¿, {-[. The function f is called the conjugate function of /.

Theorem B (Marcel Riesz [12]). Let p be a number in the interval ]1, oo[ and let f

be a function in C^CT). The function f is in S^T), and there is a constant A depending

only on p such that

(3) H/ll,<i4,ll/ll,.

(As Titchmarsh [15] observed, we have Ap ~ cp as p î oo and Ap ~ c/(p — 1) as

pll.)

Theorem C (Zygmund [18]). Suppose that f is in 81og+ß(T). Then f is in S,(T)

and there are absolute constants c and c' such that

(4) II / Il, t < c r/2\fiexp{27Tit)) | log+ \fiexpi2wit)) | dt + c'.

(1.4) Conjugate functions on compact Abelian groups with ordered duals. Let X be a

torsion-free infinite AbeUan group, written additively and with the discrete topology.

The group X contains a subset P such that P n (-P) = (0), P U (-P) = X, and

P + P = P. Defining x < i> and \p > x to mean that t/> — x G P, we see that < is an

order in X compatible with group addition. For details, see Rudin [13, pp. 193-195].

The ordering in X is never unique (-P will serve as well as P), and frequently X can

be ordered in many quite different ways. Given X and P, we define the function sgn

on X by

(1) sgnx

1       forXGP\{0),

0       forX = 0,

-1     forXG-(P\{0}).

Let G be the (compact) character group of X. A complex-valued function/on G of

the form

(2) /=   1 aix)X,
xex

where a is a complex-valued function on X with finite support, is called a trigonomet-

ric polynomial on G, and the set of aU trigonometric polynomials on G is denoted by

Z(G).

There is an abstract version of Marcel Riesz's Theorem B.

Theorem D (Rudin [13, pp. 216-220] and Helson [6]). Let f be a trigonometric

polynomial on G, written in the form (2). The polynomial

(3) /=  1 -*'sgnxa(x)x
xex



820 EDWIN HEWITT AND GUNTER RITTER

has the property that

(4) \\f\\,.G<¿,\\n,.G

for all p G ]1, oo [. The constants Ap are the same as in Theorem B supra.

Theorem E. Let f be a function in %p(G) (1 < p < oo). There is a function f in

üp(G) such that

(5) (/Hx) = -'sgnx/(x)

for all x G X. The inequality (4) holds for f and f.

The function/is called the conjugate function off. Theorem E follows at once from

Theorem D if one notes that £(G) is an ß^-dense Unear subspace of Qp(G). The

conjugate function / is defined only as the Umit of a certain sequence of trigonomet-

ric polynomials. Theorem E does not represent / in any concrete way, as does

Theorem A for the case G = T and X = Z.

(1.5) The aim of this paper. The group Qa admits exactly one order under which 1

is in P. We take this ordering for Qa and then have Theorems D and E. Our goal is

to prove an analogue of Privalov's Theorem A for the group 2a and so to obtain the

conjugate function of Theorem E expUcitly almost everywhere on 2a. As we will see,

the existence of the analogue of (1.3)(2) is known only for functions in ß log+ ß(2a).

2. The structure space of a certain commutative Banach algebra.

(2.1) The classical case. In their fundamental paper [1], Arens and Singer pointed

out the group-theoretic interpretation of the Poisson kernel for trigonometric series.

The group T is the character group of Z and the closed disc D = {zGC:|z|<l}is

the semicharacter semigroup of the semigroup Z+ . The Banach algebra lx(Z+ )

(under convolution) has D as its structure space and can be identified with the

algebra of all functions 2^=0a„z" on D with 2^=01 a„ | < oo. The Poisson kernel can

be thought of as the measure on T which, for all / in /,(Z+ ), can be convolved on T

with the Gel'fand transform / to give the value of / at an arbitrary point of the

structure space D of /,(Z+ ).

(2.2) A certain structure space. Let H be a commutative semigroup, written

additively. The set of all complex-valued functions/on H such that

H/H|=   2   |/(*)|<oo
xEH

is denoted by lx(H). Plainly lx(H) is a complex Banach space with pointwise linear

operations and the norm just described. With multiphcation/* g defined by

(1) /•*(*)=       2       fiu)giv),
u, v: u + v = x

/,(//) is a commutative Banach algebra.

A semicharacter of H is a bounded complex-valued function f on H that is not the

zero function and has the property that Ç(x + y) = f(x)f(y) for all x, y in H. The

multiplicative Unear functional on lx(H) are all defined by mappings t¡- for

semicharacters f of H, where

(2) Tt/=   2 fix)S(x).
x&H
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These facts, by now famiUar, are found (along with other matters) in Hewitt and

Zuckerman [9]. Thus the structure space of lx(H) can be identified with the set of all

semicharacters of H. The Gel'fand topology of this space is in general rather

complicated, but is simple enough in the case we are concerned with.

To construct the Poisson kernel and the conjugate Poisson function (it is not a

kernel, as we shaU see) for the group 2a, we need to find the structure space of the

Banach algebra lx(Qa )■ We omit the proofs of the next assertions, as they are

straightforward. The semicharacters of Q^ are the following functions:

(3) 4>0, where ^0(0) = 1    and   i|/0(a) = 0 for a > 0;

(4) a h> exp(-27TMa)xa(<,x) = 4>UtlA(a),

where « is a nonnegative real number and (/, x) is a fixed element of 2a. (That is, the

function a i-> xa('>x) *s a character of Qa restricted to the subsemigroup Q+ .) The

functions 4>0,x obviously reproduce the group 2a. Under our parametrization, the

numbers u run through [0, oo[, the numbers t through [- {, \[, and the sequences x

through Aa, all independently.

Let % denote the set consisting of the function (3) and all of the functions (4). As

observed in the last paragraph but one, we can (and henceforth will) identify \ with

the structure space of the commutative Banach algebra lx(Q^ )■

For/ G /](Q^ ), we define its Gel'fand transform as the function/on ^a such that

(5) /Uo)=/(0)
and

(6) /a,,,x)= 2 /(«)*„,,».
«CEQ.+

The Gel'fand topology, which is the weakest topology on ¥, under which all of the

functions / are continuous, is the following. A generic neighborhood Vn(\p0) of \¡/0

consists of i^0 and all \¡/u¡x with u > n (n E N). A generic neighborhood F„(i//„ ,x) of

\¡/ulx consists of all \j/v s y such that v E [0, oo[ and | u — v |< 1/n and (t, x) — (v,y)

E Un(0,0) in 2a. Plainly ¥„ is a compact Hausdorff space. It can be pictured as the

Cartesian product [0, oo] X 2a, where all of the points {oo} X (t,x) are identified

with each other.

The Silov boundary of ¥a is the set of all semicharacters ^(x. Thus it can be

identified with the compact group 2a. This is proved, for example, in [1, Theorem

4.6].

3. The Poisson kernel for lx(Q* ).

(3.1) Specifications for the Poisson kernel. For typographical convenience, we will

in the sequel write \pu ,_x as (u, t,x) for u > 0 and \¡/0lx as (r,x). We will continue to

write i//0 as t^0. The Poisson kernel is a probabihty measure Pu on 2a for each

u E [0, oo ] with the property that

(1) Pu*fit,x)=fiu,t,x)

for all (u, t, x) (0 « u < oo) and

(2) ^oo */(',*)=/("¿o) =/(0)

forall/G(l(Qa+).
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(3.2) Pu for 0 <u< oo. The group 2a is the quotient group of R X Aa by the

subgroup (1, -u)Z. Let tp be the canonical mapping of R X Aa onto 2a. The image

under <p of the subgroup R X {0} is the subgroup S of 2a consisting of all elements

(t — [t + {-], [t + ¿hi). Plainly <p is a continuous group isomorphism of R X (0) onto

S. Of course <p is not a homeomorphism. Note also that p(5) = 0 and that S is dense

in 2a. We think of 5 as a sort of "spiral" lying densely in 2a.

Given a measure v in M(R) and a continuous complex-valued function/on 2a,

the integral

/oo f°<piv)driv) = vvif)
-00

exists and defines a measure in M(2a). Clearly aU subsets of 2a\S' have | v \

measure 0. For a positive real number u, let Pu be the measure in M(2a) such that

l_

J-L¡  ' m •'-oo'        '  "    ' MZ + VZ

for /G E(2a). Clearly Pu is a probabiUty measure singular with respect to Haar

measure p on 2a.

To verify (3.1)(1) for all functions in lx(Q^ ), it suffices to verify (3.1)(1) for

functions of the form l(a) (a > 0). We compute:

(3)

/ \a}i^y)dPuis,y) = -j   l(a} °<p(ü) dv
•'S, m •'-oo u    + v

= -( x«(y(o))  2 "   2dv
m •'-oo U2 + V2

(2) / fit,x) dPuit,x) ̂ f/»^)^

= if_yp^ia^-[v + i]+îxrA^-^2dv,

(4) — /    exp(2wmt>)—--é/ü.

where x = (x„)£°=0 is the a-adic expansion of the integer [v + x]. The last Une of (3)

is equal to

1   /-00      ,„   .     \_u_

u2 + vz

This can be proved by a calculation, or more easily by observing that the function

t> h» xa(*P(ü)) is a continuous character of R and so has the form v i-> exp(2777ju) for

some s E R. For - { < v < \, exp(277<a(ü — [v + {] + 1%0xvAl,)) is equal to

exp(2ir/au), which shows that the last line of (3) is equal to (4).

The integral (4) is of course equal to exp(-2w | a | u) — exp(-2irau). Thus we have

(5)

Pu * \a)(t>*) = / Xa((',x) - is,y)) dPais,y)

= X«(i,x) f xÂ^y)dPuis,y) = exp(-2ff«M)xa(í,x) = ^„,(,x(a).
•'s.

Therefore (3.1)(1) holds for aU/in 7,(0+ ) and all u in ]0, oo[.
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(3.3) The measures P0 and Px. The Dirac measure 5(0 0) is the multiplicative unit of

M(2a) and so for u — 0, (3.1)(1) holds with P0 = 5(00). Haar measure p on 2a has

the property that

/* * W''x) = / X«('.x) - (i.y)) <*/*(*, y)

= Xo(í»x) / x«(*.y) <*/*(*. y)
•'s,

= íxa(í,x) = l     fora = 0,

[O fora>0.

With PM = p, the equality (3.1)(2) follows at once. Therefore P^ is Haar measure p

on2a.

(3.4) The Gleason parts of ^a. A theorem of Errett Bishop (see [2] or, for a detailed

exposition, [14, p. 165, Theorem 16.6]) makes it easy to determine the Gleason parts

of ^a. Namely, two points of SP, Ue in the same Gleason part if and only if their

representing measures are mutuaUy absolutely continuous. The representing measure

of it, x) in 2a is plainly the Dirac measure 5(t x). The representing measure of (u, t, x)

with 0 < u < oo is Pu * 5(, x). The representing measure of \pQ is Haar measure p.

Bishops's theorem shows that \p0 and the individual points of 2a are Gleason parts of

tya, each consisting of a single point.

The Gleason parts containing the points (u, t, x) of ^a with 0 < u < oo are more

interesting, and in fact are the sets on which we will carry out our detailed analysis.

The measure Pu * S(tx) is concentrated on the coset S + (t, x) of the subgroup S, and

every Lebesgue measurable subset A of S with positive Lebesgue measure has the

property that Pu * 8(tx^(A + (t,x)) is positive. Therefore two representing measures

Pu * 5(iiX) and Pv * 5{s'y) (0 < u < oo,0 < o < oo, (r,x) G 2a, (s,y) G 2a) are mutu-

ally absolutely continuous if and only if (r,x) and (s,y) are in the same coset of S.

That is, the nontrivial Gleason parts of ¥, are in one-to-one correspondence with the

elements of the quotient group 2„/S. It is easy to see that the cardinal number of

this group is r. Its group-theoretic structure is comphcated and does not concern us

here. The quotient group topology is the trivial topology with exactly two open sets,

and it too does not concern us. The point of interest to us is that the representing

measures Pu * 5(, x) Ue in a single Gleason part for fixed (t, x) and aU positive real

numbers u.

4. The Poisson integral for ß^,,).

(4.1) Remarks. In the hands of classical analysts, the Poisson integral is defined

ab ovo for all functions in ß ,(T) (indeed, for all measures in M(T)). This, for

example, is Zygmund's point of view [19, Chapter II, §§ 6-9 and infra]. We have

followed Arens and Singer [1] and so have defined the Poisson integral as an integral

over 2a only for functions in /t(Qa ), which is a very small subspace of ß ,(2a).

(4.2) Construction. To define the Poisson integral for all functions in ßt(2a), we

use a theorem of abstract harmonic analysis. Given a locally compact group G, every

measure p in M(G) can be convolved with every function/in ß,(C7) to produce a
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function p * fin %X(G). This function can be written in the form

(1) P •/(*) = fGfiy-xx)dp{y),

the integral in (1) being a Lebesgue integral for almost all x in G (with respect to

Haar measure on G). This is set forth in detail in Hewitt and Ross [8, Chapter

V, Theorem (20.9), p. 290]. Applied to the group 2a and the measure Pu (0 < u < oo),

(1) gives us

(2) Pu*fit,x)= f fHt,x)-is,y))dPuis,y)

for p-almost all (f, x) in 2a. Standard theorems from integration theory and

calculation in 2a lead from the integral (3.2)(2) to the equaUty

(3) Pu * fit,x) = If fit - v -[t - v + *],[* - v + i]u + x)-^—2dv.
m •'-oo m   + ir

A simple change of variable in (3) gives us

(4) />„*/(',*) = lffi<PÍv,x))—f--do.
77 •'-oo UZ+(t — V)

Suppose that the integral (4) exists as a Lebesgue integral for a certain choice of x

in Aa, u0 in ]0, oo[, and r0 in R. It is an elementary exercise to show that the integral

/_°^/(<p(t>, x))u>iv)dv exists as a Lebesgue integral for all bounded measurable

functions w on R for which w(u) = 0(tr2) (| v \r-> oo). In particular, we have the

following useful fact.

(4.3) Theorem. Suppose that the integral (4.2)(4) exists as a Lebesgue integral for

some x in Aa, some u0 in ]0, oo[, and some t0 in R. Then the integral (4.2)(4) exists for

this x and for all u in ]0, oo[ and all t in R.

(4.4) Remark. From (4.2) and (4.3), we see that for each/G ß,(2a), there is a

subset Ej of Aa such that X0(A¿\Ef) = 0 and such that the integral (4.2)(4) exists as

a Lebesgue integral for all u in ]0, oo[, all t in R, and all x in Ef.

(4.5) Remark. A simple calculation shows that

(1) Pu * /((p(i + k,x- ku)) = Pu * /(<p(r,x))

for all k E Z and all u, t, x for which (4.2)(4) exists.

(4.6) Definition and Remarks. For all x G Ef, the integral (4.2)(4) is defined as

the Poisson integral of f. It is defined for all u > 0 and all t G R and so may be

regarded as a complex-valued function defined in the upper half-plane V — {t + iu:

u > 0} in the complex plane C. We write this function on U as Puf(t,x) to

distinguish it from Pu * f(t,x), which is a function defined on 2a.

(4.7) Theorem. The Poisson integral Puf(t, x) is a harmonic function oft + iu in the

upper half-plane U.
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Proof. An elementary theorem on differentiating integrals that depend upon a

real parameter shows that

APu/(í,x)=^r/(<p(U,x))AÍ——U---)dv = 0.    D
77 •'-oo \u2+it-v)   I

(4.8) Theorem. For all a G Qa, the Fourier transform of Pu * fis given by

(1) (P„ */)*(<*) = exp(-2™ | a |)/(a).

Proof. We have

Pu(«) = f x7Ä*)dPuit,x)

— — I   expi-2-ïïiav)—--dv = exp(-27r | a | u).
It •'-oo M    + V2

Now use the fact that the Fourier transform carries convolutions into pointwise

products.    D

(4.9) Theorem. For every x E Ef, we have

(1) UmP„/(<p(r,x)) = /(,,(,, x))
KlO

for almost all t G R.

Proof. The function t; •—»/"(<p(t), x))/(l + v2) is in ß^R), as Theorem (4.3) shows.

The representation (4.2)(4) makes the vahdity of (1) a classical fact. See, for example,

Titchmarsh [16, Chapter I, Theorem 1.17, pp. 30-31].    D

5. The conjugate Poisson function on ^a.

(5.1) Preliminaries. The subgroups An of Aa, defined in (1.2), will now be regarded

as subgroups of 2a:

(1) A„ = {(0,x) G 2a: *„ = *,= .... = *„_,=()}.

The Haar measure Xn will be regarded as a (singular) probability measure in M(2a).

It is easy to see that the Fourier-Stieltjes transform Xn is the function l^X/An)Z on Qa-

The group 2a/A„ is topologically isomorphic with T. The mapping

(2) (?,x)^exp h-wij- lt+ IM,) \=Xi/A,U,x) = %it,x)

is a homomorphism of 2a onto T with kernel A„.

A function/in ß,(2a) is constant on cosets of A „ if and only if / = /* Xn. For

every such function, there is a function g in ß ,(T) such that/ = g° mn, and we have

(3) i fdp= f g°iTndfl= fgdX.
•'s. -'s, •'t

We shall have frequent recourse to the mapping (2) and the equalities (3).
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(5.2) The classical case. For functions / in ß X(T), the conjugate Poisson integral is

defined by
00

(1) -i   2   sffi kiWf(k)cxp(2mkO)
k=-cc

/■1/2.,      ,_   .,.       xv. 2rsin(2wi) ,
= /     fiexpi2triid - t)))--;     (       2dt

J-\/2 1 — 2rcos(2wi) + r

= /*Ôr(exp(2^0)),

where as usual we write

(2) ôr(exp(27Tii)) = 2rsin(27rr)/ (l - 2rcos(27ri) + r2).

Note that

(3) iQr • /)*(/) = -/sgn/^/(/)

for all / G Z. We also have

(4) IIÔrll,,T = ^og(Y^)-

Thus the conjugate Poisson integral for T is convolution with an absolutely continu-

ous measure for each r such that 0 < r < 1, although the norms of these measures go

to oo as r î 1.

There is a fundamental difference between T and 2a.

(5.3) Theorem. Let u be a positive real number. There is no measure, say au, in

M(2a), such that

(1) â„(a) =-/sgnaexp(-27rw| a |)

for all a G Qa.

Proof. Assume that there is a measure au with property (1). As noted in (5.1), we

have

(2) (ct„* X„)\a) = l(1//4n)Z(a)(-iSgna)exp(-27TM|a|)

for all n E N. Observe also that

(3) K.AJKHoJKoo.

We now regard T as 7r„(2a), as in (5.1)(2). For a continuous complex-valued

function/on T, we have

(4) / (/° "„X- (',*)) dou(t,x) = if o Wn) * a„(0,0)

= (/°O*À„*a„(0,0).

From (2) we see that X„ * au is absolutely continuous and in fact is the function

(5) -i   2   sgnfcexp\-2mu— \xk/An-
k=-oc \ »I



CONJUGATE FOURIER SERIES ON CERTAIN SOLENOIDS 827

Thus the last line of (4) is equal to

oo / Iikl \ /•
(6) -i   2   sgnA:exp ̂ ttm1-1  J  (/o^)(-(í,x))Xít/4í,x)í/p(í,x).

k = -oo \ n   /    S,

The integrals appearing in (6) are equal to integrals over T:

í (/owB)(-(í,x))Xfc/yl.(/,x)dM(í,x)
•'s.

= /     fiexpi-2wis))expi2iriks) ds = fik).
•'-1/2

The sum (6) is thus equal to

(7) -i   2   sgnfcexp\2ttu1-1 \f(k)

= [     ß«p(-2»«/^.)(ötp(2ir«))/(exp(-2w»))ds.
•'-1/2

From (5.2)(4) and the definition of the norm of a measure, we see that the

supremum of the absolute value of (7) over all continuous complex-valued functions

/onTwithll/H^lis

1.    / 1 + exp(-4iri0U

(8) ^l0g( 1 - expi-A*u/An)

By (4), we see that II au * Xn \\ is greater than or equal to the quantity (8). As n -> oo,

(8) goes to infinity, and this violates (3). Thus no measure o„ with the stipulated

property ( 1 ) exists.    D

The preceding theorem shows that no conjugate Poisson kernel in the form of a

family of measures on 2a can exist. Nonetheless, we can find a one-parameter family

of functions that yield a concrete reahzation of tUe conjugate function provided by

the abstract version of Marcel Riesz's Theorem E (1.4).

(5.4) Definitions and Remarks. Let/be a function in ßi(2a) and let £^be as in

(4.4). For x in Ef, t in R, and u > 0, let

/■OO

(1) KJit,x)=-      fWiv,x))
t-v        +

u2 + it-vf      l + v2
dv

/•OD

-      fi(piv,x))kiu,t,v)dv.
it J_,

The function k(u, t, v) is equal to

(2) ((/ - o)(l + to) + u2v)/ (u2 + it- ü)2)(1 + v2)

and so Kuf(t, x) exists and is a Lebesgue integral for all positive u, all real /, and all

x in Ef. We caU Kuf(t, x) the conjugate Poisson function for f. The term v/(l + v2) is

a correction term used to secure convergence. It is similar to the correction term used

in defining Hubert transforms for bounded functions on R: see for example Garnett

[4, p. 109]. It is easy to see that Kuf(t, x) is X X X X A0-measurable as a function of

u, t, and x.
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(5.5) Theorem. For each x G Ef, the function t + iu \-> Kuf(t, x) is harmonic in the

upper half-plane U.

See the proof of Theorem (4.7).

(5.6) Theorem. For every x G Ef, the function t + iu\-> Puf(t,x) + iKu(t,x) is

analytic in the upper half-plane U.

Proof. As in the proof of Theorem (4.7), one sees immediately that this function

satisfies the Cauchy-Riemann differential equations.    D

(5.7) Theorem. For all fin ß ,(2a) and all x G Ef, the limit

(1) limKufit,x) = Kfit,x)
ulO

exists and is a complex number for almost all (ER.

Proof. We use a device due to Littlewood, now standard in deaUng with

conjugate Fourier series and integrals. We may suppose that / is real and nonnega-

tive. The function Pufit, x) is nonnegative and the analytic function

$(i + iu) = exp(-(/>„/(/, x) + iKJit,x)))

is bounded in U. By Fatou's theorem,

(2) Um$(i + iu) = Tit)
ulO

exists and is a complex number for almost all t G R. Since (4.9)(1) holds, the

absolute value of Tit), which is exp(-/(<p(r, x))), is positive for almost all r G R. A

simple argument shows that Kufit,x) must have a real-valued Umit as «¿0 for

almost all real t.    D

(5.8) Remarks. We make Kf(t, x) into a function on 2a by restricting t to the

interval [- \, \[, and then we may consider the Fourier transform Kf(a) for a E Qa,

should it happen that Kf is in S,(2a). It is not the case that Kf is the conjugate

function to /. That is, we do not have

Kfia) = -i'sgn otfia).

This is so because of the presence of the correction term v/(l + v2) in the kernel

k(u, t, v) that appears in (5.4)(1). We will have to apply a corresponding correction

term to Kf to get the conjugate function of /. We postpone this to §6. We turn now

to some needed facts about Kuf and Kf.

Throughout (5.9)—(5.12), p denotes a fixed but arbitrary number in the interval

]1, oo [. We first prove a technical lemma.

(5.9) Lemma. For u>0 and t, v real, let

,,, , v      (f-u)(l + tv) + u2v
0 KÍU,Í,V)=±-     A '-,

(t-v)  +u2

and let

(2) N(u,v) C/2\Au,t,v)fdt
1/P



CONJUGATE FOURIER SERIES ON CERTAIN SOLENOIDS 829

The quantities

(3) Siu) = sup{Niu,v):\v\>3/2)

are finite and are bounded for all u such that 0 < u *£ \.

Proof. Straightforward estimates show that

,A. . ,,    t)2 + (5/2 + 2M2)|u|+l
(4) k(ii, r,t>)<-y—-'-^-

i2\v\/3 + u)2

for all u > 0,111 < {-, | v |> 3/2. For 0 < u < ¿, we have

|Í|o|+«l>f|i>|-«>f|t)|-¿|o|=i|i»| .

The right side of (4) is thus less than or equal to c + c'/\ v \ + c"/v2, which is

plainly bounded for all v such that \v\> 3/2. Integrating thepth power from - \ to \,

we find that ÍV(m, v) is bounded.    D

(5.10) Theorem. Regard Kufit, x) in (5.4)(1) as a function on 2a by restricting t to

the interval [- {, {[. The mapping /h» Kufis a bounded linear mapping o/S (2a) into

itself with the property that

(1) II^/II^CÍ/mOH/II,

for all f in ß (2a), where Cip, u) is bounded for all u such that 0 < u < \.

Proof. Let / denote the interval [-§»§] and / the set R\/. We write

(2) Kufit,x)=ffi<piv,x))kiu,t,v)dv+ffi<p{v,x))       '~V       dv
JJ Jt it - v)  + u2

+ ffi<piv,x))-?—2dv
JI 1  + V

= Auit,x) + Buit,x) + D{x).

We deal first with the function Au. Let us apply the generaUzed Minkowski

inequaUty (see, for example, [19, Chapter I, p. 19, (9.12)]). This inequaUty shows that

p i '//>

¿p(«,xU

Vp

MJI,.2.=     /    ffi<PÍv,x))kiu,t,v)dv

<jU\fi<piv,x))nkiu,t,v)Y>dtiit,x)l   ' dv

= fU\fi<PÍv,x))y\Au,<,v)\pdvit,xy\ Pj^-2
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Lemma (5.9) shows that the last Une of (3) does not exceed

(4)

We now write

s{u)l{i \fM^))rdx0ix)Y"jf^

(5) /j/j/M^x))r<Ao(x)} Pjf-2

= 2 r/2\f\fMv,x))rdx0ix)}]/P-^-2

=   2  f/2\(\fi<piv + k,x))}»dX0ix)Y/P-■£-—
\k\^2J-\/nJ*. J    i+ik + v)2

Since <piv + k, x) — <p(t>, x + ku) and since X0 is a translation-invariant measure on

Aa, we see that

f \f(<p(v + k,x))\*d\0(x)=f \f(<p(v,x))rd\0(x).
J\ •'A

(6)
•'A. •'A

Hence the last Une of (5) is less than or equal to

(7) 2   -"-:
w>2 1 + (|*|-1/2)'

It is trivial that

f^\fi<piv,x))?dX0ixy\l/P dv.

r V/p r
j |/(«p(i;,x))^X0(x)       ^ 1 +/ |/(<p(ü,x))r¿X0(x)

for all v in [- \, \\. Hence (7) is less than or equal to

(8) 1+/     / \fi<piv,x))\?dX0ix)dv   = c[l + ||/||>].

Combining the estimates (7) through (3), we find that

(9) \\AL 2S(«)c||/|L,u " p \" / " " J   'i p->

as Au is Unear in/.

We next take up Bj(t, x). For this function, we have

(10) \BJ>=(   f/2fi<piv,x))
t - V

it-v)2 + u2

-dv dnit,x).

Write fx for the function v i->/(<p(u,x)) for v G / and v h» 0 for v G /. The inner

integral in (10) is equal to

OO /oo t - V

it-vY + u
2dv = ir(fx)(t + iu),
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where the symbol " " denotes the classical conjugate Poisson integral, defined in U.

For x G Ef, (4.3) shows that the function

v^\fxiv)f/il+v2)

is in ß,(R), and so/x is in ß^R). Let P„ denote the classical Poisson kernel on R. For

an arbitrary function g in ß^R), we have

#(r + iu) = (P. * g)~it),

and so by M. Riesz's theorem, we get

/OO _ /.OO\ifx)it + iu)Ydt=    \iPu*ifA)it)Ydt
-00 -00

«i^'HP * f \\P0<AP\\ f P„p "   u     Jx" p,R       ■rlp " Jx " p,Rm

Taking (12) back into (10), we find that

-1/2

/-1/2

(•oo

(13) wP = «p¡ I \ifjit + iu)rdtdx0ix)
•'A/-1/2

<W /    \ifx)it + iu)\"dtdX0ix)
'A,•'-oo

<«>A'J ii/xii;>Ri/x0(x).

The function db/x(i))oiiR vanishes outside of the interval [- \, §], and as in (6) we

see that

(14)    ( n/xii;,Ráx0(*) = 3/ /1/2|/(«p(^x))r^í/x0(x) = 3ii/n;,2a.
•1/2

'A. •'A.-'-l/2

Combining (14) and (13), we find that

(is) iiä.ii;<c||/h;.

Finally we estimate the p-norm of the function D. Noting that D depends only

upon x, we find that

dv dX0ix)(16) \\DVp=(\(/ fWiv,x))-^-
JàJJ-3/2 1 + V

p

<2->[   fV2\fi?iv,x))\dv   dX0ix)
•'A, •'-3/2

= 2''{  3[V2\fi<piv,x))\dv dX0ix)

f f/2\f{<piv,x))\o dvdX0ix) = (I)''»/I
3\"f   r\/2

Take (16), (15), and (9) back to (2) to see that (1) holds, since S(u) is bounded for u

such that 0 < u<\.    D

A result somewhat like (5.10) holds for functions in ßlog+ ß(2a).
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(5.11) Theorem. Let f be a function in ß log+ ß(2a). Then the function Kuf is in

ß,(2a) and we have

(1) WKJ\\X <c + cf l/l log+ (l/l) ¿p.
•'s.

The constants c depend upon u and are bounded for all u such that 0 < u < 5.

Proof. Examine the constant Cip, u) in (5.10)(1), taking note of (5.10)(12) and

the estimate for Ap given in Theorem B of (1.3). We see that

(2) C(p,U) = 0(l/(p-l))

for 1 <p < 2, the estimate (2) being uniform in u for 0 < u < \. We now cite a

theorem of Yano [17], which appears in Zygmund [20, Chapter XII, (4.41), pp.

119-120]. This theorem shows that (2) and (5.10) imply (1).    D

(5.12) Theorem. Let f be in ß/,(2a). The function Kf(t, x) defined in (5.7)(1) is also

in S (2a) and we have

(1) \\Kf\\p<cAp\\f\\p.

Proof. Use the definition (5.7)(1), the inequahties (5.10)(1), and Fatou's lemma.

D

(5.13) Theorem. Let f be in ßlog+ß(2a). The function Kfit,x) of (5.7)(1) is in

ß,(2a) and we have

(1) 11^/11, <c + c/ l/l log+(l/l) ¿p.
•'s.

Proof. Apply (5.11)(1) and Fatou's lemma.    D

6. The correction term.

(6.1) Explanation. We want to find a function x h> Ç(x) on Aa that can be

subtracted from Kuit, x) to give a function whose Fourier transform behaves like the

classical conjugate Poisson integral. That is, definingf(t,x) = Kuf(t,x) — Cf(x), we

want to have the result that

(1) (/„)"(«) = -iSgnaexp(-27TM|a|)/(a)

for all a E Qa and /in a reasonably large class of functions on 2a.

(6.2) Some computations. Let/be a function in S](2a) and let « be a nonnegative

integer. The function/* Xn can be written as g ° irn for a function g in ß,(T). As in

the proof of (5.3), we write

(1)    /*M<P(^*)) = g(*n(v(»>x))) = g exp 27T/—   t)+ 2 x,A,
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For positive integers N, we have

1  fNA„,
(2)    UNA"{f,Xn)i<piv,x))-^-2dv

T J-NA„ 1  + V1

iOhKhï^l tt^
— I    g\ exp 2ir/-j- \v+ 2, XVAV \   \\   2   - i*-

The series appearing in { • • • } in the last Une of (2) converges, as TV -> oo, to a

function ¥(v), the convergence being uniform in the interval [0, An\ Accordingly

we have

(3) Urn j-r"if*Xn)i<PÍv,x))-^-2dv
N^ao f J-NA„ 1 + V

= l/;"g(exP(2^(ü + "2^)))^(U)^.

To compute the function ^(u), we recall the familiar equality

/•oo o + A:^4n
(4) 1    sgn xexp(-| x |)exp(-z'(ü + fc4„).x) dx = -2/-j.

•'-oo 1 + (t> + kAn)

Defining

/i(x) = sgn xexp( — | x |/^!„)exp(-/ra://l„),

we write the integral in (4) as

/•OO

(5) — 1    hix)expi-ikx)dx.
An J-aa

Poisson's summation formula (see,  for example, Zygmund [19,  Chapter II,  p.

68, (13.4)]) shows that

00 il + kA

(6) ¥(„)=    2
k=-œ 1 + (o + kA„)2

■ni

A~
i \ k=-oo

The second Une of (6) is equal to

k

V ,       i-2«\kW      Í -2«ikv \2   sgn*exp|-i-JexP(-i-J

(7)   í J.Mtt)) Sin(^) =fnQ-^Ah^iT\
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Working back from (7) to (3), we find that

1   fNA„

-NA
(8)     Urn ;f7a„(c(e,x))-^<to

N^oo  T J-NA„ 1  + V

= ~Â~fA"s\eXP\2lriÂ~ \V+    ̂   X>A>)        Öexp(-2V^„)(eXP2'7'^) dV-

The second integral in (8) is equal to

(9)      -J^f^ rXP I2*" \lv + A~   2  X'A>\        Ôexp(-2V^„)(eXP(/M;)) dw

-Oexp(-2^„)*§|eXP|2,7¿|7~   2   XvAy

Note that the convolution in (9) is on the group T.

(6.3) Definition and Remarks. For/in ß,(2a) and n in Z+ , we define Cf, x as

the function on Aa such that

(1) Cf. x(x) = ßexp(_2„//U * g exp 277/—    2 x,At

='Hí),apK¿u),
The function g is defined in (6.2). For typographical convenience, we write

<2r * /(exp(27n'0)) as/(r, exp(27T/ö)): see (5.2)(1). Observe that Cf,x is constant on

cosets of An in Aa and so is a continuous function on Aa assuming only a finite

number of values. Note too that the mapping /h» Cf, x is Unear in/. Our correction

term C¡ will be defined using the functions Cf, x . We first estimate some üp(Aa)

norms.

(6.4) Lemma. Let p be a real number greater than 1 and let g be a function in ß„(T).

Let g(r, exp(2iri0)) be as defined in (6.3) and let g(l, exp(2w/Ö)) be

limrtl g(r, exp(2iri0)), the existence of which is guaranteed by Theorem A o/(1.3). Let

Pr(exp(2tri6)) be the classical Poisson kernel on T:

(1) Pr(exp(2m0)) = (1 - r2)/ (l - 2rcos(2:70) + r2).

We have

;./V,
'-1/2

(2)       |g(r,exp(2iri0)) f « /"1/2|g(l,expert)) xfPr(expi2m{0 - t))) dt.
J-i n

Proof. The function g(r,exp(2w/ô)) is harmonic in the open unit disc D and so

the function | g(r, exp(2î7<0)) f is subharmonic: see, for example, Helms [5, p.

63, Example 7]. A well-known inequaüty for subharmomc functions on D states that

(3)      ||(r,exp(2iri*)) p < f '/2| g(fl,exp(2»ir)) |Tr/fl(exp(2,ri(0 - t))) dt
J-\/2
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for all r such that 0 < r < a, a being a fixed real number such that 0 < a < 1. See,

for example, Garnett [4, p. 37, Theorem 6.5]. As a î 1, Pr/a(exp(2wií)) converges to

Pr(exp(2irit)), uniformly in t. We also have

(4) Um /■1/2|g(a,exp(277/7)) - g(l, expert)) f dt = 0.
aU •'-1/2

To see this, note that the maximal function sup0<a<1 | g(a,exp(27n'r)) | is in Qp(T)

and apply dominated convergence. From (4), elementary estimates show that the

Umit as a î 1 of the right side of (3) exists and is equal to the right side of (2).    D

(6.5) Theorem. Let p be a real number greater than 1 and let f be a function in

ß (2a). There is a positive constant c such that

(O WCf,K\\p,A^cAp\\f\\p^

for all positive integers n, where Ap is the constant in M. Riesz's Theorem B in (1.3).

Proof. Observe first that as the sequences (x0, xx,...,xn_x) run through all

values with x, E {0, l,...,a} — 1}, the integers 1"ZqXvAv run through the integers

0,1,... ,An — 1, each value being assumed exactly once. Using (6.3)(1) and (6.4)(2),

we thus have

(2) /jC,4x)MX0(x) = i-;?o f(^).«p(2.£))

<¿   2   /^IlíUex^^^rexp^/^í^pl2^^-'))^

= /,i/22|g(l,exp(2w,0)r \j-n  2'P^.2v/A^txp^2wij-- Mdt

= [l/2\gil,expi2vit))fQin,t)dt;
J-\/2

we have written the function appearing in { • • • } in the next to the last line of (2) as

®(n,t).

We now estimate the nonnegative function £l(n, t). For rexp(2irid) = z, we have

i -i- °°
(3) Pr(exp(27r/0)) = Rey^1 = 1 + 2 Re ^ zk,

1     z *=i

and so we see that

oo      -.    A„-\

2
k=\ "■"   A = 0

(4)      ß(n,0 = l + 2Re S ¿   2   exp(^*-)exp 2»tt(£ -

,  , , S        l-2«k\     ,.   . J 1  V       /.   M\
— I + 2 ¿i  exp  ——  cos(27rfcrH —   2i   exp 2h7—I

k=\ \     An     1 \An   A = 0 \ Anl
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The sum { • • • } in (4) is zero if k/An is not an integer and is 1 if k/An is an integer.

Thus we find that

(5) Q(n,t) = 1 + 2 § exp(-2ir/)cos(2»rM,0 < * + ^"^j ■
/=i 1 — exp(—2ît)

Applying (5) to (2) and using M. Riesz's Theorem B in (1.3), we obtain

(6) HÇ. x. H;,A. < cf/2\ g(l,expi>/ï)) \*dt< cAp\\g\\ppJ

= cAp\\f*Xn\\pp^<cApp\\f\\p^.

The estimate (6) obviously gives (1).    D

We have no analogue of Theorem (6.5) for p = 1. However, the following weaker

estimate holds.

(6.6) Theorem. For each positive integer n, there is a positive number A(n) such that

the inequality

(i) IIC/.aJI,.a.<^(")H/II,,s„

holds for all f in 2,(2.).

Proof. Let

Ain) = max{| ßexp(.2ir^„)(exp(2ffir)) | : -*< t <{}.

Use (6.3)(1) to write

IC/.x H i.A. ̂ v»)/"     lí(«p(2»r»0)
1    "      * •'-i /•>

<fl
-1/2

= ¿(n)/ |/* X„(f,x) | rfj.i(r,x) «^(fi)!!/!!,.^.   □
•'s.

We now show that the sequence of functions (Cf, x„)^= i is a X0-martingale on Aa.

(6.7) Definition and Remarks. For n E Z+ , let S„ be the family of all cosets of

A„ in Aa. Let % be the (finite!) a-algebra of subsets of Aa generated by &n. Plainly ®fn

consists of 2A" sets, and is also the smallest a-algebra of subsets of Aa with respect to

which the character X\/aÀs measurable.

(6.8) Theorem. Let fbe a function in ßi(2a). The sequence of functions (Cf,xJ£=x

is a X^-martingale on Aa with respect to the increasing sequence of a-algebras ic3n)n0=x.

Proof. It will suffice to prove that

(0 I Xk/A^Cf *K->dXo = I Xk/A^CfK dXo

for« = 2, 3,4,... andk — 0, \,2,...,An_x — 1.

Suppose first that/is a character xp/a„ oi ^a. We taKe UP first trie case m ** 1-

We may suppose that p/Am does not have the form q/Am_x for any integer q. For

every positive integer r, we have

'Xp/Am    iorr>m,

(2) Xp/Am * Xr =    ,
1 0 f or r < m.
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To see this, compute the Fourier-Stieltjes transform of the left side of (2). For

m> n + 1, (2) yields

Xp/Am * A„ = Xp/Am * A„-l  = °.

so that both sides of (1) vanish. For m<n — 1, (2) yields

Xp/Am * An-1 = Xp/A„ * A« = Xp/Am>

and so the integrands on the two sides of (1) are identical. For m — n, we have

Xp/Am*K-\  =0>

and the left side of (1) vanishes. The right side of (1) is

(3) l^k/A.-fx,„n*KdX*-

By (6.3)(1), the function Cx a „ x^ computed at x in Aa has the value

(4) fX/2 exp \2mi-2- \-t + -j- 2 xvAf     ÔexP(-2v^)(exP(27r'i)) dt
J-\/2 \ An\ An v=o II

= cXp/Aix).

Hence (3) is equal to

(5) c/x,Ä»X,ÄM,A„(x) = 0,

since characters are orthonormal under normalized Haar measure and the character

Xp/A  cannot be the character Xk //<„_,- Therefore (1) holds if /has the form xp/Am

with m> I. For characters xp of 2a with integral p, we have xp * Xr = xp Ior all

r G N, and so (1) holds trivially for/ = xp and all n = 2,3.

By Unearity, (1) holds for all functions / in ß^J that are trigonometric

polynomials. Let /be an arbitrary function in ß,(2a) and let (p¡)%x be a sequence

of trigonometric polynomials on 2a such that lim^^H/ — p,\\x 2> = 0. Theorem

(6.6) shows that

^ll^.x.-Ç.xJu^O.

Since (1) holds for all of the functionsp¡, it thus also holds for/.    □

(6.9) Theorem. Let p be a number greater than 1 and let f be a function in ß (2a).

The sequence of functions Cf,x on Aa converges X0-almost everywhere on A a to a

function Cfin üp(Aa)for which the relations

(1) üm IIÇ.a„-Çll„ = 0
n—» oo

and

(2) IIÇII,.A.<^||/||,iï<

obtain. Again, Ap is the constant in M. Riesz's Theorem B in (1.3).

Proof. We use a classical theorem of martingale theory (Doob [3, Chapter

VII, §4, p. 319, Theorem (4.1)]). Theorems (6.8) and (6.5) show that the hypotheses of
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part (i) of the cited theorem hold, and so the limit function Cf exists for X0-almost all

points in Aa. Part (in) of the cited theorem shows that (1) holds, and (2) is immediate

from (1) and the estimate (6.5)(1).    D

(6.10) Theorem. Let f be a function in ßlog+ß(2a). The martingale (C/.Xii)~=1

converges X0-almost everywhere in Aa to a function Cfin ß,(Aa),/or which we have

(1) WCf\\lAm<c + cf |/|log+(|/|)¿p.

Proof. For p near 1, we have A   < c/(p — 1). Now use (6.5)(1) and Yano's

theorem (Zygmund [20, Chapter XII, §4, p. 119, Theorem (4.41)]) to see that

(2) / |C/.,JdX<c + c/j/*XJlog+(|/*X„|)i/p.
^a -"a

A simple argument, which we omit, shows that

(3) c + cf |/* X„ | log+ (|/* X„ |) diKc + cf |/|log+(|/|)¿p.
•'s. -'s.

From (2) and (3), we see that the ß ,(Aa) norms of the functions Cf, x axe bounded.

Part (i) of the martingale theorem cited in the proof of Theorem (6.9) apphes, giving

both the existence of Cf and the inequahty (1).    D

(6.11) Definition and Remark. For/in ßlog+ ß(2a), let Df be the subset of Aa

where lim„^coCf.x exists and is a complex number. Note that X0(Aa\Z)y) = 0.

7. Construction of the conjugate function.

(7.1) Definition and comments. Let / be a function in ßlog+ß(2a). For

0 < u < oo, we define fu as the function on 2a whose value at (r, x) is

(1) fuit,x) = KJit,x) + Cfix),

and we define / by

(2) fit,x) = Kfit,x) + Cfix).

We describe the sets where fu and/are defined. Consider x in Ef n Df, Ef being as in

(4.4) and Df as in (6.11). For each such x, Kuf(t,x) exists for aU t in R and, in

particular, for all t in [-.£,\[. Thus/, is a p-measurable function defined p-almost

everywhere on 2a. By (5.7), Kf(t,x) is defined for X-almost all t in R and so for

X-almost all t in [- \, \[. Thus the functions fu(t, x) and f(t, x) exist for p-almost all

(/, x) in 2a. We call /the conjugate function off.

(7.2) Theorem. The mappings f W fu andfv+fare linear mappings o/ß;,(2a) into

ß/,(2a) (1 <p < oo) and of ülog+ ß(2a) into ß,(2a) with the following properties:

(i) ii/.n,<*M/ii,,
(2) 11/11, <c4,||/||,,

(3) II/Jli <c + c/ |/|log+(|/|)Jp,
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(4) II / II, <c + c/ l/l log+(|/|) ¿p.

The constants c in (1) and (3) depend upon u and are bounded for 0 < u < \.

Proof. Linearity is obvious. For the inequaUties (l)-(4), see (5.10)—(5.13), (6.9),

and (6.11).    D

We will now compute the Fourier transforms of fu and /.

(7.3) Theorem. Let a be any element o/Qa and let u be a positive real number. Then

we have

(1) (xa)J = -isgnaexp(-2ir|a|i0xo.

Proof. Write a as l/An, where « is a nonnegative integer and / is an integer. Since

Xa * Xm = x0 for all m> n, the function CXa is CXa, x. Using (7.1)(1), (5.4)(1), and

(6.2), we have

(2) ixa)'uit,x) = KuXait,x) + CXa,xix)

1   /-oo/•OU

--]   X«(v(e.x)) + dv
u2 + it-v)2      l+v2

~ »Um ni   nXai<piv,x))-r^dv
/V-oo  * J-NA„ 1  + V2

= lim -/    "xa(<piv,x))—-   V       dv.

It is easy to see that the last line of (2) is equal to the right side of (1).    G

(7.4) Theorem. Let f be a function in ß log+ ß(2a). For all ß E Qa, we have

(1) (/)"(/?) = -/sgn/?exp(-2,r|/?|M)/(/î)

and

(2) if)\ß) = -isgnßfiß).

Proof. Both (1) and (2) hold if / is a trigonometric polynomial on 2a: use

linearity and Theorem (7.3). For / in ßp(2a) for some p > 1, the density of

trigonometric polynomials in ß/,(2a) proved (1) and (2). For/in ßlog+ ß(2a), one

can use the proof of Yano's theorem that we cited in the proof of Theorem (6.10).

From this proof it is easy to see that the validity of (1) and (2) for trigonometric

polynomials implies its vaUdity for all functions in ß log+ ß(2a).    D

(7.5) Remark. The abstract conjugate function defined for / in Qp(2a) by

Theorem E of (1.4) is actually the function constructed in (7.1), since the two

functions have the same Fourier transform.
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