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ARE PRIMITIVE WORDS UNIVERSAL

FOR INFINITE SYMMETRIC GROUPS?1

BY

D. M. SILBERGER

Abstract. Let W= W(xx,...,Xj)bc any word in thej free generators xx,...,Xj,

and suppose that W cannot be expressed in the form W = Vk for V a word and for

k an integer with \k\¥" 1. We ask whether the equation f=W has a solution

(xx>... ,Xj) = (a,,... ,Oj) €E GJ whenever G is an infinite symmetric group and/is

an element in G. We establish an affirmative answer in the case that W(x, y) = xmy"

for m and n nonzero integers.

1. Introduction. F denotes the free group generated by the/ distinct free generators

xx,...,Xj\ and Wdenotes an arbitrary element in F.

For g G G where G is a group, we say that the /-tuple (a,,...,a-) G GJ is a

solution in G for the equation g = W iff h(W) = g where h: F-> G is the

homomorphism generated by the function x, i-» a„... ,x-1-> a-. When g = W has

such a solution (a,,...,a-) then we write g = W(au...,aX and we say that the

equation g = IP is solvable in G.

We say that W is universal for G iff g = H7 is solvable in G for every g G G. For a

family 5 of groups we say that W is S-universal iff W is universal for every G G S.

For X a set, S^ denotes the symmetric group on X, and Ax denotes the alternating

subgroup of Sx when X is finite. ISym denotes the family of all infinite symmetric

groups.

Recent papers [6,7,12,13,14] are addressed to the task of characterizing, for

various families S of groups, the set of S-universal words. The question serving as

the title of the present paper suggests a special role in such studies for the family

ISym. We now clarify this titular question.

W is said to be group-equivalent to a word U iff there exists a finite sequence

W — V0, Vx,...,Vt= Uof words such that for each nonnegative integer i < t one of

the following three conditions is satisfied: Either V¡ = ABB~XC while Vi+X — AC for

some words A, B, and C; or Vi+X — AB~XBC while V¡ = AC for some words A, B,

and C; or Vi+X = A'XV¡A for some word A.

X(W) denotes the sum of the absolute values of the exponents of the letters in W.

Concording with [12, §2] we say that W is cyclically reduced iff X(W) < X(U) for

every U which is group-equivalent to W.
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For cyclically reduced words W and U it is an exercise to prove that W is

group-equivalent to U if and only if there exist words A and B such that W = AB

while U= BA.

W is said to be a power iff the equality W — V" is satisfied for some word V and

for some integer n with \n\¥" I. We call a word U primitive iff no power is

group-equivalent to U. Precisely formulated our titular question now becomes:

Is every primitive word ISym-universal?

Henceforth x = xx and y = x2. In [6], Proposition 2(i) asserts that the word x2y2

is ISym-universal. Our main contribution is the following generalization.

Theorem 1. For m and n nonzero integers the word xmy" is ISym-universal.

In §2 we formalize truisms which facilitate our proof in §3 of Theorem 1. In §4 we

close with a brief survey. But first we delineate for our titular question its boundaries

of interest.

Henceforth Z denotes the set of all integers, and s denotes the cyclic permutation

i i-» / + 1 of Z. By degwiXj) we mean the sum of the exponents of the letter x¡ in the

word W. By %ci(W) we mean the greatest common factor of the integers

àvgwixx),...,àegwiXj).

The thrust of Propositions 2 and 3 below is that it suffices to study cyclically

reduced, primitive words W for which gci(W) i= 1. We omit the easy proofs of

Proposition 2. Let n be an integer with \ n \ =£ 1.

(1) The equation s — W" is not solvable in Sz, and therefore the word W is not

ISym-universal.

(2) If gci(W) = 1, then W is universal for every group.

Proposition 3. Let G be a group, let g G G, and let U and W be words with U

group-equivalent to W. Then the equation g = W is solvable in G if and only if the

equation g = U is solvable in G.

Proof. It obviously suffices to show that if g = W is solvable in G then

g= V~XWV is solvable in G for the arbitrary word V. So, let (a,,...,a-) be a

solution in G for the equation g = W. For each positive integer / </ let b¡ denote the

element V(ax,.. .,0^0^(0^... ,a¡)~x in G. Note that the equality

Pibx,...,bj) = Viax,...,aJ)Piax,...,aJ)Viax,...,aj)'1

is satisfied for every word P. Thus an easy calculation establishes the equality

Vibx,...,bJ)']Wibx,...,bJ)vibx,...,bJ) = Wiax,...,aj).

Therefore (¿>,,... ,6-) is a solution in G for the equation g = V~XWV.    D

Proposition 2(2) suggests that there is no dearth of ISym-universal words. On the

other hand, Propositions 2(1) and 3 imply that if W is ISym-universal then W is

primitive. Propositions 2(1) and 3 together with Theorem 1 establish that the word

xkymx" is ISym-universal if and only if either k + n ^ 0 or \m\= 1. Thus our

titular question has an affirmative answer for all words whose 'complexities' are less

than four.

Is the word xmynxpyq ISym-universal when it is primitive?
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2. Preliminaries. Henceforth X is an arbitrary set; w denotes the set of nonnegative

integers; forO^nGu the symbol n denotes also the n-membered set {0,..., n — 1},

while 0 denotes also the empty set 0. And W is an arbitrary element in the free

semigroup F.

Let H E Sx. Then H is said to be pairwise disjoint in the sense of permutations,

abbreviated pdsp, iff whenever / and g are distinct elements in H then fit) i= t

implies git) = t for every t E X. It is easy to see that if H is pdsp, and if /and g are

elements in H, then/g = gf.

We call / a cycle in X iff / is a permutation of X for which there exists t E X such

that/(/) ^ / but/(t>) = v for every v E X\{f'(t): i E Z). By the length of a cycle/

we mean the cardinal number of the set [fit): i E Z) when/(f) ^ t. When/is a

cycle of infinite length then we say that / is an «-cycle. When / is a cycle of length k

with 1 < k G to, then we say that / is a fc-cycle. When / is an «-cycle then we may

write / in the form / = ( ■ ■ A~\t)tf(t)f2(t) ■■■), given that f(t) ¥= t. When / is a

A>cycle f or k E « then we may write/in the familiar form/= (tf(t) ■ ■ -fk~\t)\

given that/(i) =£ t.

For each / G Sx there is a unique pdsp set Cx( f) of cycles in X such that, for

every tEX with t ¥= f(t), there is exactly one element g G Cx(f) such that

fit) — git); but, for every t E X with / = fit), it happens that t = h(t) for every

h G Cx( f ). The elements in Cx( f ) are called cyclic components of /. For / and g

permutations of Xit is evident that/ = g if and only if Cx(f) = Cx(g).

For/ G Sx the expression X£f denotes the support {t: f(t) =£ t G X) in X oí f.

A permutation / of X is called cyclic iff both Cx(f) = {/} and X£f = X. It is

obvious that the symmetric group Sx contains a cyclic permutation if and only if X

is a countable set containing more than one distinct element.

Lemma 4. Let P be a partition of X. For every YEP letfY be an element in SY such

that the equation fY = W has a solution (aXY,...,ajY) in SY. Let f = U {fY: Y G P},

and for each positive integer i <j let a¡ = U {aiY: Y E P). Then of course f G Sx,

and fY = ft Y for every YEP. Furthermore, (a„... ,a •) is a solution in Sx for the

equation /= W.

Proof. It is obvious that {/, ax,...,a/\ C Sx. Let (p, q) Ef. Then there is a

unique YEP such that p G Y. It follows that (p, q) EfY— W(aXY,. ..,ajY) Ç

W(ax,...,üj), and hence that/Ç W(ax,...,aj). But both / and W(aj,...,aj) are

permutations of X. The lemma follows.    D

Lemma 5. Let X be infinite. Let Y be a set with 0 <| Y\<\ X\ . Then there is a

partition P of X such that \A\ = \ Y\for every A E P.

Proof. Since | X \ = | X X Y\ there is a bijection ß: X -» X X Y. For each z EX

let Az denote the set {t: ß(t) E {z} X Y). Let P = {Az: z Ex}.    D

Corollary 6. W is universal for Sz if and only if W is ISym-universal.

Proof. Let Xbe infinite, let/ G Sx, and let Wbe universal for Sz. If | X£f\<\ Z\

then there exists Y such that X£f EY EX while | Y \ = | Z | . Hence ft Y E SY, and

ft Y = W(aXY,.. .,ajY) for some (aXY,... ,ajY) E SY. For each positive integer i <j
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let a, = atYU {(t,t): t G X\Y}. Then (ax,...,üj) G Sx and /= W(ax,...,aj).

Therefore we may suppose that | Z|<| X£f\ . It follows that | Z\<\ Cx(f) \ , since

| X£h | < | Z | for every h G Cx( f ). Thus by Lemma 5 there exists a partition P of

Cx(f) such that | A \ = \ Z | for every A E P.

For each A G P let/, be the unique permutation of X for which Cx(fA) = ^4, and

let gA denote fA t X£fA. Evidently | X£fA | = | Z | , and gA is a permutation of the set

X£fA. Therefore, there exist permutations bXA,...,bjA of X£fA such that gA =

W(bXA,.. .,bjA). Let T = X\X£f, and let ¿>,y be the identity function on Y for every

positive integer /' </; note that ftY= WibXY,...,bjY). Since the family {Y} U

{X£fA: A E P) is a partition of the set .V, the present corollary follows by Lemma 4.

□

Lemma 7. Le? G be a group. Then the following two assertions are equivalent:

(1) The word xpyq is universal for G whenever p and q are positive integers.

(2) The word xmy" is universal for G whenever m and n are nonzero integers.

Proof. Suppose the assertion of Lemma 7(1) to be true, and let f EG. If for

positive integers p and q there exist elements a and b in G such that / = apbq, then

we also have that f= (a^yb" = (a-xyp(b-xy = ap(b-xy. Lemma 7(2) follows.

a

3. A proof of Theorem 1. Until the end of the present section the symbols m and n

denote arbitrary positive integers, and / denotes an arbitrary permutation of Z.

Lemma 8. Let p and k — 1 be positive integers. For each i E p let g, be a k-cycle in

X so that (g,: i E p} is a p-membered set which is pdsp. Then there exists a pk-cycle g

in Xsuch that Cx(gp) = (g,: î Ep}.

Proof. For each i Ep we write g, = (u'0u\ ■ ■ ■ u'k^x). Let g be the pA>cycle

(u°0ux0 ■ ■ ■ up-xu°u\ ■ ■ ■ u{-' • • • 4-A-i ■ ■ ■ upIx) in X.    D

The construction employed in the foregoing proof we call " the interdigitation, of

thep-block g0gx ■ ■ • gp_x of fc-cycles, which yields thepfc-cycle g". Of course, in the

familiar notation, gp = g0gx ■■ ■ gp_x.

Corollary 9. Let p and k — 1 be positive integers, and let K be the set of all

k-cycles in X. Let I be a set which is either infinite or whose cardinal number is a

multiple of p. Let the function I -» K defined by i \-> g, be injective and such that {g,:

i E 1} is pdsp. Then there is a permutation g of X such that every element in Cx(g) is

a pk-cycle, and such that Cx(gp) = (g,: / G /}.

Proof. There is a partition L of the set (g,: / G /} into p-membered sets. For each

H G L, we order the elements of H into ap-block, and interdigitate them in order to

obtain a pfc-cycle GH for which Cx(Gf,) = H. Let g be the permutation of X for

which Cx(g) = U {CX(GH): H E L), and note that Cx(gp) = {g,: i G /}.    D

In reference to Corollary 9, the cardinal number | /1 is less than the cardinal

number of the set of all g which satisfy the corollary.

It is perfectly natural to interdigitate p-blocks of «-cycles. The result is always one

or more «-cycles. For instance, by interdigitating the 3-block h0hxh2, where h¡ is the
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«-cycle (••■/ — 6 i — 3i i + 3 i + 6 ■ ■ ■), we obtain s. Clearly s3 = h0hxh2. We

omit the analogous formalities.

Lemma 10. Let 1 < k G «, and let f be a k-cycle in Z. Then the equation /= xmy"

is solvable in Sz.

Proof. Since the set {t: f(t) — t) is infinite, there exists an infinite injective

sequence g0, g„... of fc-cycles in Z such that (/} U {g,: i E «} is pdsp. Arrange the

elements in (g,: ¿ G «} into «-blocks, and interdigitate them in order to obtain the

fcw-cyclic components of a permutation b'x such that Cz(b'n) = (g,: /' G «}. Arrange

the elements in (/} U {g,: i G «) into m-blocks, and interdigitate them in order to

obtain the /cm-cyclic components of a permutation a such that Cz(am) = {/) U (g,:

i G «}. Then/Zr" = a"1, whence f=amb".    D

Corollary 11. Let {t: f(t) = f} be infinite. Then the equation f = xmy" is solvable

in Sz.

Proof. For each countable cardinal number k > 1 let Dk be the set of all /¿-cyclic

components of /. If g G Du then by [7, Theorem 4.3] there exists {ag, bg] E Sz£g

such that/r Z£g = gtZ£g = a™bng.

Partition {i: f(t) = t) into a family {Pk: 1 < k G «} of infinite sets. For each

finite k > 1 let £A be the set Pk U ZZ\, where ZDk = U {Z£g: g G £>fc}. Let ¿4 be

the permutation such that Cz(dk) = Z^. Now, since Pt is infinite, there exists an

injective infinite sequence dk, dxk,... of /¿-cycles in Ek such that {dktEk} U {d'k:

i G «} is pdsp. Arrange the d'k into n-blocks, and interdigitate in order to obtain the

nk-cychc components of a permutation b'k of Ek such that CL(b~kn) = {d'k: i G «},

where L = Ek. Similarly, arrange the elements of CL(dk\Ek) U {d'k: i G «} into

m-blocks, in order to obtain the components, each of which is an mk-cycle, of a

permutation ak of £¿ such that CL(ak) = CL(dktL) U {¿¿: i G «}. Note that

a? = (dklEk)bl", and hence that/1^ = í/¿ tEk = a^bnk.

Since {£,(.: 1 <&G«) U {Z£g: g G Du} is a partition of Z, the present corollary

now follows by Lemma 4.    D

Lemma 12. Let g be an u-cycle in X. Let p0, px,... and q0, qx,... be two infinite

sequences of integers greater than 1. Then there exist infinite injective sequences u0,

«,,... and v0,vx,... satisfying the following six conditions:

(l)u¡ is ap¡-cycle in Xfor every i E «.

(2) t>, is a q¡-cycle in Xfor every i G «.

(3) {u¡: i G «} is pdsp.

(4) {v¡: i G «} is pdsp.

(5) X£u¡ U X£v¡ C X£gfor every i E «.

(6) g—uv where Cx(u) = {u¡: i G «} and where Cx(v) = {v¡: i E «}.

Proof. Our argument generalizes the trick suggested by the diagram in [6]. For

each z G « we define Qz = 2-=0V, and Pz = 2f=0'p,.
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Since g is an «-cycle in X, we have that X is infinite. Without loss of generality we

may suppose that Z EX, that X£g = Z, and that gtZ = s.

For each i E « let /, = Qt + P¡ — 3i, let t>, be the ^,-cycle (f, f, + 1 • • • r, + q¡ —

31¡ + q¡ — 2 — i — 1) in X; let y¡ = Qi+X + P¡ — 3/ — 1, and let u¡ be the p,-cycle

iy¡ y,: + 1 " " 'Yi + />i — 3 j, + p, — 2 — i — 1) in X A routine consideration of cases

determined by inequalities establishes that the sequences u0, ux,... and v0, t>,,...

satisfy the requirements of the lemma.    D

Corollary 13. Let f have at most finitely many cyclic components of finite length.

Then the equation f'= xmy" is solvable in Sz.

Proof. By Corollary 11 we may suppose that the set {t: f(t) = t) is not infinite. It

follows that /has at least one «-cyclic component g. Let Y denote

Z£g U U {Z£r: risa finite-cyclic component of/}.

Observe that every element in CZ\Y(ft(Z\Y)) is an «-cycle in Z\Y. Therefore,

by [7, Theorem 4.3] together with Lemma 4, there exist permutations au and bu of

Z\Ysuch that/r(Z\T) = a^K-
By hypothesis / has exactly p finite-cyclic components /0, /,,.. .,fp-X for some

p G «. For each / G p there is an integer k¡ > 1 such that/ is a &,-cycle in X. In the

case that p = 0 the corollary follows by an argument like that in the preceding

paragraph. Therefore we may suppose that p > 0.

Let 1 < q E «. Then by Lemma 12 there exist two injective sequences w0, «,,...

and v0, vx,... having the following four properties:

One. uzp+i is a fc,-cycle in Y for every (z, i) E « X p.

Two. u, is a <?-cycle in Y for every / G «.

Three. Both of the sets {ftY: i E p) U {uz: z E «} and {v¡: i G «} are pdsp.

Four, gt Y = uv, where u and v are defined by CY(u) = {«,: / G «} and by

CY(v) = {t;,-: i E «}.

For each i Ep let U¡ denote the infinite pdsp set {ftY} U {uzp+i: z G «} of

&,-cycles in Y; arrange the elements in U¡ into w-blocks and interdigitate in order to

obtain the components, each of which is an mA:,-cycle in Y, of a permutation a¡ of Y

for which Cy(a,m) = U¡. This can obviously be done in such a way that the set (a,:

/ G p} is pdsp. Let aY denote the permutation a0ax ■ ■ • ap_x of Y.

Arrange the elements in the set {v¡: i G «} into «-blocks, and interdigitate, thus

producing the components, each of which is an «^-cycle in Y, of a permutation bY of

y for which CY(bY) = (u,: i G «). Note that

/ry=(/0ry)(/,ry)--- (/„_,ry)(grY)

= (/of r)(/i tY) ■ ■ • (/,_, f Y)uv = a^bY.

Since {y, Z\y} is a partition of Z, the present corollary now follows by Lemma 4.

D

When t is a real number, the expression int(r) denotes the smallest integer n such

that t =£ n.
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Lemma 14. Let 1 < k G «, and let g be a k-cycle in X. Then there exists h such that

both h and gh are involutions of X, such that \ Cx(h)\= int((k — 2)/2), such that

\Cx(gh)\= intHk - l)/2), and such that X£h C X£g.

Proof. We may suppose that g = (01 • • • k - 1). Let h = (0 k - 2) (1 k - 3)

■ ■ -(zk — 2 — z) E Sx, where z is the largest integer /' for which / < k — 2 — i.

Then z < (/c — 2)/2 < z + 1, and thus we have that z = (A: — 2)/2 if k is even, but

that z = (k — 3)/2 if k is odd. Therefore, in the case that k is even we have that

| Cx(h) \— z = (k — 2)/2 = int((A: — 2)/2), while in the case that k is odd we have

that | Cxih) |= z + 1 = ik - l)/2 = int((A: - 2)/2), with both cases satisfying the

claim.

Next, notice that gh = (0k- l)(lk~2) ■ • ■ (z - Ik- z)(zk- z - I) E Sx.

Therefore, since z < k — z — 2< k — z — 1 we see that | Cx(gh) | = z + 1 =

int((k — l)/2) both in the case that k is even and also in the case that k is odd.    D

Our final lemma depends upon the fact, obvious from Lemma 14, that if k > 2

then Cxih) ^ 0 =t= Cxigh).

Lemma 15. The word xmy" is universal for Sz.

Proof. By the foregoing results in §3 we may suppose both that {t: f(t) — t} is

not infinite, and also that Cz( f ) contains no infinite cycles. It follows that there is

an infinite injective sequence /0, /,,... of finite cycles with Cz(f) = {/: / G «}.

There are two cases to consider.

Case 1. The set {/: / is a 2-cycle} is infinite. We may suppose that there exists

z G « such that / is a 2-cycle if and only if / > z. For each i G z there is an

involution «, of Z such that/Ti, also is an involution, and such that Z£«, Q Z£f. Let

h = h0hx ■ • • hz_x. Since {«} U {/: z < i E «} is pdsp, we see that

/ = /o/. • • -fz-xfz ■ ■ ■ =/o/i • • 7,-iW. • • ■ = HH',

where H is the involution

/o/l  • • Az-Mzf + 2 • ■ -fz+2i ■ * •   = (/o«o)(/l"l) ■ • •   (/z-A-l)/z/z + 2 • • -fz+2i

and where H' is the involution hfz+xfz+3 ■ ■ /z+2,+i ' ' ' • Clearly both CZ(H) and

CZ(H') are infinite sets. We group the elements of CZ(H) into w-blocks and

interdigitate as usual in order to obtain the 2m-cyclic components of a permutation

a of Z for which am = H. Similarly we obtain a permutation b of Z for which

b" = H'. As desired,/= amb".

Case 2. The set (/': / is a 2-cycle} is not infinite. This time we suppose that there is

a z G « for which / is a 2-cycle if and only if i G z. Then, for every integer /' s* z

there is an integer k¡ > 2 for which / is a fc,-cycle. But by Lemma 14 there is, for

each such /', an involution h¡ with Cz(h¡) #0 ^ Cz(fhX and such that/«; also is

an involution, and furthermore such that Z£hi E Z£f. It follows that {h¡: z =£ i'• E «}

is pdsp, and hence that we may define h by

Cz(«)= U (Cz(n,): z</G«}.

Of course h also is an involution. Furthermore, both Cz(fh) and Cz(h) are infinite

collections of 2-cycles. By arranging Cz(fh) into w-blocks and interdigitating, we
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obtain a permutation a of Z such that am = fh. By arranging Cz(h) into «-blocks,

and interdigitating, we obtain a permutation b of Z such that b" = «. It follows that

f = fhh = amb".    □
Theorem 1 is an immediate consequence of Corollary 6 together with Lemmas 7

and 15.

4. Survey. For p and # integers, (p: q) denotes the greatest common factor of p

and q. For/ G Sx the expression Cx(f; k) denotes the set of all /¿-cyclic components

of/.

When W is cyclically reduced, then it is evident that W is primitive if and only if

W is not a power. The following result sharpens our introductory Proposition 2(1).

Proposition 16. Let 0 ¥= n E Z. The equation f = x" is solvable in Sx if and only if

both of the following conditions are satisfied for f where f E Sx:

(1) Either the set Cx(f; «) is infinite or the integer \ Cx(f; «) | is a multiple of n.

(2) For every integer k > 1 either the set Cx(f, k/(n : k)) is infinite, or the integer

I Cxif, k/in : k))\ is a multiple of in: k).

Proof. Suppose that / satisfies both of the conditions 16(1) and 16(2). The

condition 16(1) implies that the set Cxif; «) can be partitioned into a family Pa of

| n | -membered subsets. For each D E Pu the elements in the set D can be arranged

into an | « | -block of «-cyclic components of/, and this block interdigitated in order

to obtain an «-cycle Ga D such that CX(G^\D) = D. If n = \ n | then let Hu D = Gu D,

but if « = -| n | then let HuD = G~XD, for each D E Pu.

Now choose k > 1. Condition 16(2) implies that the set Cx(f; k/(n : k)) can be

partitioned into a family Pk of (n : /c)-membered subsets. For each E E Pk we

arrange the elements of E into an (« : A:)-block g<fgf • • • g(„-.k)-\- Since the integers

«/(« : k) and k/(n : k) are relatively prime, for each i E(n: k) there is a cycle hEi

in X of length k/(n : k) such that X£hEi = X£gf, and such that h^}nM) = gf. We

interdigitate the (« : /c)-block hEOhEX ■ ■ ■ hE(n.k)_v and thus produce a /¿-cycle Hk E

such that Hfe» = hEfihEA ■ ■ ■ hEÁmk)^x. Then Cx(HlE) = E.

Finally, define the permutation a of A' by the stipulation that

Cx(a) = {HUtD: D E PJ U  (J {{Hk,E: E E Pk}: K k E »}.

Note that/= a".

In order to establish the converse we now suppose that f=b" for some b G Sx.

Let g G Cxib). If g is an «-cycle, then Cxig") is a pdsp set of exactly | « | cycles of

infinite length. On the other hand, if 1 < k G «, and if g is a /c-cycle, then it is easy

to see that Cx(g") is a set of exactly (« : A:) cycles of length k/(n : k).    D

If 1 < k E «, and if « is an integer such that («:/')= 1 for every positive integer

/ < k, then the word x" is universal for every 5, with 0 < i < k. Also, if (« : i) > 1

for some positive integer i < k, then the word x" is not universal for Sk. Note that

x~xox is universal for Sk whenever 0 < k =£ 100, but that x'xox fails to be universal

for any 5^. with 100 < k.

The notion, of the 'complexity' of a word, is most easily expressed by means of

examples: The words x, y2, andxj7 are of complexity one. The words xy, y2x'3, and
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y2x2 are of complexity two. The words x3y'2x2, y2x'2y2, x2y'2x'2, and xxXj2x25

are of complexity three. The word xy'2x3y~xx3yx'x is of complexity seven.

Incidentally, of the eleven words mentioned in the preceding paragraph, all are

primitive except for y2, jcJ7, x2y'2x~2 and xy'2x3y'xx3yx'x. The word x2y~2x~2 is

not primitive because it is group-equivalent to the power y'2. The word

xy~2x3y'xx3yx'x is not primitive because it is group-equivalent to the power (x3y'x)2.

By the way, (x:3^"1)2 is of complexity four.

We now consider the possible ISym-universality of words of complexity at least

four.

In [15] it is shown that the commutator word xyx'xy'x is ISym-universal. More

recent related results are encountered in [2,5,9]. Of course xyx'xy'x is primitive,

cyclically reduced, of complexity four; and gcî(xyx~xy~x) is undefined.

When 1 < k G «, and when {a, b} E Sk, then aba'xb'x is an even permutation;

therefore xyx'xy'x is not universal for Sk. On the other hand [3], also referring us in

this connection to A. M. Gleason in [10, p. 172], establishes that xyx'xy"' is

universal for every alternating group Ak.

In [4] it is shown that the equation í = W is solvable in Sz for every primitive W

whose complexity is less than six; here, once again, s is the successor permutation on

Z. Obviously, any word V for which the equation s = V is solvable in Sz, and which

is universal for every finite Sk, is universal for every symmetric group.

The ISym-universal word x2y2, which is universal for no nontrivial finite symmet-

ric group, is known to be universal for every alternating group.

For/ G Sk with 0 < k < «, the equation/ — x"ynX is solvable in Sk if and only if/

is the identity permutation of the set k. But the word xn'y"] is ISym-universal.

For each pair (p, q) of nonzero integers does there exist an integer N(p, q) such

that xpyq is universal for every Ak with k> N(p, q)l

Thus far, every effort has been stymied to prove that the equation s = W is

solvable in Sz for every primitive W, although [1 and 16] have made inroads. In

particular it remains unknown whether s = Wis solvable in Sz for W = (x2y2)3y2,

for W = x3y2x2yxy, or for W = x3y2xyx2y. Since gcf(W) is even for each of these

recalcitrant words, none of them is universal for any nontrivial finite symmetric

group. We do not know for which alternating groups they are universal.

It continues to be our hope that methods of the sort used in §3 will establish the

ISym-universality of all primitive words of complexity four. But, M. P. Borba has

discovered some stumbling blocks: Is the equation (01) = x3y3xy solvable in Sz1

What about (0 1) = xsysxy1

The following results are representative of our partial successes. The first is a

slight extension of the, independently achieved, identical [6, Proposition 2(ii)] and

[16, Corolario 5.7].

Proposition 17. Let there be exactly two letters xv andxu in Wsuch that áe,gw(xv)

and áegxv(xu) are odd integers. Then W is universal for every symmetric group.

Proof. By Lemmas 12 and 14 we have that every cycle g in X can be expressed in

the form g = «,«2 for involutions hx and h2 of X with X£hx U X£h2 E X£g. It
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follows that for every permutation / of X there exist involutions a and b of X such

that / = ab. The proposition is an obvious consequence of this fact.    D

For the complexity-four case, the foregoing proposition establishes that the word

xmy"xpyq is universal for every symmetric group if m and « are even while p and q

are odd. We do not know for which alternating groups such words xmy"xpyq are

universal.

The proof sketch offered for the following result is a precis of §3. The class of

words, whose ISym-universahty it establishes, is obviously more ample than the

complexity-four subclass to which we restrict our statement in the interests of

simplicity.

Proposition 18. Let m and n be nonzero integers, let M be a multiple of 2m, and let

N be a multiple of 2«. Then the word xMyNxmy" is ISym-universal.

Proof sketch. Let / G Sz. The proposition is established when it has been shown

that there exist involutions u and v of Z, each of which has infinitely many 2-cyclic

components, and such that f=uv. For then, by interdigitating w-blocks of the

2-cyclic components of u, we obtain a permutation a such that Cz(a) = Czia; 2m),

and such that am = u. And similarly we obtain b such that Cz(b) = Cz(b; 2«), and

such that b" = v. Hence/ = uv = amb" = aMbNamb", since aM = bN = the identity

permutation of Z. Therefore xMyNxmy" is universal for Sz, and hence is ISym-

universal.

Let ck denote the Ä:-cycle (01 ■ ■ • k - 1) in Z. We recall that c^O k - 2)(1 k - 3)

■ ■ ■ (z k — 2 — z) = (0 k — 1)(1 k — 2) ■ ■ ■ (z k — 1 — z) where z is the largest in-

teger i < (k - 2)/2. Therefore, when h is defined by Cz(h) = {(k + 2i k + 2/ + 1):

/ G «}, we have that

ck = ckh2 = iOk- l)(l/fc- 2) ••• izk- 1 - z)

■ {zk-2- z)iz- Ik- I - z) ■■■ il k - 3)i0 k - 2)h2

- HXH2,

where Hx is the involution (Ok — 1)(1 k — 2) ■ ■ ■ (zk — 1 — z)h of Z, and where H2

is the involution (zk - 2 - z)(z - 1 k - 1 - z) • ■ ■ (1 k - 3)(0 k - 2)h of Z. We

remark also that s = H3H4, where H3 is the involution (0 1)(-1 2) ■ ■ -(-tt + 1)

of Z, and where i/4 is the involution (-1 l)(-2 2) • • • (-r t) ■ ■ • of Z. It easily follows

that, when {/: /(/') = i} is infinite, then there exist involutions u and v of the desired

sort. Thus we may suppose now that the set {/': /(/') = i} is not infinite. There are

two cases.

Case. Cz(f, «) ¥= 0. As a paradigm example take ((0 1), (2 34), (5 67 8)} to be

the set of all finite cyclic components of/. Choose g G Cz(f; «). Then g = H5H6

for some involutions H5 and H6 of Z, each of which has infinitely many 2-cyclic

components, and such that Z£H5 U Z£H6 E Z£g. Observe also that

(0 1)(2 3 4)(5 6 7 8) = (0 1)(2 3 4)(5 6 7 8)(2 3)2(51)2
= (0 1)(2 3 4)(2 3)(5 6 7 8)(5 7)(2 3)(5 7)

= (01)(24)(5 8)(6 7)-(23)(5 7),
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and hence that

(0 1)(2 3 4)(5 67 8)g = (0 l)(24)(5 8)(61)H5 ■ (2 3)(51)H6.

The elements in Cz(/; «)\{g} pose no difficulty. It is now plain in the case that

Cz(/; «) ^ 0 that the desired involutions u and v exist.

Case. Cz(f; «) = 0. Then / has infinitely many cyclic components of finite

length. Define H7 by CZ(H7) = Cz(f, 2), and define Hs by

CziH,)= U {Cz{f;r):2<rEU}.

Then / = H7Hi = H%H7. There exists an involution H9 of Z such that HSH9 also is

an involution, and such that Z£H9 E Z£HS. Clearly the sets {H7, HSH9} and

{H7, H9} are pdsp.

Subcase. CZ(H7) is not infinite. Then both CZ(H&H9) and CZ(H9) are infinite.

Let « = H7HSH9, and let v = H9.

Subcase. CZ(H7) is infinite. Then there exists a bijection K: « -> CZ(H7) defined

by K: it-» K¡. Now define Hxo by CZ(HX0) = {K2¡: i G «}, and define Hxx by

CZ(HXX) = {A:2/+1: i G «}. Let « = HSH9HX0, and let ü = H9HXX.

It is easy to see in both of these subcases that u and v are involutions of Z, each of

which has infinitely many 2-cyclic components, and such that/ = uv.    D

We call W a semigroup word iff all of the exponents of letters appearing in W are

positive. Of course every semigroup word is cyclically reduced.

By [8, Theorem 3.1], if W is both semigroup and primitive, then there exists a

semigroup word V which is group-equivalent to W, and which is of the form

V — ABA only for A the empty word and for B = V; such a word V is called

unbordered by J. R. Isbell, who proves in [11] that if X is infinite, and if g EXX,

then the equation g = V is solvable in XX, where XX denotes the semigroup of all

transformations h: X -» X. Of course the symmetric group Sx is a subgroup of the

monoid XX. Thus we have

Proposition 19. // W is both primitive and semigroup, then W is group-equivalent

to a word V such that for every f G Sz the equation f = Y is solvable in ZZ.

His proof of the cited Isbell theorem definitely does not produce a solution in Sz

for the equation /= V of Proposition 19. Nevertheless, Proposition 19 seems

suggestive in the light of Proposition 3.

[6, Theorem 3] states that if W is universal for Sx for some infinite set X, then W is

universal for SY for every uncountable set Y.

According to [6], the following two questions are open: If W is universal for SR,

then is W ISym-universal, where R denotes the set of all real numbers? If W is

universal for every finite Sk, then is W ISym-universal?

An affirmative answer to our titular question implies an affirmative answer to

both of the questions cited in the preceding paragraph.
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