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BUNDLE-LIKE FOLIATIONS WITH KÄHLERIAN LEAVES1

BY

RICHARD H. ESCÓBALES, JR.

Dedicated to my father

Abstract. For bundle-like foliations with Kählerian leaves a certain function / is

studied and its Laplacian along a leaf is computed. From this computation one

obtains geometric conditions which guarantee the integrability of the distribution

orthogonal to that determined by the leaves. When the leaves are compact, the key

condition needed to guarantee the integrability of this orthogonal distribution can be

interpreted as a condition on the first Chern class of each of the leaves.

Introduction. Given a bundle-like foliation with Kählerian leaves under what

conditions is the distribution orthogonal to that determined by the leaves integrable?

In this paper we give two theorems which provide sufficient conditions for the

integrability of this orthogonal distribution. The key condition in one of the

theorems is a condition on the Ricci curvature of the leaves of the bundle-like

foliation. If the leaves of the bundle-like foliation are compact, the condition can be

interpreted as a condition on the first Chern class of the leaves of this foliation.

In §1, we introduce terminology, definitions and preliminary results needed in

later sections. In §2, we study a function, /, whose vanishing implies that the

distribution orthogonal to the leaves of the distribution determined by the bundle-like

foliation is integrable. In particular, we develop a formula for the Laplacian of this

function along a leaf of the given bundle-like foliation. In §3 we give the statements

and proofs of the main results of the paper. We conclude the paper with an example

which illustrates the necessity of the assumption on the Ricci curvature or first

Chern class of the leaves. Unless otherwise indicated, we assume a differentiability

class of at least C00.

The results obtained in this paper are analogues of an earlier result which

appeared in this journal [2]. The work was done while the author was on sabbatical

leave from Canisius College. He is grateful to Professors Graver and Church of

Syracuse University for their hospitality, to Dr. Glen Castore and Professor Abi-

Khuzam who initiated a seminar on holomorphic curves and to Professor H. Blaine

Lawson for a conversation about an earlier version of this work.

1. Let M be a complete connected manifold with foliation T of codimension q.

Then Tmay be defined by a maximal family of C00 submersions/,: Ua -» ftt(Ua) E Rq,
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where {Ua}aeA is a maximal open cover of M and where for eachp G Ua D Uß, there

is a local C°° diffeomorphism, <i>^a, of Rq so fß = <t>ßpa ° fa in some neighborhood C/,

of p. The foliation T is bundle-like if each of the submersions /, are Riemannian

submersions from Ua onto their images fa(Ua). In this case, the local diffeomor-

phisms <f>ßa are local isometries from fa(Up) to fß(Up). In general, the metric on/„(£/„)

is not the flat metric. While we shall want our foliation to be bundle-like later in the

paper, we do not need this condition in the present section.

From [5, pp. 2-3], we know for p and p' in Ua n Uß, <f>/„ = <t>¡¡a on fa(Up n Up,).

Observe that a tangent vector Tbelongs to the tangent space of the distribution atp,

T, if and only iifa,pV — 0 or V E kerfa*p. If L is a leaf of Tand U is any open set

of M, then each connected component of U fl L is called aplaque.

Now fix a Riemannian metric on M. Then the metric determines an orthogonal

bundle, %, to Tin TM where TM is the tangent bundle of M. Thus, TM = % + T.

A tangent vector E on M is called horizontal if 0C£ = E; the tangent vector E is

called vertical if Tí = £. Here 3C£ and T£ denote the obvious projections. A

horizontal vector field Ion Uis called/, basic if fa.Xis a well-defined vector field

on faiUa). In our earlier paper on bundle-like foliations in this journal [2], the

following result was established.

Proposition 1.1. On Ua D Uß a horizontal vector field X is fa basic if and only if X

is fß basic.

Because of this result, we can speak of an fa basic vector field on some open set U

as simply a basic vector field on U or as a local basic vector field. If V is any vertical

vector field and X is a basic vector field on Ua, then fa.[X, V] = [fa.X, fa,V] = 0.

This proves the first half of the following

Lemma 1.2. (a) // X is a basic vector field and V is a vertical vector field on some

open set Ua, then [X, V] is a vertical vector field on Ua.

(b) If X and Y are basic vector fields on some open set Ua, then %[X, Y] is a basic

vector field on Ua.

Proof of 1.2(b). To see this, observe [X, Y] = %[X, Y] + <V[X, Y]. Now

LAX, Y] = [fa.X, fa.Y\ But fa.[X, Y]=fa.X[X, Y], since faN[X, Y] = 0. This
completes the proof.

Remark 1.3. Both of these results are well known in the case when fa is a

Riemannian submersion [6], a hypothesis we do not require here.

Suppose that the leaves of Tare complex manifolds and suppose that there exists

a tensor / on M of tensor type (1,1) so that when restricted to any plaque, / is the

complex structure for that plaque.

Definition 1.4. A basic vector field X defined on some open set U of M respects

the complex structure of the leaves provided for each vertical vector field V,

[X,JV] = J[X,V].
Now let X and Y be local basic vector fields which respect the complex structure

of the leaves. If V is any vertical vector field, it follows from the Jacobi identity that

(1) [[X,Y],JV]=[X,[Y,JV]]-[Y,[X,JV]].
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Since X and Y respect the complex structure of the leaves, we have

(2) [[X, Y], JV] =[X, J[Y, V]]-[Y, J[X, V]].

By Lemma 1.2(a) [Y, V] and [X, V] are vertical, so

(3) [[X, Y], JV] = J[X,[Y, V]] - J[Y,[X, V]] = J[[X, Y],V].

Now by Lemma 1.2(b), %[X, Y] is basic when X and Y are basic, so

(4) [%[X,Y],JV]=J[%[X,Y],V].

Subtracting (4) from (3) we get

(5) [T[jr,y],/K]=/[T[*,y],Pl.

Formula (5) has the following geometric interpretation.

Proposition 1.5. Let X and Y be basic vector fields on some open set U of M which

respect the complex structure of the leaves o/T. Then when °V[X, Y] is restricted to a

plaque o/T, T[ Jf, Y] is an infinitesimal automorphism of the complex structure ofthat

plaque.

Proof. This is immediate from formula (5).

2. For the remainder of the paper suppose that:

(A) The foliation Tis bundle-like with respect to the metric on M.

(B) The metric and connection on M when restricted to any leaf of T gives rise to

a Kahler structure on the leaf.

(C) There exists a tensor/ of tensor type (1,1) on M so that when restricted to any

plaque of T, / is the complex structure of that plaque.

(D) Local basic vector fields respect the complex structure of the leaves.

We adopt the following conventions for this and the next section:

1 < ij < q where q is the codimension of T;

1 < a, ß < « — q where « — q is the dimension of each leaf of T

For Greek subscripts only we use the Einstein summation convention on repeated

indices.

Let {Xx, X2,...,Xq} be any orthonormal frame of % atp EM. Let

(6) fip) = 2(%xi,xJ],%x„xJ]),
• J

where ( , ) is the Riemannian metric on M. This function is independent of the

choice of frame of % and so is well defined on all of M. Since Tis bundle-like, the

orthonormal frame can be chosen to consist of basic vector fields {Xx, X2,...,X }

defined on some open set U of M. Observe this is where the bundle-like hypothesis

comes into play. If L is any leaf of T, then T[ A), Xj], when restricted to any plaque

of U n L, is an infinitesimal automorphism of the complex structure of that plaque

by Proposition 1.5.

Denote the complexification of T by Tc and set

(7) W+ =i(cV[Ai, Xj] - fl%X„ Xj]).



856 R. H. ESCÓBALES, JR.

Then Wfi is a vector field defined on U. On each plaque of U n L, W¡¡ is the

holomorphic vector field corresponding to the infinitesimal automorphism of the

complex structure T[ A,-, XA determined by the well-known isomorphism [4, Chapter

IX, Proposition 2.11]. On each plaque Wfi is of type (1,0) and setting W¡¡ = W^,

one has W~j is of type (0,1). If we select coordinate fields (3/3za, 3/3za} for 1 < a,

a < n — q for a plaque of t/ n L, then

where W," are the components of Wfi relative to {3/3za}1Ccr<„_?. Extend ( , ) to

Tc and denote this extension by g. If gaß — g(3/3z", 3/3z^), then

(9) f(p) = 22gajWJWfj.

Following essentially Yano and Bochner [9, formula 8.53 on p. 133], we obtain

(10) (Aleaf/)(p) = Ahgaßg^yKi-lRaßl^jWß]

where Aleaf/is the Laplacian, Raß'aTe the components of the Ricci tensor of a leaf

and ; y denotes covariant differentiation in the leaf with respect to the induced

connection.

3. Recall that the Ricci tensor of a leaf is called quasi-negative provided it is

negative semidefinite on the whole manifold and negative definite at one point of the

manifold. With this terminology we state the following result.

Theorem 3.1. Let M be a compact connected manifold with bundle-like foliation T

Suppose each leaf of T is a complex manifold with complex structure induced by

restricting to the leaf some globally defined tensor field J on M. Suppose that each leaf

equipped with this complex structure is Kählerian with respect to the metric and

connection induced from M and that local basic vector fields respect the complex

structure of the leaves o/T.

// the Ricci curvature of each leaf of T is quasi-negative, then %, the distribution

orthogonal to T, is integrable and each leaf of % is totally geodesic in M.

Proof. Observe the hypotheses of the theorem include conditions (A)-(D) of the

last section. Let p E M be the point where / attains its maximum on M and let L be

the leaf of T passing through p. By (10), Aleaf /> 0 on L so/is subharmonic on L.

It follows for the maximum principle for subharmomc functions that/is constant on

L so Aleaf / = 0 on L. Let q E L be the point where the Ricci tensor of the leaf is

negative definite. If / = c and c ¥= 0, then some W¡* is not identically zero by (9) and

so ( Aka{ f)(q) > 0 again by (10). This contradicts the assertion Aleaf / = 0 on L.

We conclude / = 0 on L and in particular at p. Since / is nonnegative on M, our

choice of p implies/ = 0 on M. This means each W^ = 0 by (9) and so T[ X¡, Xj] = 0

by (8). This implies that "i[X, Y] = 0 for any horizontal X, Y on any open set U

and so % is integrable. It might be mentioned that the argument here was adapted

from [8].
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The fact that the leaves of % are totally geodesic is immediate from a result of

Reinhart which says that a geodesic horizontal at one point is always horizontal.

This completes the proof of Theorem 3.1.

We are now in a position to state the main and concluding result of our paper.

Recall a compact Kahler manifold has quasi-negative first Chern class provided

this class can be represented by a (1,1) form which is negative semidefinite

everywhere and negative definite at a point.

Theorem 3.2. Let M be a complete connected manifold with bundle-like foliation T

Suppose that each leaf of *Y is a compact complex manifold whose complex structure is

induced by restricting to the leaf some globally defined tensor field J on M. Suppose that

each leaf of T equipped with this complex structure is Kählerian with respect to the

metric and connection induced from M and suppose that the local basic vector fields

respect the complex structure of the leaves.

If the first Chern class of each leaf of T is quasi-negative with respect to one of its

representatives, then %, the distribution orthogonal to Tí« TM, is integrable and each

leaf of % is totally geodesic in M.

Proof. To prove this result it suffices to show that / vanishes on each leaf L of T

Suppose the first Chern class of L,

By Yau's solution to the Calabi conjecture [10], there is a metric g* on L so that the

Ricci tensor of g* is R*aßdza ® dzß.

If i: L -> M is the inclusion mapping on any leaf L of Tthen we can modify the

metric on the induced bundle i*i% + T) = i#i%) + i'*(T) over L so the metric

on i*(%) is pulled back from that of DC on M and the metric on ¿*(T) is g*. Since

there is no danger of confusion, we identify the sections of i*(% + T) with their

images in % + T Now observe, T[ A), Xj] is a local automorphism of / where J is

the underlying complex structure on L.

On the leaf L, define the function hL as follows:

(H) hAp) = l2g*aß-rVrjWß.
ij

If Afeaf denotes the Laplacian on L with respect to g*, the same reasoning as before

yields (Afeaf h) > 0 or hL is subharmomc on L. Since L is compact, we conclude, as

above, hL = 0 on L. Comparing (11) and (9) we are forced to conclude/= 0 on L.

Since L was an arbitrary leaf of T, we see / = 0 on M. This means by (6), that

T[A",, Xj] = 0 everywhere. Proceeding as in the proof of 3.1 we conclude the proof

of Theorem 3.2.

Remark 3.3. Theorems 3.1 and 3.2 do not imply that % is holomorphic even if one

assumes that M is a Kahler manifold and Tis a holomorphic distribution in TM. See

Theorem 2. lof [3].
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Remark 3.4. The condition on the first Chern class of the leaves is necessary as

the following example illustrates. Consider

S2 ->     CP(2« + 1)

i m

QPin)

where it is the usual Riemannian submersion [1]. Here S2 is the two sphere with

constant holomorphic sectional curvature one, CP(2n + 1) is complex projective

2« + 1 space with constant holomorphic sectional curvature one, while QP(n)

denotes quaternionic projective space. Then this bundle is a special case of the

situation where M = CP(2n + 1), each leaf is a copy of S2, and Tis the distribution

determined by the leaves. It is well known that each leaf of T is a Kahler

submanifold of CP(2n + I) with respect to the induced complex structure, metric

and connection.

To see that basic vector fields respect the complex structure of the leaves of T,

observe that the leaves of Tin this example are totally geodesic and so if X is a basic

vector field and V is vertical,

(12) T[Z, JV] = ^VxJX-"(VjVX.

Now JV is vertical and hence T VjyX = TJVX = 0, where T is the second funda-

mental form of the leaves. Since the leaves are totally geodesic, T VVX = TVX = 0,

and so it follows,

(13) cV[X,JV] = eVvxJV = JcVvxV=JcVvxV-JeVvvX = JeV[X,V].

Since T[X, JV] = [X, JV] and T[A, V] = [X, V] by Lemma 1.2(a), we see that

basic vector fields respect the complex structure of the leaves as claimed. However,

the distribution %, orthogonal to Tin CP(2n + I), is not integrable. We note the

first Chern class of S2 is positive. It follows from this example that the condition on

the first Chern class of the leaves in Theorem 3.2 cannot be dropped, if the

conclusion of the theorem is to obtain. Observe that in the above theorems unlike

this example we do not require that the ambient manifold be Kählerian or even a

complex manifold.

Added in proof. The above results have some corollaries which will be discussed

elsewhere.
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