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TRACE CLASS SELF-COMMUTATORS

BY

C. A. BERGER AND MARION GLAZERMAN BEN-JACOB

Abstract. This paper extends earlier results of Berger and Shaw to all W* algebras.

The multiplicity of an operator in a W* algebra is defined in terms of the trace on

the H^-algebra, and it is shown that if T is a hyponormal operator in such an

algebra, the trace of its self-commutator is bounded by this multiplicity times the

area of the spectrum of T, divided by ir.

Let A be an operator on a Hubert space 77. The self-commutator of A, [A*, A], is

defined by [A*, A] = A*A — AA*. Earlier results provided bounds on the trace of a

self-commutator valid for operators in the 7^ von Neumann factor B(H). Let G

be a set of vectors in 77 and let \G\ denote the cardinality of G. Let T be a hypo-

normal operator in 7?(77) such that the rational functions in T acting on G

form a dense subspace of 77. Berger and Shaw showed that tr[7"*, T] < n~l | G |

• area(spectrum T) [2]. The authors prove a version of this result meaningful in an

arbitrary von Neumann algebra context.

Each section in this paper deals with a theorem that is an essential tool for the

proof of the major result in §4.

Preliminaries. &H will denote a von Neumann algebra of operators on the Hubert

space 77. All Hilbert spaces are complex and tr and t are used to denote normal

traces. When the symbols for the trace function are subscripted, the subscript refers

to the algebra of operators upon which the function is acting. The same capital letter

will represent both a space and the projection onto the space. The set of rational

functions with poles off a compact set F will be denoted by Q(F). If p. is a finite

regular measure with compact support E, Q2(F,p) is the closure of rational

functions with poles off F in L2(p) for any compact set F in E. Rational functions in

an operator T will be denoted by q(T) and polynomials in T by p(T). P will

represent the set of analytic polynomials and 7" will be 7>\{0}. Planar Lebesgue

measure will be denoted by tj. Other notations are standard; e.g., 5(77, K) is the set

of bounded operators from 77 to K, and B(H) — B(H, H).

The following definitions are fundamental. Let T be an operator and V a

projection in âH. Then (v)T is the closure of the set {1"=xp¡(T)v¡: /?, E P, v¡ E V)

and <t>>'ris the closure of the set {2™ i<?,(:r)tV <?, £ ô(sp(r)), v¡ E V).
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(i) If ( v ) T = 77, then V is said to be polynomially cyclic for T. The polynomial

multiplicity of T is the infimum of all values \x(V) such that V is in âH and V is

polynomially cyclic for T.

(ii) If ( v )'T = 77, V is said to be rationally cyclic for T. The infimum of all values

tr(F) such that Fis in &H and Fis rationally cyclic for Tis the rational multiplicity

of T.

(iii) If {x: 3/? £ P' such thatp(T)x £ (v)T) is dense in 77, then Fis said to be

effectually rationally cyclic for T. The effectual rational multiplicity of T is the

infimum of all values tr(F) such that Fis effectually rationally cyclic for T.

The major result we present is the following theorem.

Theorem 4.1. Let A be a hyponormal operator in &H with effectual rational

multiplicity s < + oo. Then

tr[A*, A] < (s/ir)aiea(sp(T)).

1. Let &H, &K be von Neumann algebras in B(H), B(K), respectively. Let

W E B(H, K) such that W*âKW ç &H, WâHW* C &K.

Let &H K(W) be the weak closure of the set {BWA: B £ &K, A £ &H}. It follows

that &K.H(W*) = &H.K(W)*. Writing W = VjW*W, where V is the partial isome-

try from R(W*) to R(W), &H,K(W) = &KV&H = V&„.

Let % be the von Neumann algebra in B(H, K) consisting of operators

A
Y' Bl

such that ,4 E&H,BE &K, Y' £ &H K(W) and Y E &KiH(W*).

We identify &H with the embedded algebra (q q ) in "W and &K with the embedded

algebra (°0°B) in <¥.

Lemma 1.1. Let &be a von Neumann algebra with a real valued trace t. Let X be a

positive hermitian operator and P a projection in <£. Then X lies in trace class if and

only if (I- P)X(I - P)and PXP do.

Proof. The operator

X = [P + (I- P)]X[P+ (7-70]

= PXP + (I- P)X(I - P) + (I- P)XP + PX(I - P).

Trace class operators form an ideal, therefore if X is in trace class so are PXP and

(7 - P)X(I - P), PX(I - P) and (7 - P)XP.

Conversely, suppose

-^11       ^12

A21       Xjj

is a positive hermitian operator and Xxx and A^22 are in trace class. We can write

* = Y*Y, where y is in IF and

-^11  =   'll'll  "*"   YX2Y2], X22 =   /2l-'21  +   ^22^22-

Thus, YfxYxx, YX*2YX2, T2*^2i ana ^2*2^22 are individually in trace class. Thus, each

Y¡j is a Hilbert-Schmidt operator, so Y is. Thus, X — Y*Y is in trace class.
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In the following three lemmas, W is an operator in 5(77, K), and W — VyfW*W

is its polar decomposition. Both &H and &K are von Neumann algebras, and

W*&KW C &H, W&HW* C aK. Note that then V*&KV C &H, VâHV* C &K.

Lemma 1.2. If W has dense range and t& is a normal trace on (£H, then there is a

normal trace r& on &K such that ifPH is a projection in âH contained in R(W*), then

% (VPHV) — t& (Ph)- In particular, if E(o) is the spectral projection for W*W and

F(a) is the spectral projection for WW*, then

t&h(E(o)) = t&k(F(o)).

Proof. Since R(V) =R(W) = K, V*&KV in &H and V&HV* in &K together

imply &K = V&HV*. It suffices to define t& on projections in (HK. The operator Fis

an isometry from R(W*) — R\jW*W onto K. Given a projection PK in &K, there

exists a unique projection PH in âH, contained in RJ W*W, such that PK = VPHV*.

If we define r& (PK) — ts (VPHV*) — t& (Ph), % is well defined. Moreover, F(a)

= VE(a)V* and the result follows.

Lemma 1.3.1. Let

Let ë be the embedding map of&H into <£H ® M2. That is,

A = e{A) = [AA     ¡J)    forAinâH.

Let Q be a projection in &H <8> A72. Then Q = Qx + Q2, where Qx and Q2 are

orthogonal projections such that Qx = V*VX and Q2 = V*V2, where VXV* and V2V* are

contained in ë(&H).

Proof. Let ß be a projection in &H ® M2 and let P = (bo). The operator

Q = QP + ß(7 - 7*). Let QP = WXMX and Q(I - P) = W2M2 be the polar de-

compositions for QP and Q(I — P), respectively. The operator M = -JPQP, R(MX)

is contained in R(P), WfWx is contained in P, and WXWX* is in Q. Since Q and P

belong to &H ® M2, so do Wt and M, for i = 1,2. WXW^ = R(QPQ) implies that

q - wxW* = Q- R(QPQ).
We claim Q - WXWX* is contained in (7 - P). It suffices to show (Q - WXWX*)P

= 0. We have QP = WXMX and R(WXW*) = P(WX) = R(QP) = R(QPQ). If x is

in R(Q - WxWf), then x is perpendicular to R(WxWf) and x is in R(Q). Thus,

QPQ = 0. Since 0 = QPQx = QPPQx = (PQ)*(PQ)x, we see 0 = PQx = Px. We
have P(Q - WxWf) = 0 or, in other words, (Q - WXW?) + WXWX* is a projection

orthogonal to P. Express Q as Q = (Q - WxWf) + WXWX*. Since (Q - WXW*) is

orthogonal to P it is of the form (g °x). It is equivalent to a matrix of the form (J£)

by the unitary transformation (°q). The operator WXWX* is equivalent to Wl*Wx

which is contained in P. Let Qx = (Q - WxWf), Q2 = WXW*, V2 = Wf, VXV* = Y

and the proof is complete.

Lemma 1.3.2. Define t^ = % + râ . If W E B(H, K) has dense range, then t% is

a well-defined trace on %. If t&  and t&  are normal, so is ■%.
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Proof. Once it is known that •% is well defined, the final remark is trivial. Let

W* = V*JWW*~. We note that R(V*) = R(W*) and R(V) = R(W). The operator

W is dense so R(V) = R(W) and VV* = IK. Since W&HW* is in &K and W*&KW

is in &H, we find VâHV* is contained in &K and V*âKV is in &H. Let B be in &K.

V*BV is in &„ implying V(V*BV)V* = B, and thus VâHV* = &K. Using this fact

and that7?(F*) = R(W*) and R(V) = R(W), we find

&H       &hV*  \ = [1     0){&h    &h\(I      0 \

vaH   vâHv*j    lo   vi\&H  &HJ\o   v*r

Since

(/     0\
\0     V*l

is an isometry, it suffices to show r& © t8 is well defined on the projections in

<£H<8) M2. Clearly rs © % is linear, and thus we need only prove that if Q and 7?

are two projections in âH ® A72 and A1"* = Q and XV* = R, then (t^ © tS//)(Ô)

= (j&h © t^XT?). If X*X = Q and XX* = 7?, R(X*) = R(Q) and thus XQX*"= R.

From Lemma 1.3.1 we have Q = Qx + Q2, where the Q¡ are orthogonal projections,

each equivalent to an embedded projection. We have XQX* = XQXX* + XQ2X* =

Ä, + 7?2 = Ä. Thus it suffices to show that tr(Q,) = tr(XQ, X*) = tr(7v,) for i = 1,2.

Since Qx and Q2 are equivalent to an embedded projection, we may, without any

loss of generality, assume our original projection Q was embedded; i.e. Q — e(Q) for

Q in &H. Let X*X = Q and XX* = R. Since XQX* = R and R(X*) = R(Q), we

have that

X* = ( *"    *2* )    and
\0        0    /

Thus, Q = X*\XXX + X^X2X and

(X„    0\iX*x    X*A_

\x2X   o/\o      0   /'

To show tr(£?) = tr(7?) we must show

( 1 )       tr &H( X*x Xu) + tT&H( X*x X2X) = tT&H(Xxx X*x ) + tt&„( X2XX*2, ).

Since tr &H is well defined on &H and Xtj and V*¡ are in &H for i,j = 1, 2 we have

that (1) is true.

The Transfer Theorem. Let T in &H and A in &K be hyponormal operators. Let W

belong to B(H, K) and satisfy the following:

(i) W*&KW c &H, W&KW* C &H.

(ii) W*Wand WW* are trace class operators in &H and (£K, respectively.

(iii) t&k(VXV*) = rSf/(X)for all Xin trace class in &H.

(iv) W has dense range.

(v) WT = AW.

Then t&h[A*, A] =£ t- [J* T].

<¥ =

-u: :)■
I X\ i x*x 11 X\ i x*\ \

1*21^1   / 1*21*2*1 /
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Proof. Let J, be the subspace of 77 © 7? defined by J, = {th © Wh | A E 77}. J, is

invariant for T@A and therefore (7©/l)|7 is a hyponormal operator. After

proving

lr[((T®A) |/,)*,(r©^)|J =tr[T*,T]   when t -> 0,

we will estimate tr[(7 © /I) |y*, (7 © ̂ ) |y].

Let ^ be as in Lemma 1.3.2 and let tr and t be ■%. Let Ö De tne maP in ^

defined by Q(h® k) = th® Wh. Then

OT= (r©/l)|yÔ   and   (Q*Q)]/2 = t(l + W*W/t2)l/2 = t(I + M),

where M is a positive hermitian operator with finite trace. Thus, Q = 1^/(7 + M)

and (T © ,4) |y Vj(I + M)= Fy(7 + A/)7Teads us to

tr[(T®A) \*Jt,(T®A) |J = tr[{v*(T®A) |yF,)*, {v*(T ® A) |yFy)]

= tr[r*,r].

Let {£(a)} and {F(a)} be the spectral resolutions for W*W and WW*, respec-

tively. If Q = Vj Mj is the polar decomposition for Q, then R(E(a)) is contained in

V* and £(ct)F/*'ís a partial isometry. Also, (£(a) © 0) and J,(E(a) ® F(a))J, are

equivalent projections and

r&fl(E(a)) = rm(E(a) © 0) = r(.7r(7i(o-) © F(a))Jt) = t[(E(o) © F(a))j].

We compute J, explicitly.

*(Q) R
t     0
W    0

Ô=r//Ô*ë

Q*Q t2i + w*w
0

^=ô(/ôïo)"' = (^ o)((^/+^r,/2 o

0

0

i(r27+ IF*IF)

i W(t2I+ w*w)

■1/2

1/2

KK*

r(/27+IF*IF)-^      0      /(i2/+H,w)

if(í27+ w*wy/¿   0

"1/2     (i27+ W*W)']/2W*

0

/2(f27 + IF*IF)~'       ?(í27 + W*W)~lW*

tW(t2I + w*w)~}    W(t2I + w*w)~lw* j

For 0 £ a, let

y(°) = tr{j,(E(o)®F(o))J1[T®A\;,T®A\J]jl(E(o)®F(o))Jl},

Y({0}) = tr{//(£({0})©0)//[r©^|*]//(£({0})©0)//}.
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= tr[jt(T*TE(a) ® 0)] = tr

We will evaluate

(2) / dy = y({0})+[ dy
•'[0,11 ^11] ■'(0,11 will

since {J,{E(a) ® F(a)}Jt} is a spectral resolution for Jt. From Lemma 1.1 we see it

suffices to examine (2) in order to estimate tr[(7 © A) |* , (T © A) |y ].

First consider

(E(a) © F(a))Jt(T*T ® A*A)Jt(E(a) ® F(a))

= (E(a)®F(a))J,(T*T®0)Jt(E(o)®F(a))

+ (E(a) ® F(a))J,(0 © A*A)Jt(E(o) ® F(a)).

We claim, as t approaches 0, the trace of this expression goes to

tr[(0 ®A*A)F(a)] = It&k(A*AF(o)).

If a is a Borel set, bounded away from 0 in (0, II JF||], E(a) and F(a) are trace class

projections. Utilizing the properties of the trace function and the fact that

(E(o) ® F(o))J, = Jt(E(o) ® F(o)),

we find

tr(£(a) ® F(a))J,(T*T ® 0)J,(E(a) ® F(a)) - tr[j,(T*TE(o) ® 0)Jt]

t2(t2I + W*W)~lT*TE(a)     0

\tW(t2I + W*W)'iT*TE(o)     0

= T&H(t2(t2I+ W*W)~lT*TE(a)) =r&H{t2(t2I+ W*W)~1E(o)T*t).

Since T*T is a bounded operator, it suffices to show t2(t2I + W*W)'xE(a) goes to 0

in trace norm. Since this operator is positive, it suffices to show

T&H(t2(t2I+ W*W)-,E(o))-*0.

This will be done later. Note that

r&H{t2(t2I + W*W)-'E(a)) = tv((E(o) ® 0)J,).

We further claim

tr[(£(a) © F(a))J,(0 © A*A) - Jt(E(a) © F(a))]

= tr[j,(0 ® A*A)(E(a) © F(o))J¡\ = lr[j,(0 © ^*^í)(7í(a) © F(a))]

approaches tr[0 © A*AF(a)\. In other words we want to show

tr[(I - J,)(0 ® A*AF(o))]

goes to 0 as t goes to 0.

„ w   ^ .   ,,, JO     -t(t2I + W*W)'lW*A*AF((j) |
tr((7-/i)(0©^l*/lF(a))) = tr ; V   '

\ 0     IF(i27 + W*W)~lW*A*AF(a) j

= r&K(W(t2I+ W*W)'lW*A*AF(a)).
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Thus, since A*A is bounded, it suffices to show F(a)W(t2I + W*W)~XW*

trace norm. But

81

0 in

W(t2I + W*W)~]W* = WW(t2I+ WW*)'\

which commutes with F(a). Thus, F(a)IF(r27 + W*W)~XW* is positive, and it

suffices to show r&K(F(a)WW*(t2I + WW*)~X) -» 0. By the above, we have

r&K(F(a)WW*(t2I + IFIF*)"1) = ti[(I - J,)(0 ® F(a))].

Both tr[(£(o-) © 0)7,] and tr[(0 © F(a))Jt - (0 © F(a))] approaching 0 is equivalent

to tr[(£(a) © F(a))J, — (0 © F(a))] approaching 0; however by Lemmas 1.2 and

1.3.2 the last expression is equal to tT&/¡(F(a)) — t%(0 © F(a)), which is 0. Thus, it

suffices to show Xx(Jt(E(a) © 0)) goes to 0 as / does to support both claims. Recall

_ | i2(f27+ W*W)^       r(f27+ W*W)~XW*

, tW(t2I + W*W)~l     W(t2I + W*W)'XW* ,

Thus,

and

J,(E(o)®0)
t2(t2I + W*W)~l E(a)     0

tW(t2I+ W*W)~lE(a)    0/

t%/,(£(a) © 0) = tr&H[t2(t2I + W*W)-]E(a)}

Jn +

www v
:dr(E(X)E(o)).

'o+        t1 + X2

Since t2/(t2 + X2) < 1, by the Lebesgue dominated convergence theorem

,2
]imp*Wt_=0
i-oV        t2 + X2

Now, let us consider

(3) tr[(£(a) © F(a))(T ® A)J,(T* ® A*)(E(a) © F(a))].

Writing each operator in (3) in matrix form, we find (3) equal to

lT&H(E(o)t2T(t2I + W*W)^T*E(a)) + lr&K(F(o)AW*W(t2I + W*W)~lAF(o)).

This expression is equal to

(4)

Jo+        t2 + X2       " -V        r + X¿

Both t2/(t2 + X2) and X2/(t2 + X2) are bounded by 1. By applying the Lebesgue

dominated convergence theorem we see that as t -» 0+ , (4) approaches

f^'mdr&K(AF(X)A*F(a)) = t&k(AF(0, \\W\\]A*F(o))

= r&K(AA*F(a)) = t&k(AA*F(o)) = t&k[F(o)AA*F(o)\.
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Next, consider

(E({0}) ®0)[J,(T*T®A*A)JÍ- (T®A)Jt(T* ® A*)](E({0}) ® 0).

Using the fact that [tE({0}) © 0] is contained in Jt we find the operator

(E({0)) ®0)[J,(T*T®A*A)J,- (T® A)J,(T* ® A*)](E({0}) © 0)

in matrix form is

lE({0})t2(t2I+ W*W)~]T*TE({0})    o\

\ 0 0/

_ Í£({0})í2r(f27-r- W*W)~lT*E({0))    o\

\ 0 o/'

We have

t^[(E({0}) ® Q)J,(T*T ® A*A)J, - (T ® A)J,(T* ® A*)(E({0}) ® 0)]

= tJtí({0})/2(¿27 + W*W)-lT*TE({0})

-E({0})Tt2(t2I+ W*W)~XT*E({0})].

Set

Y = [E({0})t2(t2I + W*W)'iT*TE({0}) - E({0})Tt2(t2I + W*W)']T*E({0})]

= Y - E({0})TT*E({0}) + E({0})TT*E({0})

= E({0})[T*, T]E({0}) + E({0})T^W*mi - j^dE(X)^T*E({0})

= E({0})[T*,T]E({0}) + E({0})TlfW*m^^2dE(X))T*E({0}).
\Jo+ t   + X I

Thus

tr&H(Y) = tr&H[E({O})[T*,T]E({0})]

+ j\\vm_X    dT   (e({0})TE(X)T*E({0})).

•V t   + X

The latter quantity is finite since

(5)   tr[r*,r] = t%[(7-£({0}))[(r©/i)|;(,(r©^)|J(7-7i({0}))]

+ j£({0})[^r]2?({0})]

+ f^'m^2dT&H(E({0})TE(X)T*E({0})).

The left-hand side of (5) is positive and finite. The first two terms on the right-hand

side of the equation are positive, thus the last quantity, which is also positive, must
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be finite as well. Since the integrand increases monotonically to 1 as t -» 0+ , we see

r*mid%j(E({0})TE(X)T*E({0}))

is finite. Thus t&h(E({0})TE(X)T*E({0})) is a finite measure.

Now

y = y - e({o})te{o}t*e({o}) + e({o})te({o})t*e({o})

= [(7£({0}))*, TE{0)] + £({0})r£({0})T*£({0})

-£({0})7>2(f27 + W*W)~]T*E({0}).

We know WTx = A Wx = 0 for x in £({0}); therefore

%„(r) = %,[(TE({0}))*, TE({0})} + Xi(E({0})TE({0})T*E({0}))

-£({0})r(/o"H/^"7I^í/7í(x))r*7í({0}),

and

rjf ldE({0})TE(X)T*E({0}) - f[W'm-^—dE({0})TE(X)T*E({0})\
[•'[0] -V t   + X J

= -iTm^T2dr&H[E({0})TE(X)T-E({0})].
Jo+        t   + X

As we have shown above, ts [£({0})7£(A)r*£({0})] is a finite measure. Since

t2/(t2 + X2) < 1, by the Lebesgue dominated convergence theorem this integral

approaches 0 as t goes to 0+ . Thus as t -> 0+ , tr(T) -» tr[£({0})r*, 7£({0})].

Our previous result was

(6)    tr^(F(a)M*, .4]£(<,))

=   Hm {(£(a) © F(a))[r© A \*,(T®A) |J(£(a) © £(a)))

for a E (0, IIIFH]. In particular, if we divide the interval (0, ||IF||] into half-open

intervals of the form an = (|| W \\/(n + 1), II IF \\/n], equation (6) is true for each a„.

Thus, we have

tr[A*, A] + tr[E({0})T*,TE({0})]

= I HF(an)[A*, A]F(a„)) + tr[£({0})r*, 7£({0})].

By Fatou's theorem this is bounded by

lim^tr{(E(on)®F(on))[(T®A)\*J,(T®A)\J](E(an)®F(on))}

r-0+   "

+ tr[£({0})r*,7£({0})].
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Using the property of normality of our trace, this expression becomes

hm tr 2 {(E(an) © F(on))[(T®A) |J(£(aJ © £(aj)}
/-o+      "

+ lim tr[£({0})/2(í27+ W*W)~]T*TE({0})

í-*0 +

-£({0})T/2(r27+ W*W)'^T*E({0})]

=   lim tr(£(0,||IF||]©£(0,||IF||])[(r©^)|*,(rffi^)|J
i-04

X(£(0,||IF||]©£(0,||IF||])

+ hm tr£({0})[£((0})/2(/27+ W*W)^T*TE({0})

i + 0+

-£({0})7r2(r27 + IF*IF)"'r*£({0})]£({0})

=£  lim {tr(£(0,||IF||]ffi£(0,||IF||])[(rffi/0|;Mre^)lJ
r-0+

X(£(0,||IF||]©£(0,||IF||])}

+ tr{(£{0} ®0)[J1(T*T®A*A)J1- (T ® A)Jt(T* ©^1*)](£{0} ©0)}

=   hm {tr(£(0,||IF||]ffi£(0,||IF||])[(r©/l)|j;,(r©^)|J
/-0+

X(£(0,||IF||]©£(0,||IF||])

+ít(e({o})®o)[(t®a)\*i,(t®a)\j](e({o})®o)}

= iim[(T®A)\*J,(T®A)\J] = tT[r*,T).

r-0+

2. In this section we prove the existence of an intertwining operator, IF, which will

enable us to transfer properties of an operator in one von Neumann algebra to an

operator in another von Neumann algebra. To facilitate the proof of the intertwining

theorem we use the following lemma.

Lemma 2.1. Let G be the finite union of multiconnected domains, each bounded by

finitely many smooth Jordan curves. Let A be an operator in &K whose spectrum lies in

G, and let F be a projection in &K. For z in G\sp(^4), let Wz be the following operator

in B{(Q2(xcv)) ® F, K}: Wz(h ® x) = (h, kz)(A - zl)~xx, where kz is the Berg-

man kernel for G [1]. Then W*âKWz, is contained in B(Q2(xcy)) ® F&KF and

WAB(Q2(Xgt))) ® FâKF)Wz* is in &K.

Proof. It suffices to prove the lemma for the operator Yz, where yz(A ® x) =

(h,Kz)x, since (A — zl)~x belongs to âK. Let us call (A, kz} = LK(h). Thus

yz(A <8> x) = LK{h)x, and Y*x = k2 ® x.
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Let C be an operator in B(Q2(xG1l)) and let M belong to &K. We compute

YZ,(C ® FMF)Y* = (Ckz,kz,)FMFE&k,

Y;MYz, = (Lz,, L*) 9 FMF E B(Q2(Xgv)) ® F&KF.

Intertwining Theorem. Let G be a finite union of multiconnected domains each

bounded by a finite union of smooth disjoint Jordan curves. Let F be a finite projection

in &K and let T= Tz® F be contained in B(Q2(xGf])) ® FâKF. Let A in &K be such

that sp(A) is contained in G and

(6') {qa(A)y:yE F and qa £ ß(sp(7; ® £))}"= K.

We define ttQS)F(x 'S) M) - tr(x)trs (M) for M E FâKF, and the first trace is the

counting trace on B(Q2). Then there exists a W in B{Q2(xGr¡) ® F, K} such that:

(i) Whas dense range,

(ii) WT= AW,
(iii) WW* and W*W are in trace class.

(iv) W{B(Q2(xGv)) ® F8,KF}W* is in &Kand W*&KWis in B(Q2(xGy)) ® F&KF.

Proof. For u in Q2(xGv) ® F, define û: G X F - C by û(z, x) = (u, kz ® x),

where kz is the Bergman kernel of G. The function û is conjugate linear in x, linear in

u, and, since kz is conjugate analytic in z, u is analytic in z.

Let r be a finite union of smooth Jordan curves bounding sp(^4) in G. The map

z -> kz is strongly continuous for z on T. Thus

(7) |û(*,*)|<II«IIIIk*®*II<IIkIWI*H    whereMr= sup IIk,II.
zer

For fixed z, û(z, ■ ) is a bounded conjugate linear form on F and is therefore given

as an inner product. There exists a unique A" in £ such that û(z, ) = ( A", ).

In this case

(8) (h"z,x)=(u,Kz®x).

The vector A", which is linear in u by the uniqueness of the Riesz representation

theorem, is analytic in z since u(z, ) is. From (7) and (8) we see that || A" II < II aII • Mr.

For« £ Q2(xGT))® Poi the form/® x, huz = f(z)x.

Define

Wu = —^-: ¡(A - zl)'xhuzdz,
Ltti Jj-

where T is a finite union of smooth Jordan curves bounding sp(A) in G. We have

W(f®x) = -~.^(A-zl)->h{Sxdz = -^-fAz)(A-zl)-ixdz=f(A)x.

Thus, by (6'), IF has dense range. We will now show IF is bounded:

II     i     . . 2
IFM||2 = <tfr||(^-z7)-'lHIAz"|

r

Ä-pSUplK^ -z7)"'||||M||||r||<  +00,
zer

where Kr = (length of Y)/2m.
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Note that for/® x in Q2(xgti) ® F-

W(Tz®F)(f®x) = W(Tzf®x) = W(zf®x) =AF(A)x = AW(f®x).

Thus W(TZ® F) = AW. W is the uniform limit of sums of the form IFZ where

IFZ(A ® x) = (A, kz)(A — zl)~xx. From Lemma 2.1 we see

w[b{q2(xgt\)) ® F&KF] W*

is contained in &K. Similar reasoning shows W*âKW is in B(Q2(xgV)) ® F&KF. To

show (iii), we compute the following:

I IF* IF | trO®£

1

(2.)2

1

//
W*W,,dzdz'

(2*)2

1

1

jj\\W*Wz.\\^d\z\d\z'\

(2»)'

<Af-tr4jt(F).

L*LZ, ® £(>( - z7)-*(^ - z'7)-'£L     d\ z | d\Fz'

jj\(Kz,Kz,)\\\F(A- ziy'*(A- z'iyXF\\^Kd\z\d\z'\

Also,

\WW*
1

(2*)

1

//IFZ,IFZ
*¿z¿z'

(2-n)

1

2//||IFz,IFz*||tro>i/|z|J|z'

(J\\(kz.,kz)(A - z'I)~]F(A -z7)_1*||tra d\z\d\z'\
(2*)

<Mtr^(£).

3. Let £ belong to (2,, and let £ be a finite projection in &H. We will denote the

space spanned by {p(T)E: p £ P) by F. Clearly V is invariant with respect to T.

Note that Fé£w | v is again a von Neumann algebra. Let t' be the restriction of ts  to

V&„\y.

Lemma 3.1. Let T be an invertible operator in &H, and let E be a finite projection in

&H. Then the orthogonal projection whose range is R(TET'X) is finite with trace equal

to the trace of E.

Proof. Let Q be the orthogonal projection whose range is R(TET~X). We claim

there is an isometry in &H from £ onto R(TET'X). Once this is established, the

finiteness of £ implies Q is finite, and tr(Q) = tr(£).
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Consider the polar decomposition of the operator TE in âH. TE = VjET*TE,

where U is in âH. U is an isometry from R((TE)*) onto R(TE). R(TE)

= R(TET-X)and R((TE)*) = £. Therefore, Q = UEU* implies Q is finite. Indeed,

£ = i/*ßi/, and so tr(£) = tr(Q).

Corollary 3.2. Let T be invertible. The projection Pk, whose range is R(TKE), is

finite for every K.

Recall that F is the closure of the space {/?(£)£: /? £ 7*}.

Lemma 3.3. The operator V belongs to 6BW and is the strong limit of an increasing

sequence of finite projections in (£H.

Proof. Let £0 be the space £, and let £„ be the space spanned by £,

£[£],..., £"[£] for each n. Since £ and Tbelong to âH, En is a finite projection in

&H for every n. The £„ increase strongly to F and the conclusion follows.

Lemma 3.4. Let T be hyponormal and assume t& [T*, T] < +n. Then T = T0® Tn

where 77 = 770 © 77„. T0 = T \H is a completely nonnormal operator and Tn= T\H is

a normal operator. Furthermore, 770 and Hn lie in &H. If a is a Borel subset of R which

is bounded away from 0, and E(a) is the corresponding spectral projection for [T0*, T0],

then E(a) is a finite projection in <S-H.

Lemma 3.5. Let V be an invariant space for T, a hyponormal operator, where T and

V belong to &H. Let H = V0 © Vn where V0 is the subspace of 77 upon which TV is

completely nonnormal and Vn is the subspace where TV is normal. Then T is normal on

Vn also.

Proof. Clearly Vn is contained in V. For u in Vn we have ||F£*w|| = ||£Fu|| =

||£m|| s* H£*m|| since T is hyponormal. Since F is a projection, ||£*w|| > ||FT*w||.

For u in Vn, VT*u — T*u. Since Vn is contained in V, T and its adjoint agree with

TV and its adjoint, respectively. Thus T is normal on F„.

The Subspace Dominance Theorem. Let the hyponormal operator T be effectually

rationally cyclic with respect to V. Then tr[£*, T] =s tr^r^)*, (£|K)].

Proof. We may assume that tr[(£|K)*, (£|^)] is finite. Since T is effectually

rationally cyclic with respect to the invariant space V, {x: p E P', p(T)x E F}"= 77.

Polynomials with rational coefficients are dense in the set of all polynomials so there

is a countable subset P" of P' such that {x: p E P",p(T)x E V}~- 77. For/? E P",

define Vp = {x £ 77: p(T)x E V). Let F, = V. Clearly Vp is invariant for T and

there are a countable number of V . Sets0 = l,sx = px, s2= pxp2, s3 = pxp2p3, etc.

We have V= VSo and Vs¡ = {x £ 77: s,(T)x E V). Trivially Vs¡ contains Vp¡ for

every i. The Vs are nested and increase strongly to the identity. Each polynomial s¡

contains s,_, as a factor. By choosing P" suitably, we may assume that sn/s„_x is a

monic linear polynomial. Thus V — V and V„+l = {x: (T — an+x)x £ Vn), where

an+, £ C. We will prove the following chain of inequalities.

(9) tr[77*, T] < hm (tr[(£Fj*, (TVn)] < tr[(r|„)*, {t\v)}).
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Since Vn — {x: (I — V)p(T)x = 0 for some/? E P'}, Vn is the kernel of an operator

in âH and so belongs to 6BW.

In proving the first inequality in (9), we assume tr[(TVn)*,(TVn)] is frequently

finite, otherwise the result follows trivially. By Lemma 3.4 there exists a sequence of

finite orthogonal projections whose partial sum increases to the identity on the space

on which TVn is completely nonnormal. Let (F„)0 be the space upon which T\ Vn is

completely nonnormal. It suffices to calculate the trace of the self-commutators of

the operators restricted to (Vn)0. Since the Vn are increasing up to IH, without loss of

generality we may assume the sum of the sequence of finite orthogonal projections is

increasing up to IH.

Let (£,} be a sequence of finite orthogonal projections such that 2fL]£, is

increasing up to 7, the identity. Since t is a normal trace, we find

00

tr[T*,T] = 2 tr(£,[£*,£]£,)
/-I

and
00

tr[(TVn)*,(TV„)]= 2 tr(£,[(£Fj*,(£Fn)]£,.).
i=i

Next it will be shown that

hm tr(£,(£Fj(£Fj*£,.) = tr(£,££*£,)
n

and

hm tr(£,(rF„)*(£Fj£,) = tr( £,£*££,).
n

These equalities will imply

hm tr(£,[(7/Fn)*,(£Fj]£,) = tr£,[£*, £]£,.
n

We have

£,(£Fj(rFj*£; = EiTVnT*Ei   and    (E,TVnT*E,x, x) = IIF„£*£,.*II.

Setting y = £*£,x, we find \\VnT*E¡x\\ = \\Vny\\. The {Vn} are increasing up to 77

and therefore {£,£K„£*£,} are increasing up to £,££*£,. Since t is normal,

limT(£,TF„£*£,) = r(EiTT*Ei).
n

We will now show lim„ T(£,(£Fn)*(rFn)£,) = t(£,£*££,). Since

{tr(£,.(£Fn)*(£Fn)£,.)} = {tr(£,F„£*rF„£,)}

= tr{(Fn£,Fn£*r)} = tr(£F„£,F„£*)

and tr(£,£*££,) = tr(££,£*), it suffices to prove limntr(£Fn£,F„£*) = tr(££,T*).

Consider the following set of equivalent relationships:

(10) lim tr( TVn £, V„ T* ) = tr( 7£, T* ),
n

(11) lim tr(TVnE,V„T*) - tr(££,£*) = 0,
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(12) tr[£(£, - F„£,F„)£*] is approaching 0,

(13) tr(£[(7 - Vn)E„T*]) + tr(£Fj[£,(7 - V„)T*] is approaching0.

It therefore suffices to prove (13) true.

Clearly

tr(£Fn(£,(7- Vn)T*)) = tr[(£*£Fn£,)(£1(7 - F„))].

If A and B belong to a von Neumann algebra with a trace defined on it,

| tr(AB) |2 <| tr,L4* | -1 tr B*B | ; therefore,

|tr(r*£F„£,)(£,(7- Fj) |2 < tr(r*£Fn£,F„r*£). tr[(7 - F„)£,(7- F„)].

Since £, belongs to trace class and T*, T and F are all bounded operators,

T*TVnEynT*T belongs to trace class. We claim lim„tr(£,(7 - F„)£,) goes to 0.

Since the F„ are increasing up to 7 and t is normal,

{hm tr[£,(7- F„)£,]) = {tr(£,7£,) - hm tr(£,F„£,)}
v    n ' K n '

= itr(7£,) - hm tx(VnEi}} = 0.
v n '

The value

t(£(7 - F„)£,T*) = tr(£*£(7 - V„)E,) = tr(£,£*£(7 - F„)£,)

and

| tr(£,r*£(7 - Fj£,) |2 < tr(T*TEJ*T)- tr(£.(/ - F„)£,).

Using an argument similar to the previous one, tr(T*TEiT*T) < + oo and

tr[£;(7 — Fn)£,] approaches 0. Therefore,

hm tr(£,[(£F„)*,(£Fn)]£,) = tr(£,[£*, £]£,).
n

Using this we see

00 00

tr[£*, T] = tr 2 £,[£*, £]£, =   2 M£,[£*, £]£,)
(=1 i=i

OO 00

=   2   limtr(£,.[(£F„)*,(£F„)]£,)<  lim   2 tr(£,[(£F„)*, (£F„)]£,)
,= i    ■ — , = i

=  hm tx[(TVn)*,TVn].
n

The inequality is a consequence of Fatou's theorem.

In order to complete the proof of this theorem we need to establish

hm tr[(£F„)*,(£Fj] <tr[(£|K)*,(£|F)].

n

Let 7L,+ 1 = T\K+¡, where Vn+X = {x: (T - an+xI)x E Vn). Clearly Bn+i is effectu-

ally rationally cyclic with respect to F„. It suffices to show

(14) tr[77*+1, Bn+l] < tr[5*, Bn]    for arbitrary n.
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Equivalently, it is enough to show that if K is an invariant space for T, a

hyponormal operator in &„, and [x: Tx E K}~= 77, then tr[£*, T] < tr[(TK)*, TK].

Without loss of generality we may assume N(T) = 0. To see this, let K' — {x + n:

x E K, n £ N(T)}. The space N is a reducing space for T since T is hyponormal.

Since TK= TK' and (TK) = (TK')*, [(TK)*, (TK)] = [(TK')*,(TK')]. Further-

more, £77 contained in K implies £77 is in K'. The space K' is invariant for £ since

both TV and K are invariant. It suffices, therefore, to prove tr[£*, £] <

tr[(TK')*,(TK')]. Further, we may assume N(T) is in K. Thus, TV is a reducing space

for £ 1^,. Since both £ and T \K, are normal on N, the foregoing does not affect the

trace of either commutator.

By Lemma 3.4 there exist {£„}, finite projections increasing up to K. Let £„ = {x:

Tx £ £„}. Our claim is that £„ is a finite projection for every n. Consider Bn = T \F.

Since N(T) = 0, N(Bn) must equal 0. The operator ££„ \F has no nullity and

R(TFn) is contained in £„. Thus ££„ = £„££„ = S„R„ where Rn is a positive

hermitian operator and Sn is a partial isometry. Since £has no nullity, N(Rn) = I —

£„. Also, R(Sn) is contained in R(En) and R(S*) = N(S„) = R(Rn). We conclude

that F„ = R(Rn) = R(Sn). Since £(5„*) = 5n*5,„ S„S* = R(Sn) and S„5„* is con-

tained in £„, £„ is equivalent to a subspace of £„. For each n, £n is finite imphes Fn

is finite. The £„ are increasing up to the identity on 77.

Let Un — {x + y: x £ K, y E £„}. £77 is contained in K implying U„ is invariant

for T. Clearly K is in Un and Un — K is in £„. Thus Un — K is finite and

tr[(£ 1^ )*,(T\U )] = tr[(T\K)]. The U„ are increasing up to the identity. By an

argument similar to the one used to prove the first inequality in (9), we have

*l(T\K)\(T\K)]=  Umtr[(r|J*,(r|J]<tr(7-,r].
n

Combining the two inequalities we have tr[£*, £] =£ tr[(£ |K)*,(£ \v)].

4. In this final section we prove our major result. Utilizing the results of the

preceding sections we prove that the trace of the self-commutator of a hyponormal

operator is bounded above by a multiplicity factor times the area of the spectrum of

the operator. Formally, we have

Theorem 4.1. Let A be a hyponormal operator in &H with effectually rational

multiplicity s. Then [A*, A] is in trace class and tr[A*, A] < (i/w)area(sp(/l)). If fis a

function analytic on sp(A) and if fi A) is hyponormal, then

tr[f(A)*,f(A)]<±(      \f'\2dv.
m •/sp(/4)

Proof. Let i/be a bounded open set in C such that sp(A) C U, t){U) — r¡(sp(A))

is small and U is bounded by a finite number of smooth Jordan curves. Let 77' be

the space spanned by {2"= xq¡(A)e,: e¡ E E and qt E Q(U)}. Clearly 77' is in &!{. Let

B — A\H,. From [16] we see that B has its spectrum contained in U. B is hyponormal

and rationally cyclic with respect to £ on 77'. By the subspace dominance theorem,

[tr A*, A]<tr[B*, B].
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Let T = Tz ® E be the operator acting on the Hubert space K = Q2(xu7l) ® E.

From the results in the Ix case [7], we know

tr[£*, £]tr[£* ® £, £z ® £] = tr[7;*£z ® £ - £z7;* ® £]

= tr[£z*,£z].tr(£) = (K¿»7,(L/),

where tr(£) = ke.

To complete the proof we need to exhibit IF in B( K, 77'), an intertwiner between

£ and B that satisfies the following hypotheses of the intertwining theoremZ:

(i) IF* IF and IFIF* are trace class operators.

(ii) IF has dense range.

(iii) WT=BW.
(iv) V&H,V* is in &K and F*^ Fis contained in &H, where IF = VjW*W.

(v) ^„(VXV*) = t&k(X) for all * in trace class in &K.

The map IF: Q2(xJ,t)) X £ ^ 77' defined by IF(/® ea)=f(A)ea satisfies prop-

erties (i)-(v). The range of IF is dense in 77' since B is rationally cyclic with respect

to £ on 77. Thus

(15) ti[A*,A]<(KE/«)ri(U).

If we let £ vary over all the finite projections in &H with respect to which A is

effectually rationally cyclic, we find, upon taking the infimum of both sides of (15),

that ix[A*, A)<(s/'n)r\(U). Let r\(U) approach t](sp(A)) and the first result is

proved.

As for the second statement in the theorem, since any / analytic on J can be

uniformly approximated by rationals, W[f(T)]= f(B)W; therefore, we have an

intertwining map, and coupled with the Ix result that tr[/(£)*, /(£)] = ¿/ \f \2 dt\

[1], the proof is essentially the same as the above.
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