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HIGHEST WEIGHT MODULES OVER GRADED LIE ALGEBRAS:

RESOLUTIONS, FILTRATIONS AND CHARACTER FORMULAS

BY

ALVANY ROCHA-CARIDI AND NOLAN R. WALLACH1

Abstract. In this paper the study of multiplicities in Verma modules for Kac-Moody

algebras is initiated. Our analysis comprises the case when the integral root system is

Euclidean of rank two. Complete results are given in the case of rank two,

Kac-Moody algebras, affirming the Kazhdan-Lusztig conjectures for the case of

infinite dihedral Coxeter groups.

The main tools in this paper are the resolutions of standard modules given in [21]

and a generalization to the case of Kac-Moody Lie algebras of Jantzen's character

sum formula for a quotient of two Verma modules (one of the main results of this

article).

Finally, a precise analogy is drawn between the rank two, Kac-Moody algebras

and the Witt algebra (the Lie algebra of vector fields on the circle).

Introduction. The purpose of this paper is to begin the study of irreducible,

nonstandard, highest weight modules for generahzed Cartan matrix (GCM) or

Kac-Moody Lie algebras. As in the case of (finite dimensional) semisimple Lie

algebras the first step is to study (as Jantzen did in [10]) the case when the integral

root system is of rank 2. (We will explain the concept of integral root system in

detail later.)

In this paper we carry out Jantzen's program for the case of integral root systems

of rank 2 in the opposite order to that of Jantzen. Jantzen showed how one can use

the analysis of the integral root system of rank 2 case to derive a character formula

for a quotient of two Verma modules. We derive the analogue of Jantzen's formula a

priori and use it to derive the generahzations of Jantzen's results. We should point

out that in the finite dimensional case our proof is quite a bit simpler than that of

Jantzen.

For each of the irreducible modules for which our analysis applies, we derive (in

the course of the analysis) a resolution of the same type as the Bernstein-Gelfand-

Gelfand (BGG) resolution of a finite dimensional module. (For the case of standard

modules this was done in [21].)

As we have observed in [20], the highest weight modules over the Witt algebra

(actually its central extension) behave as if the algebra is a rank 2, Kac-Moody Lie

algebra. In the last section we make this analogy precise. In particular we derive a

resolution, conjectured by V. G. Kac (see also [13]), of the trivial module by Verma
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modules using (as he does in [13]) results of Goncharova [5 and 6]. We should point

out that the exphcit form of the homomorphisms in the exact sequence is the most

important (to us) part of Theorem 6.7. This aspect is not mentioned in [13]. In the

sequel to this paper [22] we will prove the full analogue of the rank 2 results in §4 for

the Witt algebra (i.e. we will prove that 6.14(iii) is true). In particular, these results

imply Kac's conjectured character formulae for the Witt algebra.

In §1 we recall the homological algebra machinery developed in [21] for infinite

dimensional graded Lie algebras. In particular, our interpretation of Exf as the pth

Lie algebra cohomology of a subalgebra and the vanishing theorems on Ext'' are

recalled. Using these results, we obtain information on the structure of modules

from the knowledge of the Oth homology of a subalgebra (Corollary 1.7). This

information is used in the derivation of the resolution of the trivial module over the

Witt algebra in §6.

In §2 we assemble the main module theoretical results of [21] on symmetrizable

Kac-Moody Lie algebras. One of these is Theorem 2.4 which describes the embed-

dings of Verma modules by the Bruhat order in the Weyl group. It generahzes a

theorem of BGG. The other is Theorem 2.5 which contains the above mentioned

resolution of a standard module by direct sums of Verma modules. The uniqueness

of our resolution recalled in Scholium 2.6 will be particularly important to our

construction.

In §3 we obtain a generalization to symmetrizable GCM Lie algebras (of arbitrary

rank) of Jantzen's character formula corresponding to the quotient of 2 Verma

modules. This formula is of crucial importance in the study of characters of

irreducible highest weight modules as demonstrated in the semisimple case by

Jantzen's work [10]. Here it will serve as a major tool in the construction of our

resolutions in the integral root system of rank 2 case. In the process we obtain

elements giving embeddings of Verma modules, generalizing the constructions of

Shapovalov [23] and Goodman and Wallach [7]. In the construction of a Shapovalov

element we use Theorem 2.4 instead of Verma's theorem. This construction con-

tained in Theorem 3.3 refines Kac-Kazhdan's generalization of the Shapovalov

determinant formula [14].

In §4 we construct resolutions of irreducible highest weight modules over rank 2

symmetrizable GCM's, where the highest weights lie in the Weyl group orbits of

dominant integral weights. In the semisimple case these are all the integral weights.

The resolutions are obtained in Theorem 4.12. The construction gives rise to

nitrations of Verma modules by sums of Verma submodules. Using Theorem 4.12

we show that these filtrations coincide with Jantzen's filtration (Theorem 4.16(i)).

This gives a direct description of the latter and proves Jantzen's conjecture on the

heredity of his filtrations in our case. We also describe the intermediate quotients of

Jantzen's filtrations (Theorem 4.16(h)). Hence these results generahze Jantzen's

results [10, 3.17, 5.5] in the integral case. An Euler-Poincaré principle as in Garland

and Lepowsky [4] gives the character of these irreducible modules (Corollary 4.13).

This proves the Kazhdan-Lusztig conjectures [15] in our case.

In §5 we handle the nonintegral case. To this end we extend the definition of

integral subroot system of a weight to the case of GCM Lie algebras. Here, we
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obtain all the results obtained in §4 for GCM Lie algebras with certain integral root

systems of rank 2. For semisimple Lie algebras the results of this section contain

those of §4 including the singular case. In particular we obtain the results of Jantzen

mentioned above for arbitrary highest weights with integral root systems of rank 2.

We also show that for the other GCM Lie algebras of rank 2 the results of this

section almost complement the ones of §4 for integral weights. In the Euchdean case,

the analysis of §§4 and 5 leaves as the only outstanding case that of integral weights

perpendicular to the principal null root.

The problems studied in §§4 and 5 have strikingly similar counterparts in the case

of the Witt algebra. We obtain in §6 a resolution of the only "standard" module

over the Witt algebra, namely the trivial one (Theorem 6.7). We also prove the

equivalence of the analogues of the various questions answered in the analysis

carried out in §§4 and 5 for GCM Lie algebras (Theorem 6.14). One of these

questions is the irreducibihty of certain modules that are constructed here. In the

sequel to this paper [22] this and hence all the other questions are answered

affirmatively.

We wish to thank J. Lepowsky for helpful conversations.

1. Homological algebra. We recall the definition of the pair (q, b) introduced in

[21], where g is a complex Lie algebra and i) C g is a subalgebra. We fix {a,,... ,an}

C b* and denote by Q the free abelian group generated by {a,,...,a„}. The pair

(8, b) has a grading: g = ©aeß ea, where ga = {A" G g | [H, X] = a(H)X, for all

H E ft}, dim ga < oo for all a E Q, q0 = b and [ga, Qß] C ga+/3, a, ß G Q, and

satisfies the conditions (Tl) and (T2) below:

(Tl) 8a ^ (0) only if a = 2"=, m ¡a, with m¡ E Z+ for all i, or — m, G Z+ for all i.

(Here Z+ denotes the set of all nonnegative integers.)

LetÔ+ = 2f=1Z+a,,andsetn= ©aeß+M0} 9« and n~ = ©a6ß+M0}S-a-

(T2) There is an b-invariant, nondegenerate pairing between the spaces n and n   .

Examples of the above class of graded Lie algebras were given in [21]. In §6 we

consider an additional example to the ones treated in [21]. If a is a Lie algebra we

denote by U( a ) its universal enveloping algebra.

Next, we recall the definition of the truncated categories G(X, q) defined in [21].

Let kQ+ = {2"=1 m ¡a, E Q+ \ l"=xml > k}, where k G Z+ . If p = 2"i=xm¡a¡ is an

element of Q, we set u+ = 1¡e[m¡a¡, where i6/C{l,...,»} if and only if

m, E Z+ , and juT = ju — u+ . Fix q E Z+ and A G b*. Let n = n(X, q) =

{u G b* | p E X + Q and (u - A)+ G Q\Q+ }.
Definition 1.1 [21]. Let G = G(X, q) be the full subcategory of the category of

g-modules such that:

(i) M = ©^t,, AT,, where M¡í= {vEM\Hv = n(H)v, for all H Eb} and

dim M < oo.

(ii) A/„ ¥= (0) only if /t G U.

Let fi E b* and M be a a-module. The spaces Mß defined as in Definition 1.1 (i)

are called weightspaces of M. If M^ =/= (0) then u is called a weight of M and a

nonzero element of M^ is called a weight vector. If M = U(q)v, where v is a nonzero

vector of M such that n • v — 0, then M is called a highest weight module of highest
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weight ¡ti. If u G IT then it is clear that M G G. Let b = b ® n. We denote by Af(p)

the Verma module associated with g, b, (a,,... ,a„} and p. That is, Af(p) is the left

[/(g)-module [/(s) ®{/(b)Qu)> where C(u) is the one-dimensional b-module with n

acting trivially and b acting by p. We denote by L(p) the unique irreducible quotient

of Af(p). The irreducible modules of G axe the L(p), with u G II. If M G 6 and

p G II we denote by (Af : L(p)) the (generalized) multiplicities defined in [21, §5].

An object M E G is said to have a Verma composition series (VCS) if it has a

filtration Af = M' D M2 D • • • D AT D Mr+1 = (0) of submodules such that

M'/Mi+X ä Af(p(), p, G n, i = 1,... ,r. In this case M/n" Af a ©/I, C(p;) as an

b-module [21, Lemma 6.1]. If u G IT the number of indices i G {1,.. .,/■} such that

p = p, is denoted by (Af : M(fi)) [21, Definition 6.2]. In [21] we gave a construction

of projective modules in G. In particular, the following result was obtained:

Theorem 1.2 [21]. The finitely generated indecomposable projective objects of G are

in one-to-one correspondence with the irreducible objects of G: /(p) <-» L(fi), p G II.

Furthermore, every module I([i) has a VCS, and

(/(p) : M(v)) = {M(v) : L(p)),   for all p., v E II.

Remark. More general categories (GS(X, q)) were introduced in [21] which are

suitable to study modules induced from a "parabolic" subalgebra or generalized

Verma modules. In [21] the results above were obtained in this more general setting.

We now recall some results on extensions and relative cohomology obtained in

[21].
Let (3(B 6) denote the full subcategory of the category of 8-modules M such that

Af = ©„g^.Af^. We denote by Ext^ab)(M, N) the abehan group of equivalence

classes of p-extensions oí M by N in ß(g 6) (p E Z+ ).

The following is a particular case of Theorem 7.2 of [21].

Theorem 1.3 [21]. Let M E ß(a[)), p G b*,P E N. Extf8if)) (Ai(p), Af) is naturally

isomorphic with (Hp(n, M))^, the ¡i-weightspace of the pth Lie algebra cohomology of

n with coefficients in M.

We now state a slight variation of a particular case of [21, Theorem 7.5] which is

proved exactly as that theorem was proved in [21].

Theorem 1.4 [21]. Let p G b*, M = ©/e/M„ M¡ E G(X¡, q¡). Then

ExtfBii!)(A/(p), M)

is nontrivial only if there are distinct p,,p2,...,ppGb*,Pi ^p, such that

(Af : L(p,))(A/(p,) : L(ßp_x)) ■ ■ ■ (M(p,) : L(,i)) * 0.

Next we show how the study of the 0th Lie algebra homology of n with

coefficients in M E G yields results on the g-module structure of Af.

Proposition 1.5. Let M = ©/I, Af;, Af, G G(X¡, q¡), and E E M be an b-module

such that E = H0(n~ , M) under the natural b-module homomorphism M -»

H0(n~ , M). Then M = U(n~ )E.
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Proof. We order the weights p,, p2>... of H0(n~ , Af ) = Af/n~ Af according to

the rule: p, < py =>j < i, where the partial order used is defined by x<4* ^ 4* ~ X

E Q+ . (It is clear that the weights of n can be enumerated as indicated.) We order

the weights vx, v2,... of Af compatibly with the enumeration of the ¡x/s. Let p, = v¡.

If j > 1, then A/r| = E,x ® (n~ M\t = (0). Hence j = 1, p, = vx and Mr¡ = Ev¡.

Suppose we have shown that Af„  C U(n~ )E for all k < i.

MVm = £,|+1 © (n"M),l+i E EVi+x + 2 n~MWk C U(n~ )E,
k^i

since (n~ M ) ¥= (0) imphes k < i + 1, and by the induction assumption. There-

fore M = U(r\-+)E.   Q.E.D.

Corollary 1.6. Let M = ®J=XM¡, M¡ G G(X¡, q¡). Then M is finitely generated if

and only if H0(n~ , M) is finite dimensional.

Proof. We need only to observe that if Af G G(X¡, q¡) then Af is U(g)-finitely

generated if and only if Af is U(n~ )-finitely generated, by the Poincaré-Birkhoff-Witt

theorem and the local U( n )-finiteness of Af.   Q.E.D.

Corollary 1.7. Let M = ©(í=1 Af,, Af, G G(X¡, q¡), be a U(xx~ )-torsion free object

o/6(flii). Let M/n~ M = ©,'=1 Co,- where v, is a weight vector of weight v¡. We order

the v¡ so that v¡ < v¡ =*_/ < i. (This can obviously always be done.) If(M(vt) : L(vj)) = 0

for all 1 < i <j < r, then we may choose n-invariant representatives of the v, in Mv,

i.e.,M^Yi=xM(v¡).

Proof. Set Af, = 2)=, U(n" )oy. Then (0) C Af, C • • • C Mr„, C Mr and Mr^M

by the proof of Proposition 1.5. We note that Af, =* M(vx). Suppose we have shown

the assertion for all Vj, 1 <j < i. We note that W¡ — M¡/M¡_x is a highest weight

module of highest weight v < v¡. \iv<v¡ then o, G M¡_x, hence (M(vj) : L(v¡)) =£ 0

for some j, Kj<i, a contradiction. Hence W¡ is a highest weight module of

highest weight v,. We have an exact sequence

0-*Ai,_,^Af;-J^-0.

The argument of the proof of Theorem 1.3 shows that /: n -» M¡_x, defined by

a(f(X)) — Xv¡ for all X E n, yields an element [/] of Hx(n, Af,_,)„. This space is

isomorphic with Ext[a b) (M(v¡), M¡_x) by Theorem 1.3. Hence, if [/]^0 then

0 < (Af,_, : L(v,)) < iyJ^M^j): L(vJ)) by Theorem 1.4. This would imply that

(M(vj) : L(v¡)) t^ 0 for somey, 1 <j < i, a contradiction. Therefore [/] is trivial,

i.e., fi(v¡) lifts to an n-invariant in (Af,-),,.. This imphes the assertion for the o, for all

i, 1 < i < r.   Q.E.D.

2. The resolution of a standard module over a Kac-Moody Lie algebra. In this

section we consider a special example of the pahs (g, b) defined in §1. We assume

that 8 = o XI g is an extended generalized Cartan matrix (GCM) (or Kac-Moody)

Lie algebra obtained by adjoining degree derivations to a symmetrizable GCM Lie
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algebra g over C. Let b = t>®bCgbea (Cartan) subalgebra relative to which a has

a rootspace decomposition

Q = b® ©9«,

where A is the set of roots of (g, b). Here ga = {A" G g | [H, X] = a(H)X for all

H G b}. We denote by A+ (resp. A_ ) the set of positive (resp. negative) roots. We set

n = ©a6A gQ, n~ = ©aeA ga and b = b ® n. We denote by 5 the usual symmet-

ric bilinear g-invariant form on g. Then g = n~©b®n, and g, b, B, n and n~

satisfy the conditions (Tl and T2) of §1. Let A0 = {ax,...,a„} be the set of simple

roots. Let (, ) denote the symmetric bilinear form on b * induced by the restriction of

B to b- We define the simple reflections o¡ — oa of b* by

o¡(fi) — p — 2-,—-—'-ret,   for all p G b*, / = l,...,n.

Let W be the Weyl group of ( g, b ), that is, IF is the group of automorphisms of b *

generated by {o¡\i= 1,...,«}. We denote by / the length function on W and set

H/(*) = {wEW\ l(w) = k}, for all kEZ+. Let AR = UJ=X Wa¡ denote the set of

real roots and A, = A\AR denote the set of imaginary roots. For an introduction to

GCM Lie algebras the reader should consult the original papers of Kac [12] and

Moody [17] (see also [16]).

If a E AR we set oa(n) = p — 2(p, a)a/(a, a) for all p G b*. oa is an element of

W. Indeed, if a = wa, for some w E W and some i G (1,...,«} then oa = wo¡w~x

(cf. [19]).

Let hx,...,hn denote the canonical basis elements of f). Let P (resp. P+ ) denote

the set of integral (resp. dominant integral weights), i.e., P = (p G b* | p(A,-) G Z,

í = 1,...,«} and />+ = {p G b* | p(^,) G Z+ , / = 1,...,«}. Fix an element p G b*

such that p(hj) = 1, / = 1,...,«. Clearly p G P+ . If w G W and p G b* we write

•»•pw((i+p)-p.

We recall a useful result obtained in [21, Lemma 8.2]. Set ha = (a¡, a¡)h¡/2,

i = 1,...,«, and /ia = 2"= ,&,/!„_, if a = 2JL, /c,a,.

Lemma 2.1 [21]. Le/ p G P+ , h> G W and ß E A+ . 77¡e following statements are

equivalent:

(i) 2w(p + p)(hß) = n(ß, ß) with n E N;

(ii) ß EAR and l(oßw) > l(w).

Next, we will state structural results on Verma modules obtained in [21].

Lemma 2.2 [21]. Let p G P+ , w, w' E W. Then dim Homa(Af(w' ■ p), M(w ■ p)) <

1.

Since an element of Homa( Af(x), M(\p)) is either zero or injective and because of

the above lemma we write Af(w' • p) C M(w ■ p) whenever

Hom8(A/(w'-p), Af(wp)) ^0,       w, w' E W, p G P+ .
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Next, we recall the definition of the Bruhat order on W. Let A¿ = A+ flAR.

Definition 2.3 [21]. Let w, w' E W, a E AR . We write w 2- w' if w — oaw' and

y
l(w) = l(w') + 1. We write w «- w' if there is y G A£ such that w <-w'. We write

w < w' if w = w' or if there are w0, wx,..., wr G IF such that w = w0 «- w, «- ■ • • <-

wr — w'.

Next, we state our generalization of the BGG theorem (cf. [3, Theorem 7.7.7]).

Theorem 2.4 [21]. Let p G P+ , w, w' E W. Then

(i) M(w' ■ p) C M(w ■ p) <=> w' < w «• (A/(w • p) : L(w' • p)) ^ 0.

(ii) If M(w'• ¡x) EM(w-fi), w=£w', then there are w0,wx,...,wr E W such that

l(wi+\) = l(w¡)- 1, / = 0, l,...,r- 1, w0 = w', wr = w, and M(w0-¡x) E M(wx -p)

C ••• C Af(wr-p).

(hi) // /(w) = /(w') - 2 í^e« í/ze number of w" E W such that Af(w'-p) C

Af(w" • p) C M(w • p), Af(w' • p) ^ Af(w" ■ p) # M(w • p), « 0 or 2.

Next we will state a particular case of the resolution of a standard module

obtained in [21].

Let f, E g_a. and e¡ E g0| be such that f„ h„ e¡, i = 1,.. .,n, axe the canonical

generators of g. A standard module Af over g is a highest weight module Af = U( g )v,

where v E M , n • o = (0), such that ft" • v = 0 for some m G N, i = 1,... ,n. The

highest weight p of the standard module AÍ lies in P+ (cf. [16]).

Theorem 2.5 [21]. Let M be a standard module with highest weight p G P+ . There

exists a resolution

(2.1) ..--Ç-ÎÇ-,-» •••-C,tc0-Af-0

where Cj=®M(w-li), w E W"\ dj= ©&¿I>M,2»Wl,W2 wfiÄ 6¿1>W2G{±1}, fl„rf

ïw jM, : Afiw, -p) -» Af(w2-p) are fixed unique (up to scalar) embeddings, wx < w2,

wxE Wu\w2E WU~l\

Scholium 2.6 [21]. Any complex

Tí Yl Yo

••■-C7-Cy_,- ■••-C,-Co-A/-0

such that YyjM       ^= 0 for all w G WiJ\j G N, is exact and equivalent to (2.1).

3. A generalization of a character formula of Jantzen. We retain the notation of §2.

In this section we will derive a generalization of the character formula of Jantzen

corresponding to the quotient of two Verma modules. To do this we will need to

construct two families of elements in t/(n- ). The first family will generahze the 0an

of Shapovalov [23], the second will generalize the S_na of Goodman and Wallach

[7]. We first sketch how the construction of Shapovalov [23] can be generalized to

our case.

If w G W, let $„ = (a G A+ | w~ xa G A_ }.

The following result is well known (see e.g. [16, Proposition 2.8]). For the

convenience of the reader we will include the simple proof.
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Lemma 3.1 [16]. Let w E W(r). Then there are a,,.. .,a, E A0 such that w = o,

• • • a, is a reduced expression and $w consists of the r distinct elements <x¡ ,o¡a¡,..., o¡

• • • a,   a,. Furthermore a¡ can be taken to be any simple element of $w.

Proof.

(1) \**\<r-

We prove (1) by induction on r. If r = 0 then the result is obvious. Suppose it is true

for 0 < r < 5 and let w G W(s). It is easy to see that a^O^la,^}) C <ba   . Since

l(o¡w) = s — 1 we have | $„, | < | $0. J +1 < s.

It is also clear that if l(w) > 1 then

(2) $w contains some a¡.

We prove the lemma by induction on | $w | . If | $w | = 0 then w — 1. Hence the

result in this case is clear. Assume the result for 0 «£| $, |<| <bw | . Let a¡ E 4>w. Set

t — o¡w. If a G $w\{a,-} then o¡a E $,. Clearly a, £ $,. But then o¡a G <i>w for

a G $,. Hence o¡<P, — í>w\{a,} and so | O, |= r — 1. Hence the inductive hypothesis

imphes that t — o¡ ■ ■ ■ o¡ and $, consists of the r — 1 distinct elements

a¡ , o¡a¡,. . . ,o¡ •••a, a,. So $w consists of the r distinct elements

a,, 0:a¡, o¡o¡ a,... .,o¡Oj ■ ■ ■ o¡   o¡ as asserted.   Q.E.D.

Recall that AÄ = U"=, Wa¡. Thus in particular Lemma 3.1 implies that if a E A+

and there is w E Wso that wa E A_ then «EAj.

If a E AR then a = wa¡ for some w E W and some 1 < i < n. Let m(a) be the

minimum of the l(w) for such w. Note that m(a) = 0 if and only if a G A0.

Let P+ = {X E b* | (X + p)(Ä,) G {1,2,...}}. Set T = Uweww-P+ . Put T,+ =
{A g r | (X + P)(h¡) > o}, r,- = {X e r | (X + pxa,-) < oj.

If a G A, k E N, let bj,* = {X G b* | 2(X + p, a) = fc(a, a)}.

Lemma 3.2. If a E AR is not simple then there exists j, 1 <y < n such that:

(i) m(OjO) < m(a).

(ii) r~ n bt,k ** Zariski dense in b*^ /o/" all k = 1,2,_

Proof. Let p = m(a) and let a = Mi with /(w) = p > 0. Let w = a, • • • a, as in

Lemma 3.1. Then <&„,-! = (a,, a, a, ,... ,a, • • • a, a¿ }. In particular if t = o¡ ■ • • o¡

and if y' = /', then

(3.1) r'«7GA+.

We  also  note  that  Oj0t = ta¡  and  l(t) = l(w)—l.  Thus  m(oja)<p.   Also

"/•(r/n6*t) = r/nfi*<^ = r-(r1.r/nft*t). Thus r;n^t is zariski
dense in b*t<: if and only if t ' • r,+ n b* is Zariski dense in b* . But (3.1) imphes

that t ■ P+ E T/ . Hence t~ ' • Ty* D P+ , bût then

which is clearly Zariski dense in b *, .    Q.E.D.
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Theorem 3.3 (compare Shapovalov [23]). Let a E AR and let k = 1,2.Then

there exists 0ak E U(n~ ®b)_ka satisfying the following conditions:

(1) [e„ 0aJ\ E U(Q)(ha + p(ha) - k(a, a)/2) + t/(g)n.

(2) K,k =/.*"" ' • ■fnkm"_+ ïjajbji« = 2?=1m,.a,.), 0j E l/^n"), ft, E U(b) and

p < k2"=x m¡. Here Up(n ) = i/(n ) fl Up(q) and (Up(Q))p^0 is the canonical filtra-

tion of U( g ).

The proof of this result follows the hne of argument of Shapovalov [23] with the

following modifications: We prove the result by induction on m(a) (which amounts

to induction on 2(p, a)/(a, a)). We choose e = o¡7 as in Lemma 3.2 if m(a) > 0. We

replace the B in (i'), (ii'), (hi') in §3 of [23] by I}" n bl,k (K,k = Kk in [23]). The
arguments in the proof of (i'), (ii'), (hi') in [23] using [1] go through using [21,

Theorem 8.15]. The rest of the argument in [23] now goes through unchanged in our

case.   Q.E.D.

As an immediate consequence of Theorem 3.3 we obtain the following generaliza-

tion of a theorem of Verma's.

Corollary 3.4. Let X E b*, a E A£ and m = 2(X + p, a)/(a, a). If m G N then

Hom6(Af(A - ma), M(X)) * (0).

We now sketch the construction of S_ß(X) in [7]. Let Q+ = 2"=, Z+ a,. The proof

of the following result is identical in our case to that of Lemma 4.1, p. 226 in [7]. We

first need some notation. Let ox denote 1 ® 1 in Af(X). Let ( , )x denote the

Shapovalov form on M(X) which we also look upon as a form on U(n~ ). Let x:

n~ -» C be linear and defined by x(f¡) = 1, 1 < » < n, and x([n , nD = 0. Let x:

U(n~ ) -» C also denote the homomorphism extending x-

Lemma 3.5. If p, E Q+ then there exists a rational function X t-» ñ-A[\) of b* into

U(n~ )_M with the following properties:

(l)ñ0(X) = l.

_ (2)   [e„ ñ_M(X)] = «-^(X) + ñ'-^(X)(h¡ - X(h¡)\   1 ^ i_< n,   where   X ■-»

n'-p ¡(X) is a rational function into U(n   )-,,+„• Also n_fl+a and n', have singular-

ity sets contained in that ofñ_)l.

(3) («, «_M(X))A = X(ñ)for ñ E t/(ñ)_r

If p = 2 m¡a¡ G ß+ \{0}, let | p | = 2 m,. Set m = | p | . Let J(p) = {(/„. ..,im)\l

< ij < n and 2 a, = p). For 1 =£ k =£ w set p/t = 2™=A: a, = p - 2*=,' a,.. Set f, =

h'~fu
Define for X G b*, / G /(p),

m

^/(x,p)= n (2(x+p)-pvp/t).
A:=l

If X, p G b*, let L^(X) = (2(X + p)~ p., p). Set 0' = {X G b* | /.„(X) # 0 for ail

pG£+\{0}}.
The following result is proved in exactly the same way as Corollary 4.3, p. 229 of

[7] using the Kac-Casimir operator of g.
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Lemma 3.6. Let p G Q+ \{0}, p = 2"=, m ¡a,. IfX G fi' then

*-,(*) = (ñ <«,.«,)"')  2 P/(x,m)"7/.
\ i=i / /eJ(n)

If p E Q+ we define r^ by the following formula:

^ = IILy.       Y =y'o,    />0,   7a<fi.
Y

f/ere vx < v2 if v2 — vx E Q+ .

Using the results of Kac and Kazhdan [14] it is easy to see that the proof of the

following result is identical with the proof of Lemma 4.4, p. 231 in [7].

Lemma 3.7. Let p G Q+. Then the function S (X) = r(\)ñ_ (\) extends to a

polynomial map ofb* into U(n~ )    .

We look upon U(n~ ®b) as canonically equal to U(n~) ® U(b). We set for

«eiJ,)cËN

<UM = (i®x)(0a>t).
We note that

(3-2) 9atkvx = 0aJ\)vx

and

(3.3) x(UA)) = l,       «GA+,fc=l,2,....

We set q^X) = x(5_,(X)).

Lemma 3.8. Let p G Q+ .

(1) Ifñ G U(n~ )_„ íAen (S_/X), «), = x(«)^(a).

(2) (S_„(X), S_„(X))A = ?(,(X)^(X).

This result is an obvious consequence of Lemma 3.5.

IfaGA+ set(b*,,)' = {XGbl,|L^(X)^0forj8GA+,;= 1,..., andjß^

ka}. Set VaJ< ={XE b*a,k \ LjB(X) * 0 foryS G A+ ,j = 1,... andjß < ka, jß * na}.

Lemma 3.9. Let a E AR .

(I) IfX G bl,k then S_ka(X) = qka(X)0aJX).

(2)IfXEVakthenqka(X)^Q.

Proof. Let £ E fi'. Then Lemma 3.5 imphes

[e„ S_ka(0] = rka(Z){ñ_ka+a¡(¿) + ñ'_katM)(h, ~ «(A,))).

Specializing to X G b*,* and using Lemma 3.5 again this implies that e¡S_ka(X)vA =

0.

Now it is easy to see that if X G Vak then dimHomB(Af(X — ka), M(X)) = 1.

Thus for X G Vak, S_ka(X) = c(X)0aJX). Applying X we find that c(X) = qka(X)
on V k. But Vak is clearly Zariski dense in bt,k- This proves (1).

To prove (2) we first assume that X G Vak and that S_ka(X) = 0. Then

S-*«(X + tp) = tv(t)
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with o a polynomial in t. Also

S-ka(X + tp) = rka(X + tp)ñ_ka(X + tp) = th(t)ñ_ka(X + tp)

with h(0) ¥= 0. Thus if S_ka(X) = 0 then ñ_ka(X + tp) is defined at t = 0. But

Evaluating this equation at r = 0 gives

(«..*(M,»-*.(X + ip)Uo)x=l-

However, by its construction 6ak(X) is in the radical of ( , )x. Thus we have a

contradiction. Hence S_ka(X) ¥= 0 for X G Faifc. But then qka(X) ¥= 0 since 0ak(X)

¥= 0 all X.    Q.E.D.
We now come to the main result of this section. Let a E AR and let X G b*a,k,

k E N. The map X i-> X6ak(X)vx induces an embedding

T(\)
(3.4) M(X-ka) - Af(X),       aë^.

Set AT(X) = M(X)/T(X)M(X - ka). Let w G b* be such that («, a) = 0 and

(to, ß) ^0 tox ß E A+ , ß ^ a. Then using « and arguing as in Jantzen [10, §5], we

can construct a filtration of 7V(X) by g-invariant subspaces.

We give, here, a slightly different derivation of the filtration which will be useful

in our proof of the main result.

Fix /„+1, f„+2,..., G n~ so that /,, f2,... is a basis of n~ by root vectors. Let

a = 1m,a,. Set 9ak = fxkm' ■ ■ -f„km\ Let p G Q+ and let F.^ be a complementary

space to U(n~)_li+kaBak in [/(n-)^ constructed as in Shapovalov [23, p. 310].

Then as in [23] we have

(3.5) V_lí®U(n-)-li+kJa,k(t)=U(n-)-lí   for all p G Q+ ,£ G b*.

SetF=©(i6ß+F_)J.

Let for I G b* t, K-JV(£) be the map given by ^(A") = Xo6 + r(£)Af(£ - *a).

Then ^ defines a linear isomorphism of F with N(£) for all £ E b*,k- Furthermore,

^ is an b-module isomorphism of C(£) <8» F onto N(£).

Let for X G t/(g), tT^(X)v — \p^x(X\p^(v)). Then (wj, V) is a family of representa-

tions of 8- We also note that if X E U(q), v E V then £ i-> 77|( A")o defines a

polynomial map of b*a,k mto ©„es ^-^ f°r some finite set 5 C Q+ depending only

on X and v.

We also note that for £ G b*i/fe, ( , )f induces a contra variant form on

Af(£)/r(£)(A/(£ - Jfca)) since T(£)(Af(£ - ka)) is contained in the radical of (, )t.

Thus we can pull back by ^ the ( , ){to define a family of forms ( , ) { on F such

that:

(I) ( , ) I is symmetric.

(II) ( , >{ is nondegenerate if £ G (b*a,k)'- (In this case Ar(£) = L(£).)

(III) If o, w E V, £i-» (v, w)t is a polynomial map on b*,*-

(IV) (ir((X)v, w){ = (o, Wj(a( A'))w)i. (Here a is the antiautomorphism of /7(g)

that fixes h¡ and sends e, to/, i = 1,... ,n.)
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Let now V[t] = C[t] ® V. We look upon V[t] as the direct sum of the C[r] ® V_fl

and upon C[r] ® V_)i as the polynomial maps of C into V_li. Fix X G b%k- We set

V{[t] = {fE V[t] | (f(t),w)x+ta = t'h(t),hE C[t]}.

By (I)-(IV) it is clear that if we set V{ = {/(0) |/ G V{[t}} then F^ is ^-invariant

and VD VXXD VX2D ■■■. Furthermore, Vxx is the radical of < , > v Thus V/Vxx is

isomorphic with L(X) under trx. Using </<A we have the desired filtration of N(X):

n(X)¡ = um
Note. It is easy to see that N(X)¡ is independent of the choice of V. It is not known

if it is independent of w.

Theorem 3.10 (compare Jantzen [10]). Let a E AR and k E Z, k > 1. Let

X E bt,k and let -V(X), be as above. Then

2 ch^x),^ 2       2     ch M(x-jß)
i>\ /SeA+ j>0,L/ß(\)=0

-   2 2 chAf(X-^ca- my) - a(X)ch Af(X - Ä:a)
YGA+ m>0,Lmï(X-A«) = 0

wAere a(X) G Z anda(X) = 1 ifX E Vak.

Proof. Let p G Ö+ . Fix {o„... ,vd) a basis of F_M. Set for £ G b;,*

/>f'_„U) = det«o„ vj)() = det((o„ o,)f).

Then Jantzen's argument in [10] implies

(3.6) 2chV(X),=   2   ^-"ordo^x+^X+ *«)).

Here ord0/(i) is the largest power of t dividing f(t) for / G C[í]. We note that

X + toiE (b*a¡k)' for 0 <| /1< e (some e > 0), so D'^^^X + toi) # 0 for 0 <| 11<

e, p G <2+ . We now compute the ord0.

Fix {u„... ,i^} a basis of [/(n" )_„+*«. Set *>,(£) = o„ i < dß, where {o„... ,vdJ

is a basis of V_)i, and set

"1+4ÍO = k,S-*«U).       1 < i < •*„ = <3>(p - A:«).

Here 'S5: b* -» Z+ is the generalized Kostant partition function defined as in [21]. Set

x¡ = o„ /' < dp, and

xi+d. = uÂ,k,       Ki<V

Then w,(£) A • • • Aw4^{) = ^„(£)^, A • • • Axd^.

Thus if we set for £ G b*, Í)Í_M(£) = det((x,, x,)^) then we have

(3-7) det(w,(£),M,(£))£ = <U£)2i>Z)£_M(£).
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Lemma 3.8 implies that

(3.8) [(«*ï(0>wy(0)J    has block form:

145

(»/,«,■)«

'ka (06(0'

'ka (06(0
(g(£)' = transpose of £(£)).

(«,S-*a(0,«,S-*«(0).

Hence if £ G b* then

(3-9)      Uf^y«) = det((o,, oy)i)det((u,S_,a(£), «,S_ta(0){)

+rkauy>+]htt),

where A is a polynomial in £.

We note that S_ka(£) - <U£)0a,*(£) = 0 on h* k. Hence

(3.10) XS_ka(t)vç = L,a(£)5(£)o£,       A"Gn,

where 5 is a polynomial with values in U(n~ ). We therefore see that

{u¡S_ka(e), UjS-km(i))t = {o(uj)u,S_ka(Z), S.kaU))i

= (£ - ka)p{o(uJ)ul)(S_kaU), S_t.(f))i

+AJ0U0<M0

where 0,-- is a polynomial in £. Here p:   U(q) -* t/(b) is the Harish-Chandra

projection corresponding to t/(e) = £/(b) © (n~ £/(a) + U(q)xi). Hence

(3-11)       (w<S_A.(0,«yS-*.(0)t

= («/.«y){-*.r*.(0fc.(0 +f*«ííK«(0*íy({).

But this implies that up to a nonzero scalar multiple:

(3.12)       det({u,S_ka(S),UjS_katt))i)

= Z>f_fc<,_„(£ - ¿«KiO^O1* + L,a(£K„(£)H(£)

with /i(£) a polynomial in £.

Dividing both sides of (3.9) by (qka(è)rka(è))s" and speciahzing to v E b%k yields:

If v E b*,*tnen

(3.13) qka{v)
rJLt)H i=y= DJ_A[v)Dv_ka^(v - ka)

up to a nonzero scalar multiple.
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Kac and Kazhdan [14] have shown that

00

(3.14) jwo= n n ¡.¿¿e)**-»
j8eA+y=l

up to a nonzero scalar multiple.

Thus (3.13) combined with (3.14) yield using s^ = ^(p - ka): If X G b*a,k then

(3.15)

Ord0Dx+iu_/,(X + r<o)=   2 2        9(p - jß)
ßSa+   j>0,LJß(\) = 0

-   2 2 ^(p-jfco-my)
y£A+   m>0,LmT(X-¿a) = 0

+ <3>(p - fca)ord0 9jta(X + ta) - 9(p - fco)ord0rt(,(X + tu).

This says that if k(X) = oxd0(rka(X + tu)) - 1 =| {y| y =jß, j E N, ß E A+ ,

Ly(X) = 0 andjß < ka, jß ¥= Ka} | then: If X G b*k

(3.16)     2chV(X),=   2 2 chAf(X-iî)
'>1 0£A + j>0,LJß(\) = 0

-   2 2 chA/(X-ita-jj8)
/?eA + j>0,Lß(\-ka) = 0

+ {oxd0{qka(X + tu))- k(X) - l)ch M(X - ka).

If X G Vak then ̂ „(X) # 0, A:(X) = 0. Thus (3.13) implies the theorem.   Q.E.D.
Note. It is not hard to show that a(X) E N.

4. Resolutions of irreducible modules over rank 2 Kac-Moody Lie algebras: An

integral case. In this section we assume that a is a symmetrizable GCM Lie algebra

of rank 2, i.e. A0 = (a,, a2}.

Let IF0 = {(o2oxy \j G Z} C IF. For each k E Z+ , set w2k = (o2ox)k, w2k —

(o2ox)~k = (oxo2)k, w2k+x = ox(o2ox)k and w2[k+x = ox(o2ox)~{k+X) = o2(oxo2)k.

The following is well known [2, Chapter IV, §1, Number 2, Proposition 2 and

Remarque].

Proposition 4.1. (i) IF0 is a normal subgroup of W of index 2 and W is the

semidirect product of the subgroup (1, a,} and W0.

(h) Let m be the order of W0. If m < oo then w0 = w¿, wr ̂  wj, 1 < r < m — 1 and

wm = w'm, W = [wr, wj | 0 < r < m} and IF<Ar) = {wk, w'k}, 0 < k *£ m. Furthermore,

every element of W distinct from wm has a unique reduced decomposition. If m = oo,

w0 = w¿, the elements wr, wj, r > 0, are all distinct, W — [wr, wj, r > 0} and Ww =

[wk, w'k}, 0 < k. Furthermore, every element of W has a unique reduced decomposition.
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Let m be the order of IF0. It follows from Proposition 4.1 and [21, Lemma 8.4],

that the Bruhat ordering diagram of W has one of the following forms (compare [10,

3.6] for the case m < oo):

Oh

w
2;

al

w
3.

w3

wl

a2

a,

m-3

m-2

m-1

m-3

m-2

y   1
w    1

m-1

"k+i

V2

Vi

' wk+2

w
m

m < <=°

Proposition 4.2. Let w, x E W. Then x = oBw for some ß E A£ // and only if

l(x) = l(w) + p, p E Z, p odd.

Proof. Let y G AR. Let w, G IF and /' G {1,2} be such that y = wxa¡. Then

oy = wxo¡w~x. If /(w,) = r then /(o?) = 2r + 1 or l(oy) = 2r — 1, by Proposition

4.1. Hence /(a7) is odd. If x = oßw, ß E AR , then the same argument shows that

l(x) = l(w) + l(oß) or l(x) = l(w) + l(oß) - 2. Hence l(x) = l(w) + p, p odd.

Conversely, suppose l(x) — l(w) + p, p odd. Assumep > 0. Let w = ok • • ■ ok and

x = o¡¡ • ■ • o¡ be reduced expressions. Let q be the smallest index such that iq ^ kq.

Then w' — x~xw = a, ■ • ■ o¡ok ■ ■ ■ ok is reduced and l(w') = 2[l(w) — (q — 1)] +

p, hence odd. Let w' = c^ • • • o, . If m = 1, then x = a w. If w > 1, set 5 =

(w — l)/2 and vv, = oj¡ ■ ■ ■ a}. Then w' = wxoj• wj~' = c^, where ^ = wxa}, . If

/(x) = /(vv) + p, p odd, p < 0, then /(vv) = /(x) + a, a odd, a > 0. By the above,

w = ojjX where ß E A¿ . Hence x = o^w, ß E AR .   Q.E.D.

Proposition 4.3. Let X be a standard module with highest weight p G P+ . There is

a resolution of X:

(4.1)

->A/(vv,.p)©Af(w;-p)4 ... <^A/(w1.p)©A/(wi.p)^Af(p)^A^0
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where aj(x, y) = (iWpWj_x + *„;,„._, V, -*»,,«>;_* ~ iw>]_Ky),for x E Af(wy-p), v G

M(wj-p),j> l,ax(x,y) = iw¡xx + iw[Ay,x G Af(w, -p),y EM(w[-p).

Proof. The sequence (4.1) is clearly a complex, by Theorem 2.4 and the Bruhat

ordering diagram above. Hence (4.1) is exact by Schohum 2.6.   Q.E.D.

Remark. If the order of IF0 is finite and equals m then the resolution (4.1) ends

and   am:   Af(wm-p) -> M(wm_x -p) © M(<_, -p)   is   defined   by:   am(x) =

('»v»,»-»,-,*' ~Íwm,W'„-iX)'XE M{wm-p).

We now recall Jantzen's filtration and character formula which are vahd for ( a, b )

of arbitrary rank. Let A+ (x) = {j8 G A+ | 2(x + P, ß) = i(ß, ß), i E N}, x G b*

and N„(X) = {i G N | 2(X + p, ß) = i(ß, ß)}.

Proposition 4.4 [10, Satz 5.3 and 14, (4.2)]. Leí x G b*. There is a filtration of

submodules Af(x) = Af(x)0 ̂  Af(x), 3 ■ • • such that

(i) M(x)x is the largest proper submodule ofM(x);

(ii) for every i E N there is on M(x)¡/M(x)¡+X a nondegenerate contravariant form

(, ),; furthermore

(hi) 2,>0ch Af(x), = 2aeA+(x)2,eNa(x)ch Af(x - ia).

Remark. The filtration A/(x) D Af(x), 3 • • • was defined by extending the base

field C to the ring of polynomials in one variable over C. Here, we will give a

construction of this filtration directly from the structure of Af(x), x e W- P+ , and

therefore will answer various questions posed in [10, 5.17] about the Af(x),,

X G W- P+ , in the rank 2 situation.

Corollary 4.5. Let v E W- P+ . Then

(4.2) 2chAf(i'),=     2     cbM(oav).
<>1 <*eA+(x)

Proof. This follows from Proposition 4.4(iii) and Lemma 2.1.    Q.E.D.

Definition 4.6. Let p G P+ . We define Af(p)' = Af(w, - p) + Af(w/ • p), i E N. If

v E W-k) ■ p we define Af(>-)' = M(wk+I ■ p) + M(w'k+i ■ p) = Af(p)*+'.

Proposition 4.7. Af(vv, • p) + M(wJ ■ p) = Af(w,_, • p) n M(wJ_, • p), for p G P+ ,

i = 1,2,.... // v E WP+ then M(v) D M(v)x D M(v)2 D - - - is a ^-module filtra-

tion and

(4.3) 2 ch M(vY=     2     ch M(oav).
i>\ aeA+(x)

Proof. The first statement follows from the exactness of (4.1). The statement that

An>) D M(v)x D M(v)2 D ■ • • is a g-module filtration follows from Theorem 2.4.

Let»'G W(k)-p. From

ch(A/( w,-p) + Af(w,'.p))

= ch Af(w, - p) + ch Af(w,' - p) - ch Af(vv, • p) D Af(w/ • p)

for  all  i>l   and   from  the  first  statement  it  follows  that  2,&) ch M(v)' —

2,=it+/chA/(w,..p) + chAf(w/.p),  / G N,  / odd.   Let  v = w-p,  w E Ww.   By
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Proposition 4.2, vv, = oaw for some a E AR if and only if / = k + p, p E Z, p odd.

Now, 2(v + p,a) = i(a, a) with / G N, a E A+ if and only if a G A^ and l(oaw) >

l(w), by Lemma 2.1. Hence, 2,=/t+//eN/odd ch Af(w;-p) -I- ch Af(w,'-p) =

2aeA+wchA/(oa..).   Q.E.D.

Definition 4.8. Let v E WP+ . We define L(v) = M(v)/M(v)x.

Proposition 4.9. Let v = w ■ p, p G P+ , w G IF(A:). TAere ex/sis a resolution of

L(v):

••• - Af(w,.p) © M(wJ -p) - • • • a-2A/(w,+ 1 -p) © M(w¿+, -p)

"-A/(r)^L»-0

w/iere //ie a,, i > k + 2, are defined as in Proposition 4.3, i¡k+x(x, y) — iWk+t¡wx +

iw,    wy and ek is the canonical surjection.

Proof. By Proposition 4.3 it suffices to check exactness at Af(w^+,-p)ffi

Af(w¿+, -p) and at Af(w-p).

Ker ek = M(w -p)  = Af(p)

= M(wk+\ -P) + M(w'k+\ '/*) = image of t)k+x.

Ker TJt+i = {(", -u)\u E M(wk+x-p) n Af(w¿+1 -p)} = M(wk + 2-p) +

M(w'k+2-p.), by Proposition 4.7. Hence Ker r¡k+x = Image of ak+2.   Q.E.D.

Next, we will show that the L(w- p.) axe irreducible, p G P+ , w E W.

Definition 4.10. Let p E P+, w E W(k\ w' E W(k+X). Set N(w,w'; p) =

M(w-p)/M(w'-p), N(w,w'; p)x = (M(wk + X-p) + M(w'k+X-p))/M(w'■ p) and

N(w,w';py = 0,i> 1.

Lemma 4.11. Let p E P+ , vv G W. Then L(w ■ p) is irreducible.

Proof. Let w G W(k\ w' E W(k+X) and N(w, w'; p) D N(w, vv'; p)1 be as above.

Then ch(7v"(w, vv'; p)/N(w, vv'; p)1) = ch L(vv-u). Now

2 ch N(w,w'; p)' = ch N(w, w'; p)x = ch L(w'k+X ■ p)
;>0

(resp. ch L(wk+X ■ p)) if vv' = wk+x (resp. if vv' = w'k+x). By Theorem 3.10 and

Proposition 4.7,

2 ch N(w,w>;p)i=  2   (chAf(w,+,.p) + chAf(w¿+,..p))
<>0 íeN

/odd

- 2 (chAf(w/t+l+,..p) + chA/(w;+l+,.p))-chM(w'.p)
ieN
/odd

= ch L(w'k+x-p)    (xesp.ch L(wk+x-p))

if vv' = wk+x (resp. if w' = w'k+x). Now, N(w, w'; p), D N(w, w'; p)' for all i > 0. Set

o, = chi^vv, vv'; p)¡/N(w, vv'; p)'), /' > 0. Assume that q¡ ¥= 0 for some / > 0. Then

2,>0chA7(w, w'; p)'+ 2,>0<7,  =  2,>0chA/(w, vv'; p),.   The   above   implies   that
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2,>o q¡ = 0, a contradiction. Henee q¡ = 0 for all ; > 0. Therefore N(w, w'; p)' =

N(w, w';p)j   for   all  /'> 0.  In  particular,   N(w,w';p)x  — N(w, w';p)x.  Hence

N(w, w'; p)/N(w, vv' - p)x is irreducible and thus L(w ■ p) is irreducible.   Q.E.D.

Remark. By the Bruhat ordering diagram, given w G W(k) there is w' G W(k+X)
a

such that w'<-w, with a E A0. In this case the proof of Theorem 3.10 for

N(w,w'; p) is considerably simpler. Therefore the proof of Lemma 4.11 can be

simplified by making such a choice of vv' and using this much simpler version of

Theorem 3.10. However we will need Theorem 3.10 in its full generality in §5.

Theorem 4.12. Let p E P+ , w E W(k). There exists a resolution ofL(w-p):

(4.4)      ••• - M(wrp) © M(wJ-p) - • • • a-2Af(w,+ 1 -p) © M(w'k+x-p)

Vk+i . ,   ek        , .

-> M(w-p) -^L(w-p) -^0

where the a„ i > k + 2, ijk+x and ek are as in Proposition 4.9.

Proof. This follows from Proposition 4.9 and Lemma 4.11.   Q.E.D.

The following corollary is now immediate.

Corollary 4.13. Let p E P+ . For each vv G W(k) we have

(4.5)

ch L(wp) = chAf(w-p) + (-1)* 2 (-l)'(chA/( w,.-p) + ch A/( wj-p)),
¡>k

(4.6)       chA/(wp) = chL(wp) + 2 (ch L(w,-p) + ch L(wJ-p)).
i>k

Corollary 4.14. Let p E P+ ,w,w' G W. Then:

(i) (Af(w • p): L(w' ■ p)) = 1 (resp. 0) if w' «£ vv (resp. otherwise);

(ii) (/(vv' ■ p): M(w- p)) — 1 (resp. 0) if w' < w (resp. otherwise).

Proof, (i) follows from Theorem 4.12. (ii) follows from (i) and Theorem 1.2.

Q.E.D.

Lemma 4.15. Let p E P+ , w E W(k). If M(w- pL - M(w ■ p)J for 1 <y < i then

M(w-p)i/M(w-p)i+x = L(wk+rp)®L(w'k + rp).

Proof. Let W(k+') = [s, t}. By (4.2) and Proposition 4.7 we obtain

27>,chM(w-p)j = 2/eN, /odd(chM(wk+i+rp) + chM(w'k+i+rp)). Let vk+i (resp.

uk+j) be a nonzero vector of weight s ■ p (resp. / • p) such that Af(w • p), = U(Q)vk+i

+ t/(a)«*+,. From the formula above it follows that o^,, uk+¡ & Af(w-p),+ 1.

Let w: M(wp), -* A/(wp),/A/(wp),+ , be the canonical surjection. Then

A/(wp),/Af(wp),.+ , = U(Q)v(vk+i) + U(Q)n(uk+¡). Set Mk+, = U(§)m(vk + l)

and Ai^ + , = U(Q)ir(uk + i). Let us assume that s ■ p <\- t-p. Then

(M(w-p)i/M(w-p)i+x)s.ii - (Mk+j)s.fl. Hence, the restriction to Mk+¡ of the non-

degenerate contravariant form ( , )k is nondegenerate. Let Ai C Mk+I be a proper
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submodule. Then Msl¡ = 0, hence (Mk+i)s.llE Mx , where M±={vEMk+i\

(v, u)i = 0 for all u E M}. Therefore Mk+i = AF1 and so Af = (0). Hence, Mk+i =

L(s-p) and Af(w-p),/M(vvp),+ , = L(s-p) © M'k+i. Let o G Mk+, be such that

(o, h), = 0 for all u E M'k+i. Now (o, vk+¡)¡ = 0 by weight considerations. Hence

(o, z), = 0 for all z G Af(w ■ p),/Af(w ■ p)i+x and therefore o = 0. So the restriction

of ( , ), to M'k+, is nondegenerate. By the above argument, M'k+i = L(t-p), and so

A/(wp),/A/(wp),+ , =L(wk+rp)®L(w'k + rp).   Q.E.D.

Theorem 4.16. Let p E P+ , w E W(k). Then:

(i) M(w ■ p), = M(wk+i ■ p) + M(w'k+I ■ p);

(ii) M(w ■ p),/Af(vv - p),+, = L(wk+i ■ p) © L(w'k+¡ ■ p).

Proof. By Lemma 4.11 Af(w-p), = M(wk+X -p) + M(w'k+X -p) = Af(w-p)'.

Suppose we have shown that M(w ■ p)j = M(w ■ p)j for all 7, 1 =£y </. Then

M(vv.p)J/Af(w.p)J+, = L(wk+j-p) © L(w'k+J-p) for 1 <j<i, by Lemma 4.15.

By Corollary 4.14(i) it follows that M(w • p)' E M(w ■ p),. Our induction assumption

and Proposition 4.7 imply that

2    chM(w-p)j= 2 (ch M(wk+i_2+rp) + chM(w'k+i_2+rp)).
j>i-2 (EN

/odd

Hence

chL(wk+i_x ■ p) + ch L(w'k+i_x-p) + chM(wp)¡ +    2    chA/(wp);

= ch L(wk+i_x-p) + ch M(wk+i_x-p)x

+ ch L(w'k+l_x-p) + chM(w'k+l_x-p)x

+ 2 (&M(wk+i+rp) + chM(w'k+i+rp)).
/EN
/odd

Therefore,

chAf(wp),+    2    chA/(wp)>chA/(wJH.I._1-p)1 + ch M(w;+,_,-p),

+ 2 (ch M(wk+i+r p) + ch M(w'k+i+r p))
/EN
/odd

= chM(wt+J_1-p), + ch(Af(wfc+/-p) + M(w'k+rp))

+     2     (chM(wk+i+rp) + chM(w'k+i+rp))
/eN,/odd

= chAf(wt+i_,-p), +     2     (chA/(wfc+I._1+/-p) + chA/(w¿+/_1+,-p)),
/eN,/odd

by Proposition 4.7.   Thus

ch M(w ■ p), = ch M(wk+i_, • p), = ch( Af(w^, ■ p) + M(w'k+, ■ p)) = ch Af(w • p)'.

Hence (i);  (ii) follows from (i) and  Lemma 4.15.    Q.E.D.
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Remarks. (1) Theorem 4.16(i) imphes that Jantzen's filtration is hereditary: Let

p G P+ , w, w' G IF. If /(vv) - l(w') = r E N then M(w • p),. = Af(w' - p)r+i, all

i G N. Our arguments also show that (4.5), (4.6), the exactness of (4.4), the

statements (i) and (ii) of Corollary 4.14, the statements (i) and (ii) of Theorem 4.16

and the above statement on the heredity of Jantzen's filtration are all equivalent

statements.

(2) The results of this section generahze the results of Jantzen [10, 3.17, 5.5] in the

case where X is regular integral; we do not use Bernstein varieties [10, §3], but

instead we make full use of our resolution and the a priori proof of Theorem 3.10. In

§5 we include the singular integral as well as the nonintegral case.

(3) Corollary 4.13 proves the Kazhdan-Lusztig conjecture [15] in our case.

(4) In §5 we extend the results of this section to include the case where

p + pEP+ .

5. Resolutions of irreducible modules over rank 2 Kac-Moody Lie algebras: A

complementary case. We keep the notation of §2. Let xGb*. Set A(x) = {a GA|

2(x + p,a) = m(a, a) for some m G Z}. We denote by Ax the smallest root

subsystem of A containing A(x) and such that the real roots (A )R of Ax are the

roots of Ax that are real in A. That is, Ax is the root system of some GCM Lie

algebra such that Ax D A(x), (Ax)R = AxnAÄ and if A' is a subset of A with these

properties then A' D Ax. Let A+ = A+ n Ax, A°x = {a E Ax | a ¥= y, + • ■ ■ +yk for

all y, G A+ , / = 1,...,k, k> 2}, and set A°x = {ßx,.. .,ß,}. Let IFX be the subgroup

of IF generated by the oß, i = 1,..., /.

Remark. In the semisimple case Ax = A(x) [10, 1.3].

Let lx denote the length function in Wx and let <x be the Bruhat order in Wx.

We make the following assumption on x:

(A) There exists s0 E W% such that 2(i0(x + p), ß,) = m,(ß,, /?,) with — m, G Z+ ,

i — 1,.. .,/and

Mx + P),ß)*0   ii(ß,ß) = 0,ßEAx.

Set Xo = 5o'X- Using the same argument as in the proof of Lemma 2.1 [21,

Lemma 8.2], we obtain

Lemma 5.1. Let w E Wx and ß E A+ be such that (ß,ß)> 0. Then the following

statements are equivalent:

(i) 2(w(xo + P), ß) = m(ß, ß) with m G N,

(ü) ß G U'.=, Wxß, andlx(w) > lx(oßw).

Let X = {ß, I (xo + p, ßt) = 0} C A°x. We denote by WxX the subgroup of IFX

generated by oß with ß E X. Let Wxx denote the set of elements vv in IFX of minimal

length lx(w) among the representatives of the coset wWxX. Every element of W can

be uniquely expressed in the form wxw where w E Wx x, wx E Wx x and / (w1 vv) =

lx(wx) + lx(w).
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Using Lemma 5.1 and the argument of [21, Lemma 8.7] we obtain

Lemma 5.2. Let x oe sucn mat (ß, ß)>0 for all ß G Ax and let w, w' G Wx\x.

Then:

(i) (Af(w-x0): E(\p)) ¥=0 if and only if \p = w'-x0 for some w' G IFX with

w <x vv'.

(ü) //(Af(w-Xo): L(4<)) ¥"0, w ¥= vv', vv' as in (i) then there are w0,wx,...,wr E

Wx\xsuch that lx(w¡+x) = /x(w,) + 1, /' = 0, l,...,r- 1, w0-Xo = t, wr-Xo~ w'Xo

and the product

(A/Yvvxo): ¿K_, -Xo))(M(wr_x -Xo)- L(K-i 'Xo)) ■ ■ ■ (Af(w, -Xo): ¿(*))

is nonzero.

Definition 5.3 [12,17]. A GCM A is indecomposable if A =£ [$°], where B, C axe

GCM's.

Definition 5.4 [17]. An indecomposable symmetrizable GCM is said to be

Euchdean if the associated symmetric bilinear form is positive semidefinite on the

linear span of the roots.

We say that a system of roots A of a Kac-Moody Lie algebra g is Euclidean (resp.

classical) if a comes from a Euclidean (resp. finite) GCM.

We make an additional assumption on x:

(B) Ax is of rank 2, Euclidean or classical with associated bilinear form ( , )x =

(,)iR , where Rx is the linear span of Ax.

Let IFX(,) = {w G Wx | lx(w) = i}. Then IFx(/) = {w„ vv/}, w„ vv/ as in §4, i E Z+ .

Theorem 5.5. Let w E Wx\x n W^k). Then

chL(wxo) = chM(wxo) + (-l)*   2   (-l)'(chA/(w'-Xo)).
i<k

Proof. Assume that (x0 + p, ß,) ¥=0, i = 1,2. If k = 0 then w-x = Xo- If

(Af(Xo): E(i>))¥=0 for some v E b*\(Xo) tnen we obtain a contradiction by

Lemma 5.2. Hence Af(x0) — ¿(Xo) and the theorem is true in this case. We now

proceed by induction on k. We assume that the statement of the theorem holds for

all w G IFX(,) with / < Â:. Let w G W^k\ By Lemma 5.2 we may form for w' G W^k~ x\

and each /' G Z+ the modules (M(w■ x0)/T(w■ xQ)M(w' ■ Xo))j as in §3. By Theo-

rem 3.10, Lemma 5.2 and the induction hypothesis we obtain

2 ch(M(wxo)/n»v-Xo)M(w'.Xo)), = chL«_,-Xo)
oo

(resp. chL(w¿_,Xo))if

w' = wk_x

(resp. if vv' = w'k_x). This implies that the unique maximal submodule of the highest

weight module M(w ■ Xo)/T(w ' XoW(w' ■ x0) is isomorphic with L(w'k_, • x0) (resp.

L(wk_x -Xo)) if w' - wic-i (resp. w' = w'k_x). From this we obtain the result in this
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case. Suppose that (x0 + P, A) = 0 for / = 1 or i = 2 and let w be as in the

assumption of the theorem. Then there is a unique w' G Wx\x n W£k~X). Proceeding

as above we obtain 2,>0ch(Af(w.x0)/7TM''Xo)i^(M'''Xo)); = 0- (^ee the proof of

Lemma 5.10 for more details.) Hence M(w ■ xQ)/T(w ■ Xo)M(w' -x0) is irreducible.

Therefore chL(wxo) = cn M^Io) — c^ M(w'-Xo)- This proves the theorem.

Q.E.D.
Remark. Theorem 5.5 proves the Kazhdan-Lusztig conjectures in our case.

It is well known that if A is classical and x, 'I' G b* then ( Af(x): L(\f/)) ¥= 0 if and

only if there are y,,... ,yk E A+ such that [1]

Y — O     • • • O    -Ú/ > O ■ ■ ■ O    • di ^   • • • ^ \L.
A Yi Yl     r Y*-1 Yl     T T-

In this case we write \¡/ î x- Using this and Theorem 5.5 we obtain a result due to

Jantzen [10].

Corollary 5.6 [10, Satz 3.17]. let x be an element ofb* and let Ax be classical of

rank 2. If> î x 'hen (M(X): L(i¡>)) = 1.

Set Wxxfxk) = Wx\x n Wjf\ By our assumptions (A) and (B) on x, #WxUxk) = I or

2, all k G Z+ .

Corollary 5.7. Let w G Wxlf£\ Then:

(i) M(w-Xo)l = lw-M(w'-Xo) (W G W^-% 0<i<k.

(ii) Af(w-Xo),/M(wxo),+ 1 = ®w.L(w'-Xo) (h" G W^~% 0 < i < k.

Proof. If k = 0 then (i) and (ii) are vacuous. Let k > 1 and suppose that

M(wxo), =lM(w'-Xo)        (w'EW^-V)
w'

for all w G Wx'^\ 0 < j < k - 1. In particular,

H Af( w • xo) = 2 M( vv' • xo)        (>v G WtfP, w' E W^~ ■>),
vv vv'

for all 0■</ < A: - 1.

This imphes that

("O"    2    (-l)>2chA/(wxo)=-ch2A/(w'-Xo)
j < k — 1 vv w '

(wG IFM^vv'G 1Fx',^"2))-

By Theorem 5.5

chA/(wxo)1=2chA/(w'-Xo) + (-l)':    2    (-l)J2ch M(w"-Xo)
w' j<k-\ w"

= 2chM(w'.Xo)-ch2M(w'"-Xo)
w' vv'"

= 2chAf(w'.Xo)-ch  nM(w'-Xo)
w' w'

= ch 2 A/(w' • xo)        (w' G IFxl_f -'>, w" G Wx^\ w'" G Wjj^),
vv'
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for all w G Wxxfxk). Now, Af(wx0)i 3 2w<A/(w'-x0) (w' G ÍFxlf_1)) for all w G

W^f), by Corollary 3.4. Hence Af(wXo)i = 2w<A/(w'-Xo) (*' G »Ür~l)>» ah

w G IF1,yc), all A: G Z+ . The corollary now follows using the argument of the proof

of Theorem 4.16 with the following changes: instead of Proposition 4.7 and Lemma

4.11 we use the above, and instead of Corollary 4.14(i) we use Theorem 5.5. Q.E.D.

Using Theorem 5.5 and Corollary 5.7 we obtain

Corollary 5.8. (i) If X = 0, then given w G Wffl = W^k) there is a resolution

ofL(w-Xo)'

(5.1)    0 - A/(xo) -Af(w, -xo) © A/« -xo)"-' ■ ■ ■

^M(wk_x-Xo)®M(w'k_x-Xo) -M(w •Xo)-¿(h"Xo)-0

where ctj(x, y) = (iWk_.,Wk_J+x + iWk_.,Wk_J+iy, -iWk_rWk_j+x - i^^.^y), I <j

^k,ax(x, y) = iWk_ltWx + iwí ¡wy and iry. M(t-x0) -^ M(t'■ x0) are unique up to

scalar embeddings, for t E W£'\ t' G IFX(' + 1).

(h) If X¥= 0, then given w E Wxf-x^ there is a resolution of L(w■ Xo)'-

(5.V) 0-A/(w'.Xo)-M(wxo)-¿(vvXoHO

where Wxfx^X) = (vv'}, a, the unique embedding up to scalar.

The following is also immediate from Theorem 5.5.

Corollary 5.9. Let w, w' G Wxx$\ Then:

(i) (Af(w - Xo): L(w' • Xo)) = 1 (resp. 0) //vv <x vv' (resp. otherwise);

(ii) (I(w' -Xo): M(w-Xo)) ~ 1 (resp. 0) //vv *£x w' (resp. otherwise).

Remark. As in §4, Corollary 5.7(i) implies the heredity of Jantzen's filtration in

our case: Let w, w' G Wx\x. If /x(w') — lx(w) = r E N then A/(wx0), =

Af(w' -Xo)r+i' 1 ^ ' ** /x(w). Also, Corollary 5.8, Theorem 5.5, the statements (i)

and (ii) of Corollary 5.7, the statements (i) and (ii) of Corollary 5.9 and the above

statement on the heredity of Jantzen's filtration are all equivalent statements.

Next we will show that the above results almost complement the results of §4 in

the case of rank 2 Euclidean root systems. First we need a general result. It will add

the singular case left out in the analysis of §4. We keep the notation of §4. Let

x» = {«/1 (P + P, «/) = °}- Let wi be defined as W¿x and set Wxjk) = Wx¡í D
W(k)

Lemma 5.10. Let p + p G P+ , w G WxÁk). Assume that X^ ¥= A0. Then ch L(w ■ p)

= ch Af(wp) + (-l)*2I>fc(-l)vChM(vVp) + ch Af(w/.p)).

Proof. The case where p E P+ is contained in the proof of Corollary 4.13.

Assume Xß ¥" 0. If vv = wk (resp. w'k) we consider the modules N(wk, wk+x; p)i —

(M(wk-p)/T(wk- p)M(wk+x-p))¡ (resp. N(w'k,w'k+X; p),) as before. Using Theorem
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3.10 and the diagram of §4 we obtain

2 ch N(wk,wk+X;p)i =  2   (chM(wk+rp) + ch M(w'k+r p))
i>0 i>0

/odd

-   2   (chA/(wi+7-p) + ch M(w'k+j-p)) -chM(wk+x-p)

j even

(resp.   Ii>0ch N(w'k, w^+x;p), = 2,>0,,odd (ch M(Wk+rp) + ch M(w'k+rp)) -

2y>o,yeven(ch Afiw^^.-p) + ch M(w'k+j■ p)) - ch M(w'k+, • p)).   Now, the sum

on the right-hand side of the above equations telescopes to 0. This implies that

N(wk>wk+i"> P)i = ° (resP- N(w'k,w'k+\> P)i = 0)> Le- N(wk,wk+\, V-) = L(wk-p)

(resp. N(w'k, w'k+x;p) = L(w'k-p)). Therefore, ch L(wk-p) = chAf^-p) —

ch M(wk+X ■ p) (resp. ch L(w'k-p) = ch M(w'k-p) — ch M(w'k+X-p)). This proves

the lemma.   Q.E.D.

Next we prove a result for Euclidean GCM's of arbitrary rank. We denote by £ the

principal null root as in [18].

Lemma 5.11. Let A be Euclidean, £ G A as above, \¡i a real weight,

(i) If(4> + p, £) > 0 then there is w E Wsuch that (w(v// + p))(A,-) > 0, i = 1,... ,n.

(ii) // (^ + p, £) < 0 then there is w E W such that (w(\p + p))(h¡) < 0, i =

1,...,/?.

Proof. Assume (<// + p, £) < 0. Let R+(\l>) = {a E A+ | 2(i// + p, a) = c(a, a),

cGR, c>0}. Then R+(t)EA+R. Now, A+= U^=, {y,+p,y£| / G N} [19].

Therefore | R+ (\p) | is finite. If R+(ip) = 0 then \p is negative. Suppose that there is

w G IF such that w-v is negative for all v with \R+(v)\<\R+(tp)\ , where

| R+ (¡p) 1> 1. Let a GÄ+(j). Then there is w G IF such that woa ■ \p is negative by

the induction assumption and since \R+(oa-\p)\<\R+(\p)\ • This proves (ii). (i) is

proved by replacing ^ by — \p and using (ii).    Q.E.D.

Combining Lemmas 5.10 and 5.11 with Theorems 5.5 and 4.12 we obtain the

following.

Theorem 5.12. Let A be Euclidean or classical and of rank 2. Let \p E P and assume

that (\p + p, £) ¥= 0 if A is Euclidean. Then there are k E N, w G WxÁk) such that:

(i) ch L(*) = ch A/(*) + (-1)* 2,<yt (- Weh M(vv,- • *0) + ell M(wJ ■ *0)) if

(>// + p, £) < 0, A Euclidean, where \p — w ■ >p0, tp0 E b*■

(ii) ch L(*) = ch A/(*) + (-1)* 2,>, (- l)'(ch A/(w,. • <f>0) + ch M(w> • ̂ )) i/

(>// + p, £) > 0, A Euclidean, where ip = vv • <i>0, <f>0 G b*.

Remark. Theorem 5.12 proves the Kazhdan-Lusztig conjectures in the rank 2

Euchdean case for all L(\p) such that (\p + p, £) ¥= 0.

6. Resolutions and characters of highest weight modules over the Witt algebra.

From here on, unless otherwise stated, a will denote the Witt algebra, i.e., a is the

complex Lie algebra with basis (e,},eZ, where

[e^ej] = (j- i)ei+j,       i, j E Z.

We set b = Ce0, n = ©,eNCe„ b = b © n and n" = ©,sNCe_,,
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Note. The subalgebra n (resp. n~ ) is generated by {ex, e2} (resp. {e_x, e„2}).

The pair (g, b) has a grading as described in §1 and obviously satisfies condition

(Tl) of §1. Proposition 6.2 shows in particular that condition (T2) of §1 is also

satisfied.

Next we consider a variation of the pairing studied by Shapovalov. The following

is contained in the proof of [7, Theorem 3.3].

Lemma 6.1 [7]. Let g be a complex semisimple Lie algebra, b E g a Carian

subalgebra and g = n~©b©na triangular decomposition. Set b = b © n and b~ =

b © n" . If p E b*, let M(p) = U(q) ®U(b-) C(p). Let <t> be the projection of U(q) =

U(b±® (n~ U(q) + U(Q)n) on the first factor. Ifc„ = 1 ® 1 in M(p), »_„ = 1 ® 1

in M(p) and u, u' G U(<¡), we set (uv^, uv_fl)IL = — p(<t>(o(u')u)), where o is the

principal antiautomorphism of U(q). Then ( , ) is a ^-invariant pairing of M(p) and

M(-p).

We set H = 2e0, X= — e, and Y=e_x. The Lie algebra m generated by

{Y, H, X) is isomorphic with §1(2,C). We set u = n/Ce, and u" = n~/Ce_,.

Proposition 6.2. For each r,sEN, we set (er,e_s) = 8rs(r1jx) if r,s>2,

(er, e_s) = 8rs otherwise. Then ( , ) extends to an b-mvariant pairing of n and n~

which induces an m-invariant pairing of u and u   .

Proof.u - U(m) ®t/(b|)C(4)andu" - U(m) ®[/(br)C(-4)asm-modules,where

b, = CH, bx = CH®CX, b\~ = CH © CF and we identify b* with C. We now
apply Lemma 6.1 to m, b,, b,, b\~ and p G b* defined by p(H) = 4. We use the

notation of Lemma 6.1 and set v¡í = e2, v_fi = e_2. Noting that (ad X)ke2 =

(-lfk\e2+k, (adY)ke_2 = (~l)kk\e_2_k and [X,Yk] = kYk'x(H - k + I), for

k E N, we obtain

(«a«. «-2-*), = 7^ï(*V r*»-,) = ̂ (-p)(*(A-*r*))
(k\) (k\)

(-\)k   k 1    k

l-k\(k + 3) = (k + 3)=(e2+k,e_2_k).
k\

The proposition now follows from Lemma 6.1.   Q.E.D.

Remark. Proposition 6.2 shows that condition (S6) of [21] is satisfied for (a, b)

and 5 = {1}.

We fix ( , ) a nonzero contravariant form on Af(p) [10, 11] and denote by (, )

its restriction to Af(p)/l_m, m G Z+ .

Theorem 6.3 [11, Theorem 3]. Let p E C Up to a nonzero constant

ml r .   r . .2 ]-| V^»-')

det(,),,m= u      J    {P+24[(3r-2;)    -l\\\ •       wGN'

where p is the classical partition function.
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The nonnegative integers of the form {(3k2 ± k) — j^[(6k ± l)2 — 1], where

k E Z+ , are called Euler's pentagonal numbers. We let sk (resp. tk) be the

nonnegative integer {(3k2 + k) (resp. {(3k2 — k)), k E Z+ , and let P = {sk, tk \ k

GZ+}.

Proposition 6.4. Let cEC. There is a filtration of submodules M(v) = M(v)0 D

Af(i'), D • • • such that:

(i) M(v)x is the largest proper submodule of M(v);

(ii) for every i E N, there is on M(v)i/M(v)i+X a nondegenerate contravariant form

(, ),; and

(hi) ifk E Z+ and v — skor tk then the following formula holds:

(6.1) 2chAf(-r),=      2      chM(-sk+l) + chM(-tk+I).
i>0 IBNJodd

Proof. The construction of the filtration and the proofs of (i) and (ii) are as in

Proposition 4.4. Now, det( , )_„ m = 0 if and only if there are r, i E N with r \ i and

1 < i < m such that ¿[(6& ± I)2 ~ 1] = 2ilQr ~ H/r)2 ~ I], that is, such that

(6Â: ± l)2 = (3r - 2//r)2. On one hand 6k ± 1 = 3r - 2i/r with r \ i if and only if

i = {-(ir2 - 6kr + r) with r | /', that is, i = \(2>r2 - 6kr + r) with r E N, r odd. On

the other hand, 6/c ± 1 = — 3r + 2i/r with /• | /' if and only if z' = \(2>r2 + 6kr ± r)

with r E N, r odd. Hence we have respectively

-H3*2 ±k) - i= -i[3(*- r)2 ±(*- r)]

and

-K3/V2 ±ik) - i = -i[3(/v + r)2 ± (A: + r)]

with r G N, r odd. Proceeding as in the proof of Proposition 4.4(iii) we obtain

2 chA/(-^(3^2±/c))=2chAf(-^[3(/c + r)2±(A: + r)])

where the sum on the right-hand side is over all r EN, r odd. (6.1) now follows.

Q.E.D.

Corollary 6.5. Let kEZ+ and v = sk or tk. Then (M( — v): L(—sk+x)) —

(M(-v):L(-tk+x))=l.

Proof. 2i>Q(M(-v\: L(-sk+x)) = 2l>0(M(-v),: L(-tk+x)) = 1, by (6.1). The

result is now obvious.   Q.E.D.

By the above, if k E Z+ and v = —sk or v — —tk then

dimHomB(A/(-ifc+,),A/(i'))<l    and   dimHoma(Af(-zJ, M(v)) < 1.

In [5 and 6] Goncharova computed the homology and cohomology of n~ with

trivial coefficients. We state her theorem in our notation.

Theorem 6.6 [5, 6]. Let k EZ+ and C denote the trivial q-module. Then

(Hk(n~,C))Sk = C(-sk), (Hk(n~ ,C))_h = C(-tk) and (Hk(n~ ,C))ß = (0) if p G

{ — sk, —tk}. (Here C(p) denotes the one-dimensional b-module where e0 acts as p.)
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Using the above homology computation, Theorem 6.3 and our results of §1 we

obtain

Theorem 6.7. (i) For each k > 1 there exist Q-module embeddings yk: M(—sk) ->

Af(0), 8k: M(-tk) -> M(0)such that imyk + im8k = imyA_, Pi im8k_x, k>2.

(ii) There exists a resolution of the trivial Q-module C:

(6.2)     -*M{-sk)®M(-tk)a-^ ■■■ ̂A/(-î,)© A/(-/,)^A/(0)-^C-0

where ak(x, y) = (x + y, —(x + v)), k > 2, ax(x, y) — x + y and e is the canonical

surjective homomorphism. (Here, we have identified M(—sk), M( — tk) with their

images under yk and 8k in M(0), for simplicity.)

Proof. We prove (i) and (ii) simultaneously by induction on k. Let Ex denote the

unique maximal submodule of Af(0). Then we have a short exact sequence

0^£,^Af(0)^C-*0.

By the long exact Tor-sequence in the first variable we obtain an exact sequence

0 ^ Hx(n~ ,C)-* H0(n~ , Ex)-> 0.

Hence H0(n~ , Ex) =* Hx(n~ ,C) = C(-sx) © C(-r,) by Theorem 6.6. By Corollary

1.7 and Theorem 6.3 Ex is generated by n-invariant vectors of weights — sx and —tx.

Let y, and 8X be the compositions of the corresponding embeddings with e,. We

identify M(—sx) and M( — tx) with their images, for simphcity. Let ax: M(—sx) ffi

Af( — r,) -> Af(0) be defined by ax(x, y) = x + y. Then we have

M(-sx) © M(~tx) % Af(0) ÍC -» 0

with im a, = ker e. Furthermore we have a short exact sequence

0 -> £2 -> Af(-s,) © Af(-i,) -»£, -> 0

where e, ° ßx = ax. Then we obtain, as before, exact sequences

0 ^ Hx(n~ , Ex) ^ H0(xx- , E2) ^ 0,

0 -> H2(n~ ,C) ^ Hx(n   , Ex) -+ 0.

Hence HQ(n~ , E2) ä Hx(n , Ex) = H2(n~ ,C) = C(-s2) © C(-t2) by Theorem

6.6. By Proposition 1.7 and Theorem 6.3 E2 is generated by n-invariant vectors of

weights — s2 and —12. Let u — («,, u2): M(—s2) -» Af(—sx) ffi Af( — i,) and v =

(o,, o2): M( — t2) -» Af(—i,) ffi M( —i,) be the compositions of the corresponding

embeddings with e2. By exactness ux(x) — —u2(x) and vx(y) — — v2(y) in Af(0).

Let y2 = «, and 82 = vx. We identify M( — s2) and M( — t2) with their images in

Af(0). Then A/(-j2) + Af(-r2) = M(-sx) n Af(-r,). Let «2: Af(-s2) ffi Af(-i2)

-> Af(—sx) ffi Af( — tx) be defined by a2(x, y) — (x + y, — (x + y)). Suppose we

have defined y,, 5,, 2 < i < k — 1, such that im y, + imô, = im y,._, n im5,__,, and
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we have identified Af(—j-) and M( — tj) with their images in Af(0). Suppose, in

addition, that we have

M(-sk_x) © M(-tk_x)a^'M(-sk_2) © M(-tk_2)

-» • • • -> M(-sx) © M(-tx) ^Af(O) -^C -» 0

where a-(je, v) = (x + v, —(x + v)), im a, = ker a,_,, and an exact sequence

0 _ EJ+l'"1 M(-Sj) ® M(-tj) ¿Ej - 0

where #0(n~ , £,.) = C(-sy.) © C(-tj) and e, ° ¿8, = a;, 2 <j < k - 1. By induc-

tion we obtain Hj(n" , Ek.) - Hj_x(n~ , Ek_J+x) for 1 <y < k — 1, and

Hk(n~ , C) — i/£_,(n~ , £,). Now y^, 5^ and o^ are defined in the same way as y2, 62

and a2 and the same argument for k = 2 completes the induction step.   Q.E.D.

Scholium 6.8. Let k E Z+ , x G {s*> '*} and \p E {sk+x, tk+x}. Then

Hom8(M(-^),A/(-x)) = C.

Definition 6.9. Let ? G {sk, tk}, k E Z+ . We define M(-í')' = M(-sk+i) +

M( — tk+i), i G N, using the identifications in Theorem 6.7(h).

Proposition 6.10. M(-sk) + M(-tk) = M(-sk_x) n A/(-/*_,), k E N. //> G

{ífc, rfc} í//e«

M(-v) D M(-v)X D M(-vf D • - -

is a Q-module filtration and

(6.3) 2cb.M(-v)'=     2     chM(-^+/) + chAí(-r¿+/).
i5*l leN.Iodd

Proof. The first assertion is just a restatement of Theorem 6.7(i). (6.3) is proved

in the same way as Proposition 4.7, using Theorem 6.7(i), (ii) rather than Theorem

2.4.    Q.E.D.
Definition 6.11. Let v e P. We define L(-v) = M(-v)/M(-v)x.

Proposition 6.12. Let v E {sk, tk}, k E Z+ . There exists a resolution ofL(-v)

••• - M(-s,) © M(-t,) * - ■ ■ a"2M(-sk+l) ffi M(-tk+x)

VkXlM(-r)^L(-v)->0

where the a,, i 5= k + 2, are defined as in Theorem 6.7, r¡k+x(x, y) = x + y and ek is

the canonical projection.

Proof. We use the same argument as the one used in the proof of Proposition 4.9,

where we replace Proposition 4.7 by Proposition 6.10.

Lemma 6.13. Let v E {sk, tk}, kEZ+. IfM(-v)j = M(-v)j for 1 <j < i then

M(-v)t/M(-v)i+x = L(-sk+i) ffi L(-tk+i).
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Proof. The proof is identical to that of Lemma 4.15, where we use (6.1) instead of

(4.2) and Proposition 6.10 instead of Proposition 4.7.   Q.E.D.

Theorem 6.14. Let v E {sk, tk}, v' G {sj, if), k, j E Z+ . Then the following

statements are equivalent.

(i) (M( — v): L( — v')) = 1 (resp. 0) ifk <j or v = v' (resp. otherwise).

(ii) (I( — v'): M( — v)) = 1 (resp. 0) ifk <j or v = v' (resp. otherwise).

(hi) L( — v) is irreducible for all k G Z+ .

(iv) M(-vj = M(-v)Jor all k G Z+ , I G N.

(v) M(-v)> C M(-v)Jorallk G Z+ , / G N.

(vi) //>' - k = r E N then M(~v), = M(-v')r+ifor all i E N.

(vii)Ai(-!0J/M(-»')<+1 = L(sk+i) ffi L(-tk+i)forallk G Z+ , i E N.

(viii) There exists a resolution of L( — v)

• ■ • - M(~s,) ffi M(-t,) %■■■ ak-X2M(-sk+x) ffi M(-tk+x)

Vk+i . .   E*       , ,
-» A/(-7)-»£(-") ->0

vv/'í/í a,, i > A: + 2, tja+1 andek as in Proposition 6.12.

(ix) ch L(-v) = ch Af(-»0 + (-1)*2,>*(- l)'(ch A/(-i,.) + ch M(-t,)).

(x) ch M(-v) = ch L(-v) + 2,eN(ch L(-sk+i) + ch L(-r,+,)).

Proof. We use the same arguments used in §4 with the following modifications:

Instead of Proposition 4.7, Proposition 4.9, Theorem 2.3 and Diagram 4, and (4.2)

we use Proposition 6.10, Proposition 6.12, Theorem 6.7, and (6.1), respectively.

Q.E.D.
Remark. In [22] we prove 6.14(iii) and hence all of the parts of Theorem 6.14.
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