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COMPLETION OF AKAHORI'S CONSTRUCTION

OF THE VERSAL FAMILY

OF STRONGLY PSEUDO-CONVEX CR STRUCTURES

BY

KIMIO MIYAJIMA1

Abstract. Let M be a compact smooth boundary of a strongly pseudo-convex

domain of a complex manifold N with dim N » 4. We established a sharp a priori

estimate for the Laplacian operator associated with Akahori's subcomplex of the

T'TVi^-valued 3A-complex to construct the complex analytic versal family (in the

sense of Kuranishi) of CR structures of class C°° on M.

Introduction. Since the epoch-making work of Kuranishi [6], it has been a

fundamental method in deformation theories to apply the implicit function theorems

to nonlinear partial differential equations. In spite of great use in the case of

compact complex structures (cf. [6]), the Banach inverse mapping theorem seemed

impossible to be applied to the deformation theory of strongly pseudo-convex CR

structures on a compact boundary of a complex manifold because of the nonelliptic-

ity of the tangential Cauchy-Riemann complex (cf. [7]). Recently Akahori [2] made a

new approach by introducing a certain subcomplex of 7"-valued tangential Cauchy-

Riemann complex. His approach relies on the power series method of Kodaira's and

Spencer's early works, based on a certain coercive basic estimate for the subcomplex.

So he constructed a versal family (in the sense of Kuranishi [7]) depending complex

analytically on its parameters. However it was not shown if each CR structure in the

family is of class C°°, whereas it remains unknown whether a CR structure of class

Ck (k < + oo) is a boundary structure of a complex manifold (cf. [4]).

The purpose of this paper is to complete Akahori's construction by showing that

the CR structures are of class C°°. Since his construction relies essentially on the

Banach inverse mapping theorem for the map A: <f> -» <j> + D*NR2(<¡>), it seems

possible to obtain the C°°-ness by applying the Nash-Moser iteration method to the

map A. In fact we can invert the differential of A at each point near 0 by the

Neumann series of it. To show the convergence of the series with respect to every

II H'j-norm, we need a sharper estimate for the Neumann operator N than in [2], and

it is established in §2 by careful commutator calculations from Akahori's and
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Kuranishi's basic estimate (cf. [2]). The arrangement of this paper is as follows: In

§1, we follow Akahori's construction, relying on the Banach inverse mapping

theorem. This is needed for us to apply the Nash-Moser technique. In §2 we sharpen

an a priori estimate in [2] for the solutions of the Neumann problem associated with

the Laplacian for Akahori's subcomplex. The C°°-ness of CR structures in our

family will be shown in §3 by applying the Nash-Moser iteration method.

I wish to thank Professor Takao Akahori for helpful discussions in preparing this

manuscript. I also thank the referee for his valuable suggestions.

1. Akahori's construction of the versal family. Let Af be a compact smooth real

hypersurface of a complex manifold N of complex dimension n (> 4). The case that

the CR structure °T" on Af induced from the complex structure of N is strongly

pseudoconvex interests us.

We fix a splitting

(1.1) CTM = °T" + °f" + F

and set T — °T" + F, following Kuranishi [7], where F denotes the complexifica-

tion of a real line bundle.

Each CR structure at a finite distance from °T" is represented by an element of

T( Af, T 9 (°T")*) satisfying the integrabihty condition:

(1.2) P(<t>) = 3> + R2(<b) + R3(<f>) = 0

where

R2(<i>)(X, Y) = [</>(*), *(Y)]r - <t>([X, <b(Y)]«r, + [4>(X), T]or,)

and

R3(<b)(X,Y) = - <¡>([<t>(X),<t>(Y)].T„)

for X,Y E T(M, °T") (cf. [1]). We note that R2(<j>) and R3(<¡>) axe homogeneous of

order 2 and 3 with respect to <#>, respectively.

Akahori [2] constructed a versal family of integrable elements of class Ck

depending complex analytically on the parameters under the condition that the

second cohomology group H$(T) of the T'-valued 9fc-complex vanishes. In this

section, relying on his idea, we construct a family having the same properties without

this condition. His idea is to introduce a subcomplex (r(Af, Eq), D) of the T'-valued

8,,-complex and search solutions of the integrabihty condition in T(Af, Ex) based on

the harmonic theory on T( M, E2 ) (cf. [2]).

(I) Subcomplex (T(M, Eq), D). Let

Eqp = {« G °f'p' 9 A"(°TJ,')* | (obü)F( p) = 0 for any local extension ü of u),

where ( )F denotes the projection onto F-part according to the splitting (1.1). Then

Eq = UpeMEqiP is a subbundle of T 9 A"(°T")* (cf. [2, Proposition 2.1]) and we

have a subcomplex (T(M, Eq), D) of (T(M, T 9 A"(°T")*), ob) with D = db]T(M E y
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The natural injection induces the following, which assures no deformation is taken

out of consideration or no obstruction is missed in our construction relying on this

subcomplex instead of 96-complex (cf. [2, Theorems 2.3 and 2.4]):

(1.3) a surjection HXD(E.) -* H¡h(T'),

(1.4) an isomorphism HqD(E.) ¿> H¡h(T') for 2 « q « n - 1, where HqD(E.) (1 < q

«£ n — 1) denotes the qih cohomology group of the complex (T(Af, Eq), D).

(II) Preliminary from analysis. We denote the Sobolev s-norm by || \\s and by || ||'Jt

II ||" the norms introduced by Akahori [2] (cf. (2.1) and (2.2)).

(1.5) Akahori's and Kuranishi's basic estimate [2, Theorem 4.1]

C,||*ll?/2 < II*II'2 < C2Q(<¡>,<¡>)    îox<bE T(M, E2),

where Qfr, *) = || D<t> II2 + || D*<¡> ||2 + \\ <j> ||2.
This subelliptic estimate has the following consequences (cf. [5]): Let D be the

Laplacian operator D*D + DD*.

(i) The complex vector space H2 = {</> G T(Af, E2) | D* = 0} is finite dimen-

sional.

(ii) There exists a hnear map (the so-called Neumann operator) TV: T(M, E2) -*

T(M, E2) such that

(1.6) nN<t> = <¡>- H<¡>,       DAf = JVD,       NH = HN = 0,

where H denotes the orthogonal projection onto H2.

(hi) For any integer s > 0,

(1.7) \\Nt\\';<C,\\4>\\,   iox<t>ET(M,E2),

(cf. [2, Corollary 5.2]).

In § 2 we will estabhsh a sharper estimate than (1.7) (cf. Corollary 2.4).

As is well known, by introducing hermitian metrics along the fibres of T and °T",

we can also speak of the harmonic theory on T(M, T ® h?(°T")*) (1 < q < n - 2).

In particular, we denote by iff and H g the harmonic part and the projection on it,

respectively.

(III) Construction of the versal family. The following proposition enables us to

search solutions of integrabihty conditions relying on the subcomplex (T(M, Eq), D).

Proposition 1.1. For 4>eT(M,Ex), P(<¡>) = £></> + R2(<¡>) and P(<¡>) is in

T(M,E2).

Proof. The first assertion follows from (1.2) because °T" is closed under the

bracket operation. By (1.2),

(P(*)(X,Y))F=(ob<t>(X,Y))F + [<t>(X),4>(Y)]F

-<t>([X,<l>(Y)],T„+[<b(X),Y],r,)F

= 0   foxX,YET(M,°T").
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(1.8)

3M*)(^i. x2, X3) = obP(4>)(Xx, X2,X3)

+ 2<rlY+l[*(Xj).H*){-*j-~)]r
7=1

+ 2 (-i)'^*)^^,^^)]^...^...^.
i.j-i

',7 = 1

2(-i)7+1*(kvP(*)(--^---)]„r,)
7=1

-2(-i)y+V([*(A;.),p(*)(.--lr--)W
7=1

for Xx, X2, X3 G T(Af, °T"). Since otP(<f>) = 0 by [1,Theorem 4.10],

(dbP(<t>)(Xx,X2,X3))F=0.       Q.E.D.

Now we set about constructing the versal family.

First we recall the linear map £: T(M,T'9 (°T")*) D Kexob ^ KexD E

T(M, Ex) with Hxt = Hx, which implies (1.3). Let %=t(HT,) (cf. [2,Theorem

2.3]).

We fix positive integers m, k with m > n and k > 2m. If we set

(1.9) A(<t>) = 4> + D*NR2(<t>)    îox<bET(M,Ex),

A can be extended to a complex analytic map of a neighbourhood of the origin of

T'k(M, Ex) into itself by [2, Proposition 5.4] (also by Lemma 3.2(2)), where T'k( Af, £, )

denotes the completion of T(M, Ex) with respect to the norm || ||'t. Since the

differential of A at the origin is clearly the identity map, there exist neighbourhoods

Wx and W2 of the origin in Tk(M, Ex) such that A is an analytic isomorphism of Wx

onto W2 by the inverse mapping theorem on Banach manifolds. Set (¡> — A~x \%nw ',

then <$> satisfies

(1.10)<i>(0) = 0,
(l.ll) A(<t>(t)) = t fox t E % n w2.

Proposition 1.2. For sufficiently small t, P(<t>(t)) — 0 if and only if HP(<p(t)) = 0.

Proof. Only if part is trivial because

(1.12) P(<t>(t)) = D<b(t) + R2(<t>(t)) = HP(<j>(t)) + ND*DP(<t>(t))

by (1.11) and (1.6).

We assume that HP(<i>(t)) = 0. By (1.8) and [7, Lemma 5.1], for any s s* 0,

(1.13) ||DP(<>)||'J<cJ||P(<í»)||';il<í.||';+J    for<í>Gr(Af,£,).
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Then, by (1.12) and (1.7),

\\P(<j>(t))\\l_x<cx\\D*DP(4,(t))\\m_x<c2\\DP(<i>(t))\\'m_x

<c3iip(*(0)II';-,II*(0II2BI-1  (by (i."))

<c4hp(*(0)ii';-,ii*(0ii*.

Hence, if t is small such that Il4>(f)ll'* < l/(2c4), we have P(<j>(t)) = 0.    Q.E.D.

If we set T = {t E % n W2 \ \\<t>(t)\\'k < l/(2c4), HP(<t>(t)) = 0}, T is an analytic

set and (</>(?) \t E T} isa family of CR structures of class Ck~", by Sobolev lemma,

depending complex analytically on t E T.

We can observe that this family has the same property of versality as in [3] by the

same method and considering the following lemma which implies (1.4) for q = 2.

Lemma 1.3. There exists a linear map £2: H%. -> KerD C Y(M, E2) satisfying: (1)

f/* = H£2H2<¡>for * G T(Af, E2) with D<¡> = 0; (2) /7fc2£2 = H¡.

Proof. It is shown for any <f> in Ker9è that there exists an element 0 in

T(M,°f" ®(°T")*) satisfying <t> - ob6 E T(M, E2) (cf. [2]). Since H2, is finite

dimensional, we have a linear map 0 of H^. into T(Af, °T" 9 (°T")*) such that

xP - ob6(iP) E T(M, E2) for ^ G H2,.

If we set £2* = * - db0(\p), then

l2H2$ = * - obo*Nb<t> - ohe(Hfa) = * - ob£(o*Nb4, - d(H2<t>))

for 4>ET(M,E2) with /)</> = 0, where £ is an operator of T(Af, T 9 (°T")*) into

IXAf, °f" 9 (°r")*)_introduced in [2]. Thus (1) follows, since * and t2H2<¡> are both

in T(Af, E2) and £(d*Nb<p - 6(H2<p)) in T(Af, Ex). (2) is clear.   Q.E.D.

2. Sharper a priori estimate for D. In this section we establish a priori estimate for

the solutions of the Neumann problem associated with D to obtain a sharper

estimate for N than (1.7).

Let {(Uk, hk)}keA be an atlas of M and {pk}keA be a partition of unity

subordinate to {Uk}keA. HUE {Uk}keA, we let (e,,... ,en^x) be a moving frame of

°T'\V such that [e,, ëj]F = \f^Î8ijen, where en denotes a real moving frame of F,v.

On U, <j> E T(M, °f" 9 h?(°T")*) can be written as </>|c/ = 2aj<S>ajea 9 (e*)' where

((e*)1,...,(<?*)""') is the dual frame of (T")*,, / = (/, <•'••< iq} and (e*)' =

(e*)'< A • • • A(e*)'i. With this expression we introduce a Sobolev norm into T( Af, E )

by

H<M.2 = 2 2KM>a,/H2
k   a,I

for each real number s, where Ps = x'kTsXk, Xk an(l X* are m Q°(Í4) witn X* — 1

on Suppp£, x'/t — 1 on Suppx*, and Ts denotes the pseudodifferential operator of

the symbol (1 + | £|2)i/2. With this Sobolev norm we introduce the norms || ||'s and

Il H" as follows:

(2.1)        ii*ii;2 = 22 {ii^,pA,/H2 + KwM2} + H*ii,2,
k   ;,«,/
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(2.2) ||*||';2 = 2    2    [WPAejPfojW2 + \\Pse,ejPl#aß2
k  !,_/,«,/

+ \\PsëleJpk<baJ2+\\PsëlëJpk<i>aJ\\2} + il*»;.

The following properties of these norms, obtained by standard arguments, are

essential in this section.

For a real number s,

(2.3) ll*ll2+1/2<a*ll'2 + CJ*||2,

(2.4) H\\'2+W2<ch\y;2 + cm\\'1

(2.5) 11*11? < «11*11 W + ÇJI*»*2-1/2   foranye>0,

(2.6) H\\1<eH\\'2+i/2 + CsJH,2-i/2   foranye>0,

where C and Cs axe constants independent on s and dependent on s, respectively.

Proposition 2.1. There exists a constant C > 0 satisfying the following condition:

For each real s > 0 we can find Cs such that

||*H'2 < C||D*||2_1/2 + CJ|*||2   for<P E T(M, E2).

Proof. At first let * satisfy Supp * C Uk. Then we have

||/»,e*|| < ||eP,*|| + ||[P„e]*|| « \\ePs4>\\+c,H\\„

where e represents one of ex,...,ek_x or êx,...,ëk_x, and, by (1.5), ||ePJ<>||2<

\\Ps<t>\\'2<C2Q(Ps<p,Ps<t>).

Moreover we have

Q(Ps<p, 7» <| (Ps(n + 1)*, Ps<p) I +c,||*||,ß(PJ*, ps<p)x/2,

derived from the following formula:

(AP<t>, AP<p) = ([A, P]*, AP<¡>) + (AP*<t>, [P*, A]*) + \\[P*, A]<¡>\\2

+ (A<p, [[P*, A], P]*) + (PA*A$, P*)

where A = D or D*, P = Ps. Because [A, P], P* - P and [[P*, A], P] axe of order

s, s — 1 and 2s — 1, respectively.

Then

Q(Ps<p, Ps<¡>) <| (P,(D + 1)*, /»,*) | +ecsQ(Ps<p, Ps<p) + (cs/4e)||«i,||2

for any £ > 0.

Lete= l/(2cs); then

Q(P,4>, Ps<t>) < 21 (P,(D + 1)4,, Ps<t>) | +c'sH\\2.

Accordingly we get

11*11'? <c 2   |(PJ(ü + l)Pt*,P,Pfc*)|+c,||*l|í2    for*Gr(Af,£2).
4eA
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Then we have

H*H'2<c 2 \(PsPk(n + 1)$,pspk<p)\ +c'sh\\'MUs,
k(EA

from the formula:

(PAA*p<p, Pp<¡>) - (PpAA*<j>, Pp<¡>) = (PA[A*, p]*, Pp<¡>) + (P[A, p\A*$, Pp<},)

where A and P are as above, p = pk. Because A[A*,p] and [A, p]A* axe differential

operators of order 1 whose principal terms are generated by e 's, we have

||*||',2 ^ ce||*||?+1/2 + (c/4e)||(D + l)*ll?_,/2 + <||*||'J*||S,

by generalized Schwarz inequality.

Therefore our proposition is proven by the same trick as above and (2.3).

Proposition 2.2. There exists a constant C > 0 satisfying the following condition:

For each real s > 0 we can find Cs such that

II*II','2 < C||D*||? + CJ|*||'?   for* G T(M, E2).

Proof. Let e and e' be as in the proof of the previous proposition. First we show

the following estimate:

(2.7)     |k'e*||?<c|(P,(D + l)*,e*P,e*)| +c'||*||'?+1/2 + cJ|*||';||*||;

for * with Supp * C Uk, where e* denotes the adjoint of e.

Since lk'e*||? < 2||Pie*||'2 + cj*||'?, by (1.5) we have

lk'e*||? ^ 2C2Q(Pse<b, Pse<p) + cj|*||'?.

Let us estimate the difference Q(Pse<j>, Pse<p) — (P,(D + 1)*, e*Pse§) by using

the formula:

(APe<b, APe<S>) - (PA*A$, e*Pe*) = ([A, P]e<b, APe<$>) + (P[A, <?]*, APe<p)

+ (eAxb, [[P*, A], P]e*) + (P*eA<b, [P*, A]e<p)

+ (P[A*, e]A<f>, Pe<¡>) + ([P, e]A*A<¡>, Pe<p)

where A = D or D*, P = Ps. Since

(P[A, e]<¡>, APe<¡>) = ([A, <?]P*, APe$) + ([P, [A, e]]<b, APe<t>),

(P[A*, e]A<¡>, Pe<¡>) = ([A*, e]PA<¡>, Pe*) + ([P, [A*, e]]A<b, Pe*),

and [A, e] and [A*, e] axe differential operators of order 1, we have

| (P[A, e]*, APe<S?) \< (c||*||I+1 + csHh)Q(Pe<t>, ^*)l/2

and

| (P[A*, e]A<t>, Pe<p) |< (c||*||'i+1/2 + cJ|*||;)||*||'J+1/2

by generalized Schwarz inequality and [7, Lemma 5.1]. The other terms are esti-

mated by cs ||*||;ô(Pe*, Pe*)1/2 + c's II*II"II*II; as in the proof of Proposition 2.1.
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Hence, by (2.3) and (2.4), we have

Q(Pse<¡>, Pse<p) <| (PS(U + l)<p,e*P5e<b) | + cH\\'s+x/2Q(Pse$, Pse*)1/2

+cil*ll'?+I/2 + cji*n;ß(p,e*, pse<p)x/2 + c's n*ii'; y *u;

<| (P,(D + 1)*, e*P,e*) | + (ec + e'cs)Q(Pse<b, Pse<p)

+ (c' + c/4e)ii*n;2+,/2 + (Ci/4e')ii*ii'? + c; n* ii'; 11*11;

for any e > 0 and e' > 0.

Let e = l/(4c) and e' = l/(4cj; then

ß(P,e*,PJg*)<2|(PI(D + l)*,e*PIe*)|+c||*||'?+1/2 + cJ|*||';i|*||;.

Thus we get (2.7).

Next, by (2.7), we have

n*ii';2= 2 2ik'^*n?
k£A e,e'

<  2    ^c\(Ps(n + l)pk<p,e*Psepk<i>)\
fceA e,e'

+cil*ii'?+1/2 + c,ii*ii;'ii*»; for*g r(M,e2).

Since

|(P,(D + l)pfc*,e*P,ep**)|<|(PjP*(D + 1)*, e*Psepk<p) | +cj|*||;||*||';

and |k*P,<?pt*|| < clip**II'; + cs 11*11;, we have

n*ii';2 < cii(D + i)*n,n*ii'; + cs\\(u + i)*iij*ii;

+c'II*ii'?+1/2 + c;ii*ii;ii*ii';.

By the same trick as above we have

||*||';2 < c||D*||? + c'||*||'?+1/2 + c, 11*11*

Consequently we infer our proposition from (2.3) and Proposition 2.1.

Theorem 2.3. There exists a constant C > 0 satisfying the following condition: For

each integer s > 0 we can find Cs such that

||*||';2 < C||D*||? + CJ*||"2   for<¡> E T(M, E2).

Proof. By (2.6) and Proposition 2.2,

ll*ll';2 < c||d*ii? + He + cjn*ii'?+1/2 + cji*y?_I/2,

where C and Cs axe constants in (2.4). Then

||*||';2 < c||D*||? + ill*ll';2 + cJ|*||'?_,/2   by (2.4).

Repeating this process, we have

il*ll';2 < c||d*ii? + ¿n*ii';2 + ill*!!';2.,/, + • • • + (i/2)2în*ii','2 + cji*ii'I/2.

Thus we have our theorem.
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By Theorem 2.3 and (1.7) we have

Corollary 2.4. ||7V*||'; < 011*11, + CJ|*|| for * G T(Af, E2) and s E Z+ .

3. C°°-ness of the versal family. The purpose of this section is to show that each

*(r) in the versal family constructed in §1 is of class C°°. We deduce this result by

applying the Nash-Moser inverse mapping theorem (cf. [7, Theorem 8.1]) to the map

A (cf. (1.9)).

For u E T(M, Ex), let Ra be a differential operator on T(M, Ex) given by

(3.1) 2Rj<t>)(X,Y) =[œ(X),<t>(Y)]r +[<p(X),o>(Y)]r

-<o([x,*(y)].r,+ [*(*), r]or,)

-*([x,w(y)]or,+[«(*), r]or„)

for X, Y E T(M,°T").

Lemma 3.1. /?„(*) is in T(M, E2).

Proof. We observe by a direct calculation that R2(u + *) = R2(u) + Ru(<l>) +

R2(4>). So the lemma follows from Proposition 1.1.

Lemma 3.2. For any real s 3= 0,

(i) 11^*11, <cii<oii'mii*ii; + cji«ii'm+ï ii*ii',

(2) \\R2(U + *) - R2{u) - *„*!!, < CJ|*||'m+s||*||'m.

Proof. (1) follows from (3.1) and [7, Lemma 5.1]. Since R2(u + *) = R2(cc) +

RJ> + R2(4>), (2) follows from

llÄ2(*)lls<cii*ii'ji*ii; + cji*ii'm+Jii*ii'

by [7, Lemma 5.1].   Q.E.D.

Lemma 3.3. There is a constant C > 0 satisfying the following condition: For each

s E Z+ we can find Cs such that

\\D*NRu<b\\'s « C||<o||'J|*||; + CJMI'^JI*!!'.

Proof.

\\D*NR^\\'s<c\\NRJ>\\'¡ + cJ\NRJ>\\\<c\\RJ>\\, + c,\\RJ>\\,_1/2,

by (2.4) and Corollary 2.4. Then

\\D*NRj>\\'s<c\\Rj>\\s + l\\Ra<t>\\s + cs\\Rj>\\s_x

by (2.5). Repeating this process we have

\\D*NR„<p\\'s< c\\Ru<t>\\s + cs\\R„<p\\.

Hence we have our lemma by Lemma 3.2(1).

Let E be the Fréchet space T(Af, Ex) with the fundamental system of norms

{II ||;|s = 0,1,2,...}. The usual smoothing operator R(u) (u E R, u > 0) on E has

the following properties with respect to || ||;-norms: for s *£ r,

(0 iiÄ(M)*n;<cr>x-'+1/2ii*ii;,

(h) II* - Ä(u)*n; < criy-'+x/2u\\'r-
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These properties of R(u) axe enough for the Nash-Moser iteration method to be

available.

Set E(r, a) = (* G E11|*||; < a}. Let a be a real number such that E(k, a) E Wx

(cf. §1) and a < l/(C + Cm) where C and Cm are constants in Lemma 3.3.

Let A'u be the differential of A at « G E(k, a); then A'J> = * + D*NR^. By

Lemma 3.3 we have

IK* - *n; « cii«ii'ji*n; + cj|wii'm+ji*ii'.

Since (C + Cm)||w||'2m < 1, we infer from [7, Proposition 8.1] that A'u is in vertible

and

\\(A'uyx^\'s<cH\\'s + cs\\u\\'m+M\\'m-

It is clear that A satisfies conditions (II.1) and (II.2) of [7, Theorem 8.1] by Lemma

3.2 and (1.7).

Hence the Nash-Moser iteration method imphes that we can find kx E Z+ ,

ax > 0, and a map S: E(kx, ax) -* E(k, a) such that A(S(\p)) — * for all * G

E(kx, ax) (cf. [7,Theorem 8.1]). Moreover if we set W = % n W2 n E(kx, ax), W is

a neighbourhood of the origin in % and S(t) coincides with *(r) for t G W.

Consequently *(/) is in IX Af, Ex) for t G W.
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