COMPLETION OF AKAHORI'S CONSTRUCTION OF THE VERSAL FAMILY OF STRONGLY PSEUDO-CONVEX CR STRUCTURES

BY KIMIO MIYAJIMA^l

ABSTRACT. Let M be a compact smooth boundary of a strongly pseudo-convex domain of a complex manifold N with dim $N \ge 4$. We established a sharp a priori estimate for the Laplacian operator associated with Akahori's subcomplex of the $T'N_{|M'|}$ valued $\bar{\theta}_b$ -complex to construct the complex analytic versal family (in the sense of Kuranishi) of CR structures of class C^{∞} on M.

Introduction. Since the epoch-making work of Kuranishi [6], it has been a fundamental method in deformation theories to apply the implicit function theorems to nonlinear partial differential equations. In spite of great use in the case of compact complex structures (cf. [6]), the Banach inverse mapping theorem seemed impossible to be applied to the deformation theory of strongly pseudo-convex CR structures on a compact boundary of a complex manifold because of the nonellipticity of the tangential Cauchy-Riemann complex (cf. [7]). Recently Akahori [2] made a new approach by introducing a certain subcomplex of T'-valued tangential Cauchy-Riemann complex. His approach relies on the power series method of Kodaira's and Spencer's early works, based on a certain coercive basic estimate for the subcomplex. So he constructed a versal family (in the sense of Kuranishi [7]) depending complex analytically on its parameters. However it was not shown if each CR structure in the family is of class C^{∞} , whereas it remains unknown whether a CR structure of class C^k ($k < + \infty$) is a boundary structure of a complex manifold (cf. [4]).

The purpose of this paper is to complete Akahori's construction by showing that the CR structures are of class C^{∞} . Since his construction relies essentially on the Banach inverse mapping theorem for the map $A: \phi \to \phi + D*NR_2(\phi)$, it seems possible to obtain the C^{∞} -ness by applying the Nash-Moser iteration method to the map A. In fact we can invert the differential of A at each point near 0 by the Neumann series of it. To show the convergence of the series with respect to every $\|\cdot\|_{s}$ -norm, we need a sharper estimate for the Neumann operator N than in [2], and it is established in §2 by careful commutator calculations from Akahori's and

Received by the editors June 22, 1981 and, in revised form, February 26, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32G07; Secondary 32F30.

Key words and phrases. CR structure, deformation, strongly pseudo-convex boundary, versal family.

Partially supported by Grant-in-Aid for Scientific Research (No. 574076), Ministry of Education of Japan.

Kuranishi's basic estimate (cf. [2]). The arrangement of this paper is as follows: In §1, we follow Akahori's construction, relying on the Banach inverse mapping theorem. This is needed for us to apply the Nash-Moser technique. In §2 we sharpen an a priori estimate in [2] for the solutions of the Neumann problem associated with the Laplacian for Akahori's subcomplex. The C^{∞} -ness of CR structures in our family will be shown in §3 by applying the Nash-Moser iteration method.

I wish to thank Professor Takao Akahori for helpful discussions in preparing this manuscript. I also thank the referee for his valuable suggestions.

1. Akahori's construction of the versal family. Let M be a compact smooth real hypersurface of a complex manifold N of complex dimension $n \ (\ge 4)$. The case that the CR structure $^{\circ}T''$ on M induced from the complex structure of N is strongly pseudoconvex interests us.

We fix a splitting

$$(1.1) CTM = {}^{\circ}T'' + {}^{\circ}\overline{T}'' + F$$

and set $T' = {}^{\circ}\overline{T}'' + F$, following Kuranishi [7], where F denotes the complexification of a real line bundle.

Each CR structure at a finite distance from ${}^{\circ}T''$ is represented by an element of $\Gamma(M, T' \otimes ({}^{\circ}T'')^*)$ satisfying the integrability condition:

$$(1.2) P(\phi) = \bar{\partial}_b \phi + R_2(\phi) + R_3(\phi) = 0$$

where

$$R_2(\phi)(X,Y) = [\phi(X),\phi(Y)]_{T'} - \phi([X,\phi(Y)]_{\circ T''} + [\phi(X),Y]_{\circ T''})$$

and

$$R_3(\phi)(X,Y) = -\phi([\phi(X),\phi(Y)]_{\circ_{T''}})$$

for $X, Y \in \Gamma(M, {}^{\circ}T'')$ (cf. [1]). We note that $R_2(\phi)$ and $R_3(\phi)$ are homogeneous of order 2 and 3 with respect to ϕ , respectively.

Akahori [2] constructed a versal family of integrable elements of class C^k depending complex analytically on the parameters under the condition that the second cohomology group $H_{\overline{b}_b}^2(T')$ of the T'-valued \overline{b}_b -complex vanishes. In this section, relying on his idea, we construct a family having the same properties without this condition. His idea is to introduce a subcomplex $(\Gamma(M, E_q), D)$ of the T'-valued \overline{b}_b -complex and search solutions of the integrability condition in $\Gamma(M, E_1)$ based on the harmonic theory on $\Gamma(M, E_2)$ (cf. [2]).

(I) Subcomplex ($\Gamma(M, E_q), D$). Let

$$E_{q,p} = \left\{ u \in {}^{\circ}\bar{T}''_{p} \otimes \Lambda^{q}({}^{\circ}T''_{p})^{*} \,|\, \left(\bar{\partial}_{b}\tilde{u}\right)_{F}(p) = 0 \text{ for any local extension } \tilde{u} \text{ of } u \right\},$$

where ()_F denotes the projection onto F-part according to the splitting (1.1). Then $E_q = \bigcup_{p \in M} E_{q,p}$ is a subbundle of $T' \otimes \Lambda^q({}^\circ T'')^*$ (cf. [2, Proposition 2.1]) and we have a subcomplex $(\Gamma(M, E_q), D)$ of $(\Gamma(M, T' \otimes \Lambda^q({}^\circ T'')^*), \bar{\partial}_b)$ with $D = \bar{\partial}_{b|\Gamma(M, E_q)}$.

The natural injection induces the following, which assures no deformation is taken out of consideration or no obstruction is missed in our construction relying on this subcomplex instead of $\bar{\partial}_b$ -complex (cf. [2, Theorems 2.3 and 2.4]):

- (1.3) a surjection $H_D^1(E_1) \to H_{\overline{\partial}_E}^1(T')$,
- (1.4) an isomorphism $H_D^q(E) \stackrel{\sim}{\to} H_{\overline{d}_b}^q(T')$ for $2 \le q \le n-1$, where $H_D^q(E)$ ($1 \le q \le n-1$) denotes the qth cohomology group of the complex $(\Gamma(M, E_a), D)$.
- (II) Preliminary from analysis. We denote the Sobolev s-norm by $\| \|_s$ and by $\| \|'_s$, $\| \|''_s$ the norms introduced by Akahori [2] (cf. (2.1) and (2.2)).
 - (1.5) Akahori's and Kuranishi's basic estimate [2, Theorem 4.1]

$$|C_1||\phi||_{1/2}^2 \le ||\phi||'^2 \le C_2 Q(\phi, \phi)$$
 for $\phi \in \Gamma(M, E_2)$,

where
$$Q(\phi, \phi) = ||D\phi||^2 + ||D^*\phi||^2 + ||\phi||^2$$
.

This subelliptic estimate has the following consequences (cf. [5]): Let \square be the Laplacian operator $D^*D + DD^*$.

- (i) The complex vector space $H^2 = \{ \phi \in \Gamma(M, E_2) \mid \Box \phi = 0 \}$ is finite dimensional.
- (ii) There exists a linear map (the so-called Neumann operator) N: $\Gamma(M, E_2) \rightarrow \Gamma(M, E_2)$ such that

$$(1.6) \qquad \Box N\phi = \phi - H\phi, \qquad \Box N = N \Box, \qquad NH = HN = 0,$$

where H denotes the orthogonal projection onto H^2 .

(iii) For any integer $s \ge 0$,

(cf. [2, Corollary 5.2]).

In § 2 we will establish a sharper estimate than (1.7) (cf. Corollary 2.4).

As is well known, by introducing hermitian metrics along the fibres of T' and ${}^{\circ}T''$, we can also speak of the harmonic theory on $\Gamma(M, T' \otimes \Lambda^q({}^{\circ}T'')^*)$ $(1 \leq q \leq n-2)$. In particular, we denote by $H^q_{T'}$ and \dot{H}^q_b the harmonic part and the projection on it, respectively.

(III) Construction of the versal family. The following proposition enables us to search solutions of integrability conditions relying on the subcomplex $(\Gamma(M, E_a), D)$.

PROPOSITION 1.1. For $\phi \in \Gamma(M, E_1)$, $P(\phi) = D\phi + R_2(\phi)$ and $P(\phi)$ is in $\Gamma(M, E_2)$.

PROOF. The first assertion follows from (1.2) because ${}^{\circ}\overline{T}''$ is closed under the bracket operation. By (1.2),

$$(P(\phi)(X,Y))_F = (\bar{\partial}_b \phi(X,Y))_F + [\phi(X), \phi(Y)]_F$$

$$-\phi([X, \phi(Y)]_{\circ T''} + [\phi(X), Y]_{\circ T''})_F$$

$$= 0 \quad \text{for } X, Y \in \Gamma(M, \circ T'').$$

$$\overline{\partial}_{\underline{b}}^{\phi} P(\phi)(X_{1}, X_{2}, X_{3}) = \overline{\partial}_{b} P(\phi)(X_{1}, X_{2}, X_{3})
+ \sum_{j=1}^{3} (-1)^{j+1} [\phi(X_{j}), P(\phi)(\cdots \hat{X}_{j} \cdots)]_{T'}
+ \sum_{i,j=1}^{3} (-1)^{i+j} P(\phi)([X_{i}, \phi(X_{j})]_{\circ T''} \cdots \hat{X}_{i} \cdots \hat{X}_{j} \cdots)
+ \sum_{i,j=1}^{3} (-1)^{i+j} P(\phi)([\phi(X_{i}), X_{j}]_{\circ T''} \cdots \hat{X}_{i} \cdots \hat{X}_{j} \cdots)
- \sum_{j=1}^{3} (-1)^{j+1} \phi([X_{j}, P(\phi)(\cdots \hat{X}_{j} \cdots)]_{\circ T''})
- \sum_{j=1}^{3} (-1)^{j+1} \phi([\phi(X_{j}), P(\phi)(\cdots \hat{X}_{j} \cdots)]_{\circ T''})$$

for $X_1, X_2, X_3 \in \Gamma(M, {}^{\circ}T'')$. Since $\bar{\partial}_b^{\phi} P(\phi) = 0$ by [1, Theorem 4.10],

$$(\overline{\partial}_b P(\phi)(X_1, X_2, X_3))_F = 0.$$
 Q.E.D.

Now we set about constructing the versal family.

First we recall the linear map \mathcal{L} : $\Gamma(M, T' \otimes ({}^{\circ}T'')^*) \supset \operatorname{Ker} \bar{\partial}_b \to \operatorname{Ker} D \subset \Gamma(M, E_1)$ with $H_b^1\mathcal{L} = H_b^1$, which implies (1.3). Let $\mathcal{K} = \mathcal{L}(H_{T'}^1)$ (cf. [2, Theorem 2.3]).

We fix positive integers m, k with $m \ge n$ and $k \ge 2m$. If we set

(1.9)
$$A(\phi) = \phi + D^*NR_2(\phi) \text{ for } \phi \in \Gamma(M, E_1),$$

A can be extended to a complex analytic map of a neighbourhood of the origin of $\Gamma'_k(M, E_1)$ into itself by [2, Proposition 5.4] (also by Lemma 3.2(2)), where $\Gamma'_k(M, E_1)$ denotes the completion of $\Gamma(M, E_1)$ with respect to the norm $\| \|'_k$. Since the differential of A at the origin is clearly the identity map, there exist neighbourhoods W_1 and W_2 of the origin in $\Gamma'_k(M, E_1)$ such that A is an analytic isomorphism of W_1 onto W_2 by the inverse mapping theorem on Banach manifolds. Set $\phi = A^{-1}|_{\mathfrak{R} \cap W_2}$; then ϕ satisfies

$$(1.10) \phi(0) = 0,$$

$$(1.11) A(\phi(t)) = t \text{ for } t \in \mathcal{K} \cap W_2.$$

PROPOSITION 1.2. For sufficiently small t, $P(\phi(t)) = 0$ if and only if $HP(\phi(t)) = 0$.

PROOF. Only if part is trivial because

(1.12)
$$P(\phi(t)) = D\phi(t) + R_2(\phi(t)) = HP(\phi(t)) + ND*DP(\phi(t))$$

by (1.11) and (1.6).

We assume that $HP(\phi(t)) = 0$. By (1.8) and [7, Lemma 5.1], for any $s \ge 0$,

(1.13)
$$||DP(\phi)||_{s} \leq c_{s} ||P(\phi)||_{s}^{"} ||\phi||_{m+s}^{"} \text{ for } \phi \in \Gamma(M, E_{1}).$$

Then, by (1.12) and (1.7),

$$||P(\phi(t))||''_{m-1} \le c_1 ||D^*DP(\phi(t))||_{m-1} \le c_2 ||DP(\phi(t))||'_{m-1} \le c_3 ||P(\phi(t))||''_{m-1} ||\phi(t)||''_{2m-1}$$
 (by (1.13))
$$\le c_4 ||P(\phi(t))||''_{m-1} ||\phi(t)||'_k.$$

Hence, if t is small such that $\|\phi(t)\|_k' < 1/(2c_4)$, we have $P(\phi(t)) = 0$. Q.E.D.

If we set $T = \{t \in \mathcal{K} \cap W_2 \mid \|\phi(t)\|_k' < 1/(2c_4), HP(\phi(t)) = 0\}$, T is an analytic set and $\{\phi(t) \mid t \in T\}$ is a family of CR structures of class C^{k-n} , by Sobolev lemma, depending complex analytically on $t \in T$.

We can observe that this family has the same property of versality as in [3] by the same method and considering the following lemma which implies (1.4) for q = 2.

LEMMA 1.3. There exists a linear map \mathcal{L}_2 : $H_{T'}^2 \to \text{Ker } D \subset \Gamma(M, E_2)$ satisfying: (1) $H\phi = H\mathcal{L}_2 H_b^2 \phi$ for $\phi \in \Gamma(M, E_2)$ with $D\phi = 0$; (2) $H_b^2 \mathcal{L}_2 = H_b^2$.

PROOF. It is shown for any ϕ in Ker $\bar{\partial}_b$ that there exists an element θ in $\Gamma(M, {}^{\circ}\bar{T}'' \otimes ({}^{\circ}T'')^*)$ satisfying $\phi - \bar{\partial}_b \theta \in \Gamma(M, E_2)$ (cf. [2]). Since $H_{T'}^2$ is finite dimensional, we have a linear map θ of $H_{T'}^2$ into $\Gamma(M, {}^{\circ}\bar{T}'' \otimes ({}^{\circ}T'')^*)$ such that $\psi - \bar{\partial}_b \theta(\psi) \in \Gamma(M, E_2)$ for $\psi \in H_{T'}^2$.

If we set $\mathcal{L}_2 \psi = \psi - \bar{\partial}_h \theta(\psi)$, then

$$\mathcal{L}_{2}H_{b}^{2}\phi = \phi - \bar{\partial}_{b}\bar{\partial}_{b}^{*}N_{b}\phi - \bar{\partial}_{b}\theta(H_{b}^{2}\phi) = \phi - \bar{\partial}_{b}\mathcal{L}(\bar{\partial}_{b}^{*}N_{b}\phi - \theta(H_{b}^{2}\phi))$$

for $\phi \in \Gamma(M, E_2)$ with $D\phi = 0$, where \mathcal{L} is an operator of $\Gamma(M, T' \otimes ({}^{\circ}T'')^*)$ into $\Gamma(M, {}^{\circ}\overline{T}'' \otimes ({}^{\circ}T'')^*)$ introduced in [2]. Thus (1) follows, since ϕ and $\mathcal{L}_2H_b^2\phi$ are both in $\Gamma(M, E_2)$ and $\mathcal{L}(\bar{\partial}_b^*N_b\phi - \theta(H_b^2\phi))$ in $\Gamma(M, E_1)$. (2) is clear. Q.E.D.

2. Sharper a priori estimate for \square . In this section we establish a priori estimate for the solutions of the Neumann problem associated with \square to obtain a sharper estimate for N than (1.7).

Let $\{(U_k,h_k)\}_{k\in\Lambda}$ be an atlas of M and $\{\rho_k\}_{k\in\Lambda}$ be a partition of unity subordinate to $\{U_k\}_{k\in\Lambda}$. If $U\in\{U_k\}_{k\in\Lambda}$, we let (e_1,\ldots,e_{n-1}) be a moving frame of ${}^\circ T''_{|U}$ such that $[e_i,\bar{e}_j]_F=\sqrt{-1}\,\delta_{ij}e_n$, where e_n denotes a real moving frame of $F_{|U}$. On $U,\phi\in\Gamma(M,\circ\bar{T}''\otimes\Lambda^q({}^\circ T'')^*)$ can be written as $\phi_{|U}=\sum_{\alpha,I}\phi_{\alpha,I}\bar{e}_\alpha\otimes(e^*)^I$ where $((e^*)^1,\ldots,(e^*)^{n-1})$ is the dual frame of $({}^\circ T'')^*_{|U},\ I=\{i_1<\cdots< i_q\}$ and $(e^*)^I=(e^*)^{i_1}\wedge\cdots\wedge(e^*)^{i_q}$. With this expression we introduce a Sobolev norm into $\Gamma(M,E_q)$ by

$$\|\phi\|_{s}^{2} = \sum_{k} \sum_{\alpha,I} \|P_{s}\rho_{k}\phi_{\alpha,I}\|^{2}$$

for each real number s, where $P_s = \chi_k' T_s \chi_k$, χ_k' and χ_k are in $C_0^{\infty}(U_k)$ with $\chi_k \equiv 1$ on Supp ρ_k , $\chi_k' \equiv 1$ on Supp χ_k , and T_s denotes the pseudodifferential operator of the symbol $(1 + |\xi|^2)^{s/2}$. With this Sobolev norm we introduce the norms $\| \|_s'$ and $\| \|_s''$ as follows:

(2.1)
$$\|\phi\|_{s}^{\prime 2} = \sum_{k} \sum_{i,\alpha,I} \left\{ \|P_{s}e_{i}\rho_{k}\phi_{\alpha,I}\|^{2} + \|P_{s}\bar{e}_{i}\rho_{k}\phi_{\alpha,I}\|^{2} \right\} + \|\phi\|_{s}^{2},$$

(2.2)
$$\|\phi\|_{s}^{"2} = \sum_{k} \sum_{i,j,\alpha,I} \left\{ \|P_{s}e_{i}e_{j}\rho_{k}\phi_{\alpha,I}\|^{2} + \|P_{s}e_{i}\bar{e}_{j}\rho_{k}\phi_{\alpha,I}\|^{2} + \|P_{s}\bar{e}_{i}\bar{e}_{i}\rho_{k}\phi_{\alpha,I}\|^{2} + \|P_{s}\bar{e}_{i}\bar{e}_{i}\rho_{k}\phi_{\alpha,I}\|^{2} \right\} + \|\phi\|_{s}^{"2}.$$

The following properties of these norms, obtained by standard arguments, are essential in this section.

For a real number s,

$$\|\phi\|_{s+1/2}^2 \le C \|\phi\|_s^2 + C_s \|\phi\|_s^2$$

$$\|\phi\|_{s+1/2}^{2} \le C\|\phi\|_{s}^{2} + C_{s}\|\phi\|_{s}^{2}$$

(2.5)
$$\|\phi\|_{s}^{2} \le \varepsilon \|\phi\|_{s+1/2}^{2} + C_{s,\epsilon} \|\phi\|_{s-1/2}^{2}$$
 for any $\varepsilon > 0$,

(2.6)
$$\|\phi\|_{s}^{2} \leq \varepsilon \|\phi\|_{s+1/2}^{2} + C_{s,\varepsilon} \|\phi\|_{s-1/2}^{2} for any \varepsilon > 0,$$

where C and C_s are constants independent on s and dependent on s, respectively.

PROPOSITION 2.1. There exists a constant C > 0 satisfying the following condition: For each real $s \ge 0$ we can find C_s such that

$$\|\phi\|_{s}^{2} \leq C\|\Box\phi\|_{s-1/2}^{2} + C_{s}\|\phi\|_{s}^{2}$$
 for $\phi \in \Gamma(M, E_{2})$.

PROOF. At first let ϕ satisfy Supp $\phi \subset U_{k}$. Then we have

$$||P_{c}e\phi|| \le ||eP_{c}\phi|| + ||[P_{c},e]\phi|| \le ||eP_{c}\phi|| + c_{c}||\phi||_{c}$$

where e represents one of e_1^k, \ldots, e_{n-1}^k or $\bar{e}_1^k, \ldots, \bar{e}_{n-1}^k$, and, by (1.5), $||eP_s\phi||^2 \le ||P_s\phi||^2 \le C_2 Q(P_s\phi, P_s\phi)$.

Moreover we have

$$Q(P.\phi, P.\phi) \le |(P.(\Box + 1)\phi, P.\phi)| + c. ||\phi||.Q(P.\phi, P.\phi)^{1/2},$$

derived from the following formula:

$$(AP\phi, AP\phi) = ([A, P]\phi, AP\phi) + (AP^*\phi, [P^*, A]\phi) + ||[P^*, A]\phi||^2 + (A\phi, [[P^*, A], P]\phi) + (PA^*A\phi, P\phi)$$

where A = D or D^* , $P = P_s$. Because [A, P], $P^* - P$ and $[[P^*, A], P]$ are of order s, s - 1 and 2s - 1, respectively.

Then

$$Q(P_s\phi, P_s\phi) \leq |(P_s(\Box + 1)\phi, P_s\phi)| + \varepsilon c_s Q(P_s\phi, P_s\phi) + (c_s/4\varepsilon) \|\phi\|_s^2$$

for any $\varepsilon > 0$.

Let $\varepsilon = 1/(2c_s)$; then

$$Q(P_s\phi, P_s\phi) \leq 2 |(P_s(\square + 1)\phi, P_s\phi)| + c_s' ||\phi||_s^2.$$

Accordingly we get

$$\|\phi\|_s^2 \leq c \sum_{k \in \Lambda} |\left(P_s(\Box + 1)\rho_k \phi, P_s \rho_k \phi\right)| + c_s \|\phi\|_s^2 \quad \text{for } \phi \in \Gamma(M, E_2).$$

Then we have

$$\|\phi\|_{s}^{2} \leq c \sum_{k \in \Lambda} |(P_{s}\rho_{k}(\Box + 1)\phi, P_{s}\rho_{k}\phi)| + c_{s}^{\prime}\|\phi\|_{s}^{\prime}\|\phi\|_{s},$$

from the formula:

$$(PAA^*\rho\phi, P\rho\phi) - (P\rho AA^*\phi, P\rho\phi) = (PA[A^*, \rho]\phi, P\rho\phi) + (P[A, \rho]A^*\phi, P\rho\phi)$$

where A and P are as above, $\rho = \rho_k$. Because $A[A^*, \rho]$ and $[A, \rho]A^*$ are differential operators of order 1 whose principal terms are generated by e's, we have

$$\|\phi\|_{s}^{2} \le c\varepsilon \|\phi\|_{s+1/2}^{2} + (c/4\varepsilon)\|(\Box + 1)\phi\|_{s-1/2}^{2} + c'_{s}\|\phi\|'_{s}\|\phi\|_{s}$$

by generalized Schwarz inequality.

Therefore our proposition is proven by the same trick as above and (2.3).

PROPOSITION 2.2. There exists a constant C > 0 satisfying the following condition: For each real $s \ge 0$ we can find C_s such that

$$\|\phi\|_{s}^{2} \leq C\|\Box\phi\|_{s}^{2} + C_{s}\|\phi\|_{s}^{2}$$
 for $\phi \in \Gamma(M, E_{2})$.

PROOF. Let e and e' be as in the proof of the previous proposition. First we show the following estimate:

$$(2.7) \quad \|e'e\phi\|_{s}^{2} \leq c \left| \left(P_{s}(\Box + 1)\phi, e^{*}P_{s}e\phi \right) \right| + c'\|\phi\|_{s+1/2}^{2} + c_{s}\|\phi\|_{s}^{2}\|\phi\|_{s}^{2}$$

for ϕ with Supp $\phi \subset U_k$, where e^* denotes the adjoint of e.

Since $||e'e\phi||_s^2 \le 2||P_se\phi||'^2 + c_s||\phi||'_s^2$, by (1.5) we have

$$||e'e\phi||_{s}^{2} \leq 2C_{2}Q(P_{s}e\phi, P_{s}e\phi) + c_{s}||\phi||_{s}^{2}.$$

Let us estimate the difference $Q(P_s e \phi, P_s e \phi) - (P_s(\Box + 1)\phi, e^*P_s e \phi)$ by using the formula:

$$(APe\phi, APe\phi) - (PA*A\phi, e*Pe\phi) = ([A, P]e\phi, APe\phi) + (P[A, e]\phi, APe\phi) + (eA\phi, [[P*, A], P]e\phi) + (P*eA\phi, [P*, A]e\phi) + (P[A*, e]A\phi, Pe\phi) + ([P, e]A*A\phi, Pe\phi)$$

where A = D or D^* , $P = P_s$. Since

$$(P[A, e]\phi, APe\phi) = ([A, e]P\phi, APe\phi) + ([P, [A, e]]\phi, APe\phi),$$

$$(P[A^*, e]A\phi, Pe\phi) = ([A^*, e]PA\phi, Pe\phi) + ([P, [A^*, e]]A\phi, Pe\phi),$$

and [A, e] and $[A^*, e]$ are differential operators of order 1, we have

$$|(P[A, e]\phi, APe\phi)| \le (c\|\phi\|_{s+1} + c_s\|\phi\|_s)Q(Pe\phi, Pe\phi)^{1/2}$$

and

$$|(P[A^*, e]A\phi, Pe\phi)| \le (c\|\phi\|'_{s+1/2} + c_s\|\phi\|'_s)\|\phi\|'_{s+1/2}$$

by generalized Schwarz inequality and [7, Lemma 5.1]. The other terms are estimated by $c_s \|\phi\|'_s Q(Pe\phi, Pe\phi)^{1/2} + c'_s \|\phi\|''_s \|\phi\|'_s$ as in the proof of Proposition 2.1.

Hence, by (2.3) and (2.4), we have

$$Q(P_{s}e\phi, P_{s}e\phi) \leq |(P_{s}(\Box + 1)\phi, e^{*}P_{s}e\phi)| + c\|\phi\|'_{s+1/2}Q(P_{s}e\phi, P_{s}e\phi)^{1/2}$$

$$+ c'\|\phi\|'^{2}_{s+1/2} + c_{s}\|\phi\|'_{s}Q(P_{s}e\phi, P_{s}e\phi)^{1/2} + c'_{s}\|\phi\|''_{s}\|\phi\|'_{s}$$

$$\leq |(P_{s}(\Box + 1)\phi, e^{*}P_{s}e\phi)| + (\varepsilon c + \varepsilon' c_{s})Q(P_{s}e\phi, P_{s}e\phi)$$

$$+ (c' + c/4\varepsilon)\|\phi\|'^{2}_{s+1/2} + (c_{s}/4\varepsilon')\|\phi\|'^{2}_{s} + c'_{s}\|\phi\|''_{s}\|\phi\|'_{s}$$

for any $\varepsilon > 0$ and $\varepsilon' > 0$.

Let
$$\varepsilon = 1/(4c)$$
 and $\varepsilon' = 1/(4c_s)$; then

$$Q(P_s e \phi, P_s e \phi) \leq 2 |(P_s(\Box + 1)\phi, e^* P_s e \phi)| + c ||\phi||_{s+1/2}^2 + c_s ||\phi||_s'' ||\phi||_s'.$$

Thus we get (2.7).

Next, by (2.7), we have

$$\begin{split} \|\phi\|_{s}^{"2} &= \sum_{k \in \Lambda} \sum_{e,e'} \|e'e\rho_{k}\phi\|_{s}^{2} \\ &\leq \sum_{k \in \Lambda} \sum_{e,e'} c \left| \left(P_{s}(\Box + 1)\rho_{k}\phi, e^{*}P_{s}e\rho_{k}\phi \right) \right| \\ &+ c' \|\phi\|_{s+1/2}^{2} + c_{s} \|\phi\|_{s}^{"} \|\phi\|_{s}^{"} \quad \text{for } \phi \in \Gamma(M, E_{2}). \end{split}$$

Since

$$|\left(P_s(\Box + 1)\rho_k\phi, e^*P_se\rho_k\phi\right)| \leq |\left(P_s\rho_k(\Box + 1)\phi, e^*P_se\rho_k\phi\right)| + c_s\|\phi\|_s'\|\phi\|_s''$$
 and $\|e^*P_se\rho_k\phi\| \leq c\|\rho_k\phi\|_s'' + c_s\|\phi\|_s'$, we have

$$\|\phi\|_{s}^{"2} \leq c\|(\Box + 1)\phi\|_{s}\|\phi\|_{s}^{"} + c_{s}\|(\Box + 1)\phi\|_{s}\|\phi\|_{s}^{"} + c'\|\phi\|_{s+1/2}^{2} + c'_{s}\|\phi\|_{s}^{"}\|\phi\|_{s}^{"}.$$

By the same trick as above we have

$$\|\phi\|_{s}^{"2} \le c\|\Box\phi\|_{s}^{2} + c'\|\phi\|_{s+1/2}^{2} + c_{s}\|\phi\|_{s}^{2}.$$

Consequently we infer our proposition from (2.3) and Proposition 2.1.

THEOREM 2.3. There exists a constant C > 0 satisfying the following condition: For each integer $s \ge 0$ we can find C_s such that

$$\|\phi\|_s^{\prime\prime 2} \leq C \|\Box \phi\|_s^2 + C_s \|\phi\|^{\prime\prime 2} \quad \textit{for } \phi \in \Gamma(M, E_2).$$

PROOF. By (2.6) and Proposition 2.2,

$$\|\phi\|_{s}^{\prime\prime2} \leq c\|\Box\phi\|_{s}^{2} + \frac{1}{4}(C+C_{s})\|\phi\|_{s+1/2}^{\prime2} + c_{s}\|\phi\|_{s-1/2}^{\prime2},$$

where C and C_s are constants in (2.4). Then

$$\|\phi\|_{s}^{"2} \le c \|\Box \phi\|_{s}^{2} + \frac{1}{4} \|\phi\|_{s}^{"2} + c_{s} \|\phi\|_{s-1/2}^{2}$$
 by (2.4).

Repeating this process, we have

$$\|\phi\|_{s}^{"2} \leq c\|\Box\phi\|_{s}^{2} + \frac{1}{4}\|\phi\|_{s}^{"2} + \frac{1}{8}\|\phi\|_{s-1/2}^{"2} + \dots + (1/2)^{2s}\|\phi\|_{1}^{"2} + c_{s}\|\phi\|_{1/2}^{"2}.$$

Thus we have our theorem.

By Theorem 2.3 and (1.7) we have

COROLLARY 2.4. $\|N\phi\|_s'' \leq C\|\phi\|_s + C_s\|\phi\|$ for $\phi \in \Gamma(M, E_2)$ and $s \in Z^+$.

3. C^{∞} -ness of the versal family. The purpose of this section is to show that each $\phi(t)$ in the versal family constructed in §1 is of class C^{∞} . We deduce this result by applying the Nash-Moser inverse mapping theorem (cf. [7, Theorem 8.1]) to the map A (cf. (1.9)).

For $\omega \in \Gamma(M, E_1)$, let R_{ω} be a differential operator on $\Gamma(M, E_1)$ given by

(3.1)
$$2R_{\omega}(\phi)(X,Y) = [\omega(X),\phi(Y)]_{T'} + [\phi(X),\omega(Y)]_{T'} - \omega([X,\phi(Y)]_{\circ T''} + [\phi(X),Y]_{\circ T''}) - \phi([X,\omega(Y)]_{\circ T''} + [\omega(X),Y]_{\circ T''})$$

for $X, Y \in \Gamma(M, {}^{\circ}T'')$.

LEMMA 3.1. $R_{\omega}(\phi)$ is in $\Gamma(M, E_2)$.

PROOF. We observe by a direct calculation that $R_2(\omega + \phi) = R_2(\omega) + R_{\omega}(\phi) + R_2(\phi)$. So the lemma follows from Proposition 1.1.

LEMMA 3.2. For any real $s \ge 0$,

$$||R_{\omega}\phi||_{s} \leq C||\omega||_{m}||\phi||_{s}^{s} + C_{s}||\omega||_{m+s}^{s}||\phi||_{s}^{s},$$

(2)
$$||R_2(\omega + \phi) - R_2(\omega) - R_{\omega}\phi||_{s} \leq C_{s} ||\phi||'_{m+s} ||\phi||'_{m}.$$

PROOF. (1) follows from (3.1) and [7, Lemma 5.1]. Since $R_2(\omega + \phi) = R_2(\omega) + R_{\omega}\phi + R_2(\phi)$, (2) follows from

$$||R_{2}(\phi)||_{s} \leq c||\phi||'_{m}||\phi||'_{s} + c_{s}||\phi||'_{m+s}||\phi||'$$

by [7, Lemma 5.1]. Q.E.D.

LEMMA 3.3. There is a constant C > 0 satisfying the following condition: For each $s \in \mathbb{Z}^+$ we can find C_s such that

$$||D^*NR_{\omega}\phi||_{s}' \leq C||\omega||_{m}'||\phi||_{s}' + C_{s}||\omega||_{m+s}'||\phi||'.$$

PROOF.

$$||D^*NR_{\omega}\phi||_s \le c||NR_{\omega}\phi||_s'' + c_s||NR_{\omega}\phi||_s' \le c||R_{\omega}\phi||_s + c_s||R_{\omega}\phi||_{s-1/2},$$

by (2.4) and Corollary 2.4. Then

$$||D^*NR_{\omega}\phi||_s \le c||R_{\omega}\phi||_s + \frac{1}{4}||R_{\omega}\phi||_s + c_s||R_{\omega}\phi||_{s-1}$$

by (2.5). Repeating this process we have

$$||D^*NR_{\omega}\phi||'_{s} \leq c||R_{\omega}\phi||_{s} + c_{s}||R_{\omega}\phi||.$$

Hence we have our lemma by Lemma 3.2(1).

Let E be the Fréchet space $\Gamma(M, E_1)$ with the fundamental system of norms $\{\| \|'_s | s = 0, 1, 2, ... \}$. The usual smoothing operator R(u) ($u \in R$, u > 0) on E has the following properties with respect to $\| \|'_s$ -norms: for $s \le r$,

(i)
$$||R(u)\phi||_{r} \leq c_{r,s} u^{r-s+1/2} ||\phi||_{s}^{r},$$

(ii)
$$\|\phi - R(u)\phi\|'_{s} \leq c_{r,s}u^{s-r+1/2}\|\phi\|'_{r}.$$

These properties of R(u) are enough for the Nash-Moser iteration method to be available.

Set $E(r, a) = \{ \phi \in E \mid ||\phi||_r' < a \}$. Let a be a real number such that $E(k, a) \subset W_1$ (cf. §1) and $a < 1/(C + C_m)$ where C and C_m are constants in Lemma 3.3.

Let A'_{ω} be the differential of A at $\omega \in E(k, a)$; then $A'_{\omega}\phi = \phi + D^*NR_{\omega}\phi$. By Lemma 3.3 we have

$$||A'_{\omega}\phi - \phi||'_{s} \le C||\omega||'_{m}||\phi||'_{s} + C_{s}||\omega||'_{m+s}||\phi||'.$$

Since $(C + C_m) \|\omega\|_{2m}' < 1$, we infer from [7, Proposition 8.1] that A'_{ω} is invertible and

$$\|(A'_{\omega})^{-1}\psi\|'_{s} \leq C\|\psi\|'_{s} + C_{s}\|\omega\|'_{m+s}\|\psi\|'_{m}.$$

It is clear that A satisfies conditions (II.1) and (II.2) of [7, Theorem 8.1] by Lemma 3.2 and (1.7).

Hence the Nash-Moser iteration method implies that we can find $k_1 \in Z^+$, $a_1 > 0$, and a map $S: E(k_1, a_1) \to E(k, a)$ such that $A(S(\psi)) = \psi$ for all $\psi \in E(k_1, a_1)$ (cf. [7, Theorem 8.1]). Moreover if we set $W = \mathcal{K} \cap W_2 \cap E(k_1, a_1)$, W is a neighbourhood of the origin in \mathcal{K} and S(t) coincides with $\phi(t)$ for $t \in W$. Consequently $\phi(t)$ is in $\Gamma(M, E_1)$ for $t \in W$.

REFERENCES

- 1. T. Akahori, Intrinsic formula for Kuranishi's $\bar{\partial}_{b}^{\phi}$, Publ. Res. Inst. Math. Sci. 14 (1978), 615-641.
- 2. ____, A new estimate for the subbundles E_j and its application to the deformation of the boundaries of strongly pseudo convex domains, Invent. Math. 63 (1981), 311-334.
- 3. T. Akahori and K. Miyajima, Complex analytic construction of the Kuranishi family on a normal strongly pseudo-convex manifold. II, Publ. Res. Inst. Math. Sci. 16 (1980), 811-834.
- 4. L. Boutet de Monvel, *Intégrations des équations de Cauchy-Riemann induites formules*, Sém. Goulaouic-Lions-Schwartz 1974/75, Centre Math. École Polytech., Paris, 1975.
- 5. J. J. Kohn, *Harmonic integrals for differential complexes*, Global Analysis, Papers in honor of K. Kodaira, Univ. of Tokyo Press, Tokyo, 1969, pp. 295–308.
- 6. M. Kuranishi, Deformations of compact complex manifolds, Sém. Math. Sup., Univ. Montréal Press, Montréal, 1969.
 - 7. _____, Deformations of isolated singularities and $\bar{\theta}_b$, preprint, Columbia Univ., 1973.

DEPARTMENT OF MATHEMATICS, KAGOSHIMA UNIVERSITY, KAGOSHIMA, 890, JAPAN