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NONFACTORIZATION THEOREMS

IN WEIGHTED BERGMAN AND HARDY SPACES

ON THE UNIT BALL OF C (n > 1)

BY

M. SEETHARAMA GOWDA1

Abstract. Let Apa(B), Aqa(B) and ALa(B) be weighted Bergman spaces on the

unit ball of C" (n > 1). We prove:

Theorem 1. // 1/1= \/p + \/q then Apa(B)-Aq-"(B) is of first category in
ALa(B).

THEOREM 2. Theorem 1 holds for Hardy spaces in place of weighted Bergman spaces.

We also show that Theorems 1 and 2 hold for the polydisc U" in place of B.

1. Introduction. Let U be the unit disc in C. For 0 < t < oo and -1 < a < oo, let

H'(U) be the Hardy space of all holomorphic functions/on U satisfying

sup  f\f(re'e)\'d6< oo,
0<r<l    -T

and let A'-a(U) be the weighted Bergman space of all holomorphic functions/on U

satisfying

/"|/(z)|'(l-|z|2)a¿im(z)<oo,

where dm(z) denotes the Lebesgue measure on U. If 0 < p, q, I < oo and 1/p + l/¿7

= 1 //, then it is well known that H"(U)-H"(U) = H'(U), where the left-hand side

consists of all products of the form/-g with/ G HP(U) and g G Hq(U). Horowitz

[3] proved that Ap'a(U)-A"'a(U) = A'-a(U) whenever a > 0 and 1/p + l/¿7 = 1//.

In C" (n > 1), the above results are no longer valid. Rudin [6] and Miles [4]

showed that H2(U")-H2(U") is a proper subset of HX(U") for « > 3. (Here U"

denotes the unit polydisc in C.) Rosay [5] showed that H2(U") ■ H2(U") is of first

category in H X(U") for n s* 2, thereby completely solving the Factorization Problem

(see [6,4.2]) in Hardy spaces of the polydisc. In [7, Problem 19.3.1], Rudin asked

whether H2(B)- H2(B) is properly contained in HX(B), where B denotes the unit

ball of C" (n > 1). In this paper we show that HP(B) ■ Hq(B) is of first category in

H'(B) whenever 0 < p, q, I < oo and 1/p + l/q — 1 //. We prove a similar result
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(Theorem 1) for the weighted Bergman spaces on the unit ball B (see §2 for

notations and terminology). Essential ideas required to prove these results come

from Rosay [5].

Coif man, Rochberg and Weiss [1] proved that any function in HX(B) is an infinite

sum of the form 2£L,/g, where/ and g, belong to H2(B) for all i. We do not know

if the infinite sum can be replaced by a finite sum (see Remark 4).

2. Preliminaries. Notations are as in [7]. For z = (zx, z2,...,zn) and w =

(wx,w2,...,wn) in C", let (z,w)= 2?=^ and \z\2 = 2f=, |z,|2; let B = Bn = {z

G C: | z |< 1} and S = {z G C": | z |= 1}. For z G C" we sometimes write z =

(z,, z') where z' = (z2, z3,...,zn).ex = (1,0,0,.. .,0).

Let a, z G B and a ¥=0, let

*a(z)

a-Paz-(l-\a\2)'/2Q ,2

l-{z,a)

where Paz — (z, a)a/(a, a) and Qaz = z — Paz. <¡>a(z) is a holomorphic automor-

phism of B satisfying <t>a(<t>aiz)) = z-

da denotes the rotation invariant probability measure on S. dv(z) — dvn(z) =

2nr2n~x drdo(Ç) is the normalized Lebesgue measure on B. Hexe z = rf, r =| z | and

ÍE5.
U(B) denotes the space of all holomorphic functions on B.

C(B) denotes the space of all continuous functions on B.

A(B) = HiB)C\ C(B) is the ball algebra.

For 0 < t < oo, H'(B) is the Hardy space of all/ G H(B) satisfying

/ \ i/'

11/11,.=      sup   f\f(rn\'da(n)     < oo.

Let

¿/pa(z) = (l -\z\2)adv(z)/nB(n,a+ 1)

where -1 < a < oo and B(n, a + 1) denotes the Beta function. For -1 < a < oo

and 0 < t < oo, we write^''a(73) to denote the space of all/ G H(B) satisfying

l/ll,,«=(/j/|'¿Ma)

i/'
< oo.

We note that ¿fpa is a probability measure on B and

(1) lim   ff(z)d^a(z)=ff(ndo(n
a^-\JB JS

for all / G C(t3). (The above relation holds for monomials z^z^2 ■ ■ ■ zß" ■ z"fl ■ ■ ■ zyn"

and hence for linear combinations of monomials. The Stone-Weierstrass theorem

proves (1) for any/ G C(B).)
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Because of (1) we can think of HP(B) as a "hmiting" case of AP'"(B) for a = -1.

Let/ EH(B). Then from [7, Theorem 7.2.5],

\f(z)f (l -]-y-)" ^2"fs\f(rnr do(0

for | z | < r < 1 and 0 < p < oo.

Let K be a compact subset of B. If we multiply the above inequality by

(1 — r2)ar2"~x dr and integrate over the interval (1 + | z |)/2 < r < 1, we get

\f(z)\<cn>a>PtK\\f\\Ptai\-\z\r/p (vzg/v)

where C„apK is a constant depending only on its subscripts.

The above two inequalities, together with a normality argument, give

Fact 1. Every bounded sequence in HP(B) (or in AP'"(B)) has a subsequence which

converges uniformly on compact subsets of B.

From this it follows that Apa(B) and Hp(B) are F-spaces.

Let / G H"(B) (A"'a(B)) and fr(z) = f(rz) for 0 < r < 1. Then fr ->/ in HP(B)

(in Ap'a(B)) as rs 1. For a suitable r and ¿5 (0 < 8 < 1), (1 - z,)/(z)/(l - 8zx) is

close to/in HP(B) (in ^'"(i?)) and vanishes at e,. Hence we have

Fact 2. The set of all f G A(B),f(ex) = 0, is dense in HP(B) (Ap-a(B)).

We need the following identities [7, Proposition 1.4.7]:

(2) JM)do{t) =/J¿//(^)^) do«;),

(3) /Afi.D^tf) =/a  (¿/_/(e^"r)^) d"-i(r)-

3. Lemmas.

Lemma 1. Lei 0 < t < oo ¿zn¿i a > -1. Then \\z^\\'t a ~ A/-("+«) ¿w N -» oo.

Proof. We have

'''?»!.. = B(„,^ + i)/,i(^"i'('-^v-'^.(n

= (/slf"''^»)(^TT)/0>+2""<'-r2)"^)-

The second integral, on putting u — r2 becomes \B(Nt/2 + n, a + 1). By Stirhng's

formula this behaves hke 1//V°+1 as TV -» oo. For the first integral, we use the

identity [7,1.4.5, p. 15]

fsf(^,V))do(S) = ^jj(l-r2)"-2f(re>°)rdrd0.

We get

fjS2rdoin=^f\l-r2)"-2r»>+xdr=^B(^,n-l)

~ 1/7V"   '    by Stirling's formula.



206 M. S. GOWDA

Hence

11**11},« ~ 1/^"_1 • l/Na+x = /¥-<"+«>.

Remark 1. || z" Il {,„ ~¿V-<"-'>.

Lemma 2. Let K(z) — dZf=N-XK¡(z) be holomorphic in B, where K¡(z) is a

homogeneous polynomial of degree i and N is a positive integer. Then for 0 < t < oo,

there exists a constant M (depending only on t) such that

(4) \\KN\\ua<M-\\K\\tta,

(4') ll/^II^M-ll/vll,^.

Proof. For 0 < / < oo, there exists an M such that if G(\) = a0 + a,A + a2\2

+ • • • is in the disc algebra A(U) then

I ax I' < M ' ■ ̂- Í \G(eie)\'dO.

(For t > 1 we can take M = 1. For 0 < t < 1, see [2, Theorem 6.4, p. 98]. In fact,

M = 2x/t works for any t.) Now for a fixed z, let

G(X) = K(Xz)/\N~x = KN_x(z) + XKN(z) + ■■■.

We get

\KN(z)\'<M'--¡-f\K(e'6z)\'dd.

We let z = rf, integrate both sides with respect to do(t) and use (2) to get

(5) f\KNirS)\'doiS)<M'j\KirS)\<daiS).

Taking the supremum over r in the interval 0 < r < 1 and rth roots, we get (4). To

get (4'), we multiply both sides of (5) by (2/Bin, a + l))r2n"'(l - r2)adr, in-

tegrate over 0 < r < 1 and take / th roots.

Lemma 3. Let 0 <p, q, I < oo, l/l = 1/p + l/¿7, -1 < a < oo ¿7«¿i n > 1. Then

the product map ih,k)^h-k from Ap-a(B) X Aq'a(B) to A''a(B) is not open at the

origin, i.e., for any constant C > 0, there exists f G A1'"i B) such that II / II, a < 1 and

iff=h-kwithh EAp'a(B),k G Aqa(B) then at least one of\\h\\ p<a, \\k\\qa is larger

than C.

Proof. Let F(z) = zxN~ ' + z2", N > 1. Suppose F(z) = H(z) ■ K(z) with H and K

holomorphic in B. We expand //(z) and K(z) in terms of homogeneous polynomi-

als: H — Hj + Hi+X + ■ • •, K — KN_x_j + KN_i + ■ ■ ■. Here, as usual, subscript

refers to the degree, H¡ z 0 and KN_, _, 2 0. From F — HKv/e get, by comparing

degrees,

(6) HrKN_x_, = zrx

and

(7) HiKN_i + Hi+xKN_x_i — z2.
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From (6) and (7) we get i = 0 or N — 1. We assume for a moment that i = 0. Then

H0 is a constant, say A. We have from (6) and (7),

AKNiz)=z»-(Hx(zyzrx)/A.

Letting z = r(ei9$x, £') we get

AKN{e%,?) = tf - A-xHx(e%J')e^-x^rl-

Therefore, Ç2   is the constant term in the polynomial AKN(\ÇX, f) in A. By

subharmonicity,

(8) \^\'^^-r\AKN(e%,r)\'de   Îox0<t<oo.

Now we multiply both sides of (8) by dvn_x(^') and integrate over Bn_,. Using (3),

we get

[ \g\'do(S)< f \AKN(WMS)
Js Js

and

(9) f\(rQN\'do(n<f\AKNirn\'do(n.

We multiply both sides of (9) by (2/Bin, a + l))r2"~xil - r2)adr, integrate over

0 < r < 1 and take t th roots to get

11*2%.. <M I II**" ,..•

Since \Hiz)\' is subharmonic and A =7/(0), we have \A \' < Js | /f(rf) |'¿/a(0-

From this we get | .4 | < || tY ||, a. Hence

»*2V»,,a <M I II**»,.«<II#H,,JI#„II,.«.
Using Lemma 2, we get llzfll, a < Af ||//||, „HtVII, a. 7?y symmetry, this inequality

holds when i = N - 1. Now let / = F/||F||,'„. Then || /||/a = 1. Suppose /= h■ k

where h G Ap-a(B) and â: G/4 "•"(£). Then F=HK where 7/= ||F||/f«A and

K = k. Therefore

\\zi\\t^<M\\H\\,t.-\\K\\t^<M\\F\\,Jh\\tim-\\k\\,tm.

Now we take/ = min(p, ¿7). Then ll/i||,0 *s IIAII ^^ and II A: II, a =£ Il A II ̂ We have

ii^iií.. = / i*r ' + *ít*.< 2'[i^r 'ni.a + n*2%j.JB

By Lemma 1, the right side of the above inequality is like N~'-"+a) for large N. We

see that

HAH,.." 11*11,.« > 11*2*11,^^11^11/...

Hence IIAII ̂„11 A; ||      is bigger than a constant times N-("+«)('/'- '/') wnich goes to

00 as N -* 00 (recall / = min(p, ¿7) > /). Therefore, for any constant C, we can find

a large N so that || h ||     • || A: ||     > C2. This completes the proof.

Remark 2. By considering Hp-noxxns instead of ^-"-norms, one can get the

nonopenness of the product map (at the origin) for TV-spaces.
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Lemma 4. For a G B and z G B, let

K(a,z)=[(l-\a\2)/\l~(z,a)\2r+X+a).

Then:

ii)Kia,<t>aiz))-Kia,z)=l.

(ü) /B/(¿o)¿fpa(co) = fBfi<¡>aiz))Kia, z)dfiaiz)forallfG dB).

(iü) /„/(*„(*)) dpjíz) - fiex) asa^ex for all f G C(B).

Proof. From [7, Theorem 2.2.5], we have

l-(*a(z),«)=(l-|«|2)/(l-<>,*>).

Taking absolute values and using the definition of K, we get (i). From [7, Theorem

2.2.6] we have

j7(¿o)(l-|co|2)a¿M<o)

= /A».(0)(l-|^,(*)|2)ai,11"/|fl|2v,2)"    àviz).
JB \|l-(z,a)|2/

Using

1 - I <*>„(*) |2 = 0 - \a\2){) - I*!2)/!1 - (z,a)\2      (see [7, Theorem 2.2.5]),

//<«>(> - i-rT «*•) = //(♦•'-»(']l°!\Z)r:<^r Mz)-
Hence

//(«) dp» =  ( f(4>aiz))K(a, z) ¿fuQ(z).
•'S -'S

This is (ii). Since lima_e|cj>a(z) — ex, an application of the Bounded Convergence

Theorem gives (hi).

Remark 3. In the above lemma we assumed that a > -1. The following state-

ments hold when a — -1.

ii)Kia,4>aiz))Kia,z)=l.

(Ü) fsfiv) daiv) = jsfi$aiï))Kia, S) do«) for all/ G C(5).

(iü) jsfi*ai$))doiS) -/(e.) as a - e, for all/G C(S).

We observe that when a — -I, Kia, z) is the Poisson kernel and statements (i) and

(ii) are well known. Since fsfi<l>aiÇ)) do«) is the Poisson integral of/, (hi) follows

(see, e.g., [7, Theorem 3.3.4(a)]).

Lemma 5. Let

^(z)=[i + /r^F/(i-(z,a»]2("+1+a).

Then

max{l, K(a, z)} <|*,(z) |< 22<"+">+1{l + *(„, z)}

/or all z E B, a G B and a > -1.
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Proof. For X G C and Re X s* 0, we have max(l, | X |) <| 1 + X \ . This can be

seen by plotting X and 1 + X in the complex plane. Also, | 1 + X \m < (1 + | X \)m

^2m-\l + \X\m) for m>l. Taking X = Jl - \ a |2/(1 - <z, ¿j» and m =

2(n + I + a), we get the lemma.

4. Main theorem.

Theorem 1. Let n > 1, -1 < a < oo, 0 < p, q, I < oo and l/l = 1/p + l/¿7. Then

Ap'a(B)Aqa(B) is of first category in A,a(B).

Proof. Let Fand Wbe the closed unit balls in Ap-"(B) and Aq'a(B), respectively.

We claim that V ■ W is closed in A1 "(B). Let gm G V, hm G IT such that gm-hm^f

in /l/,a(2?). By Fact 1 (of §2) we may assume, without loss of generahty, that gm -> g

and hm-> h uniformly on compact subsets of B. By Fatou's Lemma, g G F and

h G W. Since gm-hm^>f uniformly on compact subsets of B, /= g-h G F- W.

Hence the claim. We have Ap<a(B)■ Aqa(B) = LT=1(wF- IF). We show that

mV-W has empty interior in ^''"(i?) for each m > 1. Assume the contrary. Then

some mV ■ IF will have an interior point in A''a(B). There exist an R G Ala(B) and a

constant C such that

(10)
f \R-F\'diia< 4"+1+a,F G ,4''a(73), implies
JB

F=g-h with Hgll      <Cand ||A||   „<C.

By Fact 2 (of §2), we may assume that R is a function in A(B) vanishing at ex. Now

by Lemma 3, for the constant C there is an /G Ala(B) such that ||/1|,a < 1 and

/= g-/i, g G,4''a(73), A G ̂ '«(73) imply that at least one of llgll,,«,' \\h\\qa is

larger than C. There is an e > 0 such that

.,\f-fx\\ita<e and fx=gx-h[EAp-"(B)-Aq-"(B)

implies either ||g, ||„>a > C or ||/i, \\^tt > C.

We may assume, after Fact 2, that/is a function in /1(t3) vanishing at ex.

We now come to perhaps the most important single step in the proof (see [5]). Let

F(z) = f(<S>a(z))4ix/'(z) + R(z). i<¡>aiz) is defined in §2 and i|/a(z) is defined in

Lemma 5.) Now

f\F-R\'dlia = f\f(4»a{z))\l\^iz)\dße

^ y2(n+a)+\
f \f(*a) |'dp. + / |/(*fl(*)) \'K(a, z) d^iz)

by Lemma 5. The second integral in the above inequality is /R|/|'dpa by (ii) of

Lemma 4 and the first integral goes to zero as a -> ex, by (hi) of Lemma 4 (recall
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that/(e,) = 0). Hence when a is close to ex,

[\F-R\'dlia<22("+°)+x 1+ [ \f\'d(ia
•> H J fi

<22<"+a>+1[l + 1]   (since II/Il,,„«1)

—  An+a+1

By (10), F= g-h with ||g||„ia < C and ||A||fl>a < C. Therefore/(*a(z))-*y'(z) +

Riz) = giz) ■ hiz). Replacing z by <J>a(z) and using <í>a(<f>a(z)) = z, we get

/(*) +

We have

Rj^jz))    _ g(»a(z))-A(ft,(z)) _    g(<j>a(z))        A(<j>a(z))

*y'(*.(*)) *!"(*.(')) *!"{*.(*)) +y*(*.(*))

/■

*(*j

^y'i+a)

dva<f\R(4>a)\'dpe

by Lemma 5. Since Ä(e,) = 0, the right side integral in the above inequahty goes to

zero as a -» ex by (iii) of Lemma 4. Hence if ¿z is close to ex, (11) holds with

/, =g,-/i, where

gx=g(*a)/ti/p(*a)   and   A^AUJ/^/'i^).

Therefore either HgJI^ > Cor l|A,||oa > C. Suppose ||g, \\pa > C. Then

Cp < f. g(*a)

g(<i>a(z))\P

dHa

■dfia(z)    (by Lemma 5)<   f   \gK9q
^JBK(a,<i>a(z))

= ( \g(<t>a(z))Y>K(a,z) dnaiz)    (by (i) of Lemma4)
JB

= / I g Y dp a   (by (ü) of Lemma 4)

<C   (since II g || Ptm<C).

We reach a contradiction. Similarly IIA,||aa > C gives a contradiction. Hence all

m(V- W) have empty interiors. So

00

ApaiB)-Aq'aiB) =   \Jm(V-W)

m=\

is of first category in AlaiB).

5. Other results. Here is a nonfactorization theorem for Hardy spaces.

Theorem   2.   Let   n > 1   ¿znd   0 < p, ¿7, / < 00.   //   1// = \/p + l/q   then

HpiB)HqiB) is of first category in H'(B).
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The proof of this theorem is very similar to that of Theorem 1. One has to

integrate functions in the Hardy class H'(B) (for t = p, q and /) with respect to do

over S. a should be replaced by -1 (relation (1) can also be used at appropriate

places). We omit the details. Theorem 2 can also be proved, for n > 2, using

Theorem 1 (with a = 0) and Theorem 7.2.4 in [7].

Remark 4. Let T be the mapping (/,, g„ /2, g2,... ,fk, gk) -> 2f= ,/g,. The proof

of Theorem 1 shows that

T: Ap'a(B) X A"'a(B) X • • • X Apa(B) X Aqa(B) -> Ala(B)

(I/I — l/p + l/q) is onto if and only if it is open at the origin. Nonopenness of T

at the origin would imply the existence of a function in Al'a(B) which is not of the

form Sf=,/g, with / E Apa(B) and g, E Aqa(B). However, any function F in

Ax-a(B) (for a = 0,1,2...) can be written as F = l%xGiH¡ where G, and H¡ belong

to A2,a(B) (see [1, Theorem IV]). Similar statements can be made for Hardy spaces.

Remark 5. Let 0 < / < oo, a = (ax,a2,...,an), a¡ > -1. Let A'-a(U") be the

space of all holomorphic functions/satisfying ll/ll,a = ifu-\f\' diia)x/l < oo where

d[iaiz) = n,"=,(l — |z,|2)a,dm,(z,), dm¡iZi) being the Lebesgue measure on U for

all /' = 1,2,...,«. Then Theorem 1 holds for U„ in place of B. We sketch a proof of

this statement. If K(z) = *Z%N_xKi(z) is as in Lemma 2 then

f | KN(rxe,e, eiez') \'dO <CtC\ K(rxe'e, ei9z')'dd

and hence IIKNII, „ < Mt || tY ||, 0 where C, and Af, are constants depending only on f.

Without loss of generality let a, 3= a2. We have

llz/X.-A'-t1^       (¿=1.2),

by Lemma 1 and using F = zx~x + z2 we get (imitating the proof of Lemma 3) the

nonopenness of the product map from Ap-a(U") X Aq'a(U") to A''a(Un) where

l/p + l/q = l/l. (If

/l^(z)=z2v-(7¥,(z).zr1)/^

then

and

AKN(rxe'°, z') = z» - ^jÇlll^-^N-x

f\ z2v \'dB<Ct\A |' f\KN(rie", z') |' dfl    etc.)

ForO <r < 1, let

fl = (r,0,0,...,0),       <i>a(z) = ((r-z1)/(l-rz,),z2,z3,...,zj,

/r(¿/,z) = ((l-/-2)/|l-rz,|2)2+a'

and

.2(2+.,)

<i,a(z) = (l + ^l-/-2/(l-rz,))
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We note that as r -> 1, a -» (1,0,... ,0) and <f>„(z) -» (1, z'). Observe that functions/

in A(U") with /(l, z') = 0 form a dense subset of Ap'aiU"). With minor changes,

one can get results similar to Lemmas 4 and 5. By imitating the proof of Theorem 1,

we get the polydisc version of Theorem 1.

Remark 6. Let H'iU") be the Hardy space of all holomorphic functions/in U"

satisfying

ll/ll,,0=(   sup   /  |/(rO|'dotf))     <*=

where T" is the torus in C and do is the normalized Haar measure on T".

Then Theorem 2 holds for U" in place of B. Rosay [5] proved this for p = ¿7 = 2

and/= 1.

To sketch a proof, let P = izx + z2)N - z? - Nz?~ xz2. Then || P ||, „/|| P || la -* 00

as N -» 00 whenever / > /. There exists a constant C, such that if AKN = Piz) +

zx~xQiz), where £)(z) is any linear polynomial in z, then IIPII, „ < C, \A | 11^II,,„

(use subharmonicity in z2). The function/= (P + zxN~x)/\\P + zf_1||/>0 gives the

nonopenness of the product map. Changing a, to -1 and making other minor

changes in the proof of Remark 5, we get Theorem 2 for U".
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