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ON NEIGHBOURLY TRIANGULATIONS

BY

K. S. SARKARIA

Abstract. A simplicial complex is called ¿/-neighbourly if any d + I vertices

determine a (/-simplex. We give methods for constructing 1-neighbourly triangula-

tions of 3- and 4-manifolds; further we discuss some relationships between d-

neighbourly triangulations, chromatic numbers and the problem of finding upper

and lower bounds on the number of simplices and locating the zeros of the

characteristic polynomial of a triangulation. A triangulation of an orientable mani-

fold is called order-orientable if there exists some ordering of the vertices which

orients the manifold. We give necessary conditions for their existence; also we

construct such triangulations on 3-dimensional handlebodies and discuss the prob-

lem of recognising finite monotone subsets of an affine space by using these ideas.

(1.1) A (finite, abstract) simplical complex K will be called d-neighbourly if any

d + 1 vertices of K are the vertices of some d-simplex of K; instead of 1-neighbourly

we will simply say neighbourly. A space X will be called triangulable, and said to

admit a triangulation K, if X is homeomorphic to the geometrical realization | K | of a

simplicial complex K. The word manifold will always refer to a 'compact, Hausdorff

manifold' (with or without boundary); we remark that for dimensions > 4 it is still

not known whether all such manifolds are triangulable: so, in these dimensions, the

additional (possibly vacuous) hypothesis of triangulability will be assumed.

(1.1.1) In 1911 Caratheodory [4] discovered the fact that the n-sphere 5" admits an

[in — l)/2]-neighbourly triangulation C„x having x vertices, where x is any integer

s* n + 2. (However the combinatorial structure of these 'cyclic triangulations' was

understood only after their rediscovery by Gale [10, 11] and Motzkin [22]; in (4.1)

the reader will find a definition of C„x based on 'Gale's evenness condition', and in

(4.1.1) we verify, without using any convexity notion, that C„x in fact triangulates

S".) It is natural to enquire whether an analogous phenomenon is exhibited by other

n-manifolds M". It is clear that one would have to assume that the homotopy groups

77-,(A/") are trivial for /'<[(«— l)/2]; we conjecture (see (6.1.3)) that these condi-

tions are in fact also sufficient. In this context for 3-manifolds we have been able to

prove the following general theorem.

Neighbourliness Theorem for 3-Manifolds. If M3 is any connected 3-manifold

which is either closed or with a nonempty connected boundary, then there exists an

integer v such that for all x>v,M3 admits a neighbourly triangulation Kx having x

vertices.
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The proof is given in §3: see (3.2.1) and (3.2.5). The reader can, if he so wishes,

read §3 before §2. We use a theorem of Bing [2] which ensures that every connected

3-manifold with nonempty boundary has a triangulation all of whose vertices he on

the boundary. The idea of the proof is essentially to improve such a triangulation

step by step till it becomes neighbourly.

(1.1.1a) Added March, 1982. The above theorem resolves, in the affirmative, 'an

open question' mentioned on p. 419 of the 1977 paper of Altshuler [30]. But it turns

out that the neighbourliness of 3-manifolds was one of the results already proved in

the remarkable 1970 paper of Walkup [38, Theorem 4, p. 76 and pp. 89-91].

Walkup's proof can be easily adapted to show that in fact all connected 3-pseudo-

manifolds are neighbourly. We present our construction of neighbourly triangula-

tions because it is quite different, and perhaps geometrically more satisfying, than

Walkup's.

(1.1.2) We remark that the method for proving the above theorem can, in some

special cases, be adapted to give neighbourly triangulations with a reasonable

number of vertices. However in general there is very little control on the number of

vertices. Therefore it is of interest to look at another method which enables one to

give explicit neighbourly triangulations for some cartesian products. In this

method the starting point is the 'map colour theorem' of Ringel et al. [24] which

furnishes us with an infinite number of orientable (or nonorientable) closed mani-

folds M2 which admit a neighbourly triangulation: such a triangulation has xM

vertices where the integer xM is uniquely determined by dim HX(M2, Z2) in a simple

way; see (2.1.1) and (6.1.1). Using such 'neighbourly' 2-manifolds we are able to

deduce the following result.

Theorem. If M2 and N2 are neighbourly closed 2-manifolds and M2 is orientable,

then M2 X Sx (resp. M2 X N2) admits a neighbourly triangulation with 3.xM (resp.

xM.xN) vertices.

This theorem will be proved in §2: see (2.2) and (2.3).

(1.1.3) Let us denote by at(K) the number of z'-simplices in a simplicial complex

K. We recall that Stanley [28] proved that if K is any triangulation of S" having x

vertices, then a,(7V) < a,(Cnx) for all i. (We note that before Stanley's work,

McMullen [19, 20] had proved these inequalities in case K is a 'convex' triangulation

of 5"; i.e. when K can be realised as the boundary of an n + 1 dimensional convex

polytope.) If K is a triangulation of some other manifold Mn (e.g. if K is a

neighbourly triangulation of the torus or of 52 X S2), then these inequalities may be

false. However Stanley's theorem can be reformulated in terms of the '^-vector' (see,

[28, p. 137]) and it is unknown whether this version of his theorem holds for all

manifolds. For more on upper and lower bounds see (6.1.2)—(6.1.5).

(1.1.4) In §4 we introduce the new concept of an order-orientable triangulation, i.e.

a triangulation of an oriented manifold whose vertices can be totally ordered in

such a way that the induced orientations of the top dimensional simplices orient the

manifold. As one would expect such triangulations are not very common: if a

manifold M" admits an order-orientable triangulation, then 3Af" is nonempty and
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the inclusion aM" -* M" induces an isomorphism in homology for dimensions <

[(n — 2)/2] (4.2.3). This is an immediate consequence of the following result which

is proved in (4.2.2).

An Orientation Lemma. If M" has a triangulation K whose vertices are labelled as

1,2,... ,x in accordance with a total ordering which orients M", then (int K) H C*_x

= 0.

It is important to point out, however, that order-orientable triangulations are

abundant enough to justify their study; e.g., we prove in (4.2.5)(c) that every

three-dimensional handlebody admits an order-orientable triangulation. See also (6.1.6).

The only place where convexity plays a key role is in subsection (4.3). Let A" be a

real affine space and X C A" a finite subset whose x (> n + 1) points are in general

position; denote by Kx the simplicial complex which arises from the boundary facets

of the convex hull of X. As an application of the orientation lemma, we give in (4.3.2)

a new proof of the fact that if X admits a monotone sequence, then Kx = C„x_,. (A

' monotone sequence' is a total ordering of X under which any n + 1 points of X

determine the same orientation of A"; the usual proof of this presumably known

result would follow the hnes of (6.2.4).) Using this result we describe in (4.3.4) and

(4.3.5) a practical method for deciding whether a given X ÇA" admits a monotone

sequence; this answers a question which has been raised by Uhrin [29] and H. Gupta

(oral communication): see (4.3.3). The reader will find in (6.2) a short account of the

history of monotone sequences.

(1.1.5) The ith chromatic number ch¡iX) of a triangulable space is the smallest

number of colours which can be assigned to the i-simplices of any triangulation of X

in such a way that not all the faces of an /' + 1 simplex have the same colour. This

definition was given in [25]. We remark that ch0(M2) are precisely the classical

chromatic numbers and thus the 'map colour theorem' of Ringel et al. and the 'four

colour theorem' of Appel and Haken are equivalent to calculating ch0(Af2) for all

closed 2-manifolds.

Calculation of some chromatic numbers, (a) // the triangulable space X has

dimension > 2/ + 3, then ch,(X) = oo. (b) If M" is a closed manifold and n > 2, then

ch„_,(M") = 2.

This theorem is proved in §5: see (5.1.3) and (5.2.1). We note that the cyclic

triangulations C* are used in the proof of (a) and that the two colour thoerem

ch,(Af2) = 2 is used in the constructions of §2.

In [25] a simple upper bound (involving dim Hn_x(M"; Z2)) is given for the

codimension 2 chromatic numbers ch„_2(M") for any pseudomanifold M", n > 2.

If M" is a manifold and n > 3, then we can prove that ch„_2(M") * 4- We hope to

give in another paper a proof of the fact that the chromatic numbers chx^M"),

n < 2/ + 2, are finite.

(1.2) As far as possible the notation conforms to standard topological practice. We

think of a simplicial complex K primarily as a combinatorial object (i.e. a finite set

of finite sets with the property that a E K, 6 C o implies 6 E K) and secondarily as
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a topological object (i.e. a subdivided topological space which is a homeomorph of

some geometrical realization of K ). Many times, when no confusion seems possible,

we have adopted the standard convention of using the same letter K to denote the

topological object; occasionally it is denoted by | K \ . Likewise the letter o or the

notation [a, b,c,d), etc. may stand both for the abstract finite set and the corre-

sponding closed topological simplex. (In (4.3) the realizations | K | will be rectilinear

and in a specified affine space.) If simplices o and 0 have distinct vertices the

simplex o U 0 is also denoted by o.d (their 'join'); the join of 2 simplicial complexes

K and L, which have distinct vertices, is the complex K.L consisting of all simplices

o.d, o E K, 0 E L. If o E K the 'link' of a in AT consists of all 0 E K s.t. o.d E K; it

is denoted by Lk^a or just Lk o. The 'open star' of a in K consists of all 0 E K

s.t. o Q 0; it is denoted by St^ o or just St o. The open subset of | Ä" | determined by

the interiors of all simplices of St K o is denoted by | St^- o | . We denote by St K o the

'closed star' of o, i.e. the subcomplex of K generated by St^-a. Superscripts to

simplices or triangulable spaces denote their dimension. Sometimes a simplicial

complex is specified by just enumerating its top dimensional simphces.

We have adopted the convention of stating a result for manifolds even when the

proof involved uses this concept in a (very) mild way; in all these cases the

corresponding generalization (to 'pseudomanifolds', 'Euler spaces', etc.) is

transparent.

Acknowledgements. I am grateful to Professor H. Gupta and to Dr. M. V. Nori

for invaluable assistance given towards the preparation of this paper. I would also

like to thank Professors Fr. Fabricius-Bjerre and Richard Stanley for sending copies

of some papers which were unavailable to me. I am indebted to the referee for

pointing out a number of mistakes which had crept into the original version of this

paper and for suggesting various improvements in the exposition.

2. Neighbourly triangulations on products.

(2.1) A neighbourly space will be one which admits a neighbourly triangulation.

The circle is neighbourly and it admits a unique neighbourly triangulation, viz. the

one with 3 vertices. If a closed connected 2-manifold M admits a neighbourly

triangulation with x vertices then its Euler characteristic is

*- (2)+f(2) =2-dim7V,(M;Z2);

hence dim HX(M;Z2) = (x — 4)(x — 3)/6. This proves the 'only if part of the

following theorem. The converse is much more difficult to prove and is the result of

the combined efforts of Heffter (1891), Ringel (1954, 1961), Gustin (1963), Terry,

Welch and Youngs (1963) and many others. (See Ringel [24] for a proof and for

references to the original sources; neighbourly triangulations correspond to the

" triangular imbeddings" of this book.)

(2.1.1) A closed connected 2-manifold M admits a neighbourly triangulation with x

vertices if and only if x > 4 and dim HX(M; Z2) = (x — 4)(x — 3)/6.
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This theorem has the following immediate corollary:

9 {1A1)f t^Z I™* m ÍnfÍnÍte nUmber °f 0Hentable (°r nonortentable) closed

2-manifolds which are neighbourly.

For each neighbourly 2-manifold M the number x of (2.1.1) is uniquely de-

termined by M; henceforth it will be denoted bv x

(2.2) // the closed orientable 2-manifold M2 is neighbourly, then M2 X Sx admits a

neighbourly triangulation with 3.xM vertices.

(2.2.1) We equip M2 with an orientation and with a neighbourly triangulation L-

we observe that the orientation of M2 fixes an orientation on each 2-simplex of L

Next we note that given any triangulation of a closed 2-manifold one can assign colours

Oand 1 to its edges in such a way that no triangle has all three edges of the same colour

(A result more general than this will be proved in (5.2.1); the only prerequisite for

understanding its proof is (5.1).) Using this lemma we assign such a 'good'

2-colounng to the edges of L. Using this data we will give a canonical construction

for a neighbourly triangulation K of M2 X Sx; the vertices of K will be the ordered

pairs ta where i is a vertex of L and a = 1, 2 or 3.

(2.2.2) For each 2-simplex o2 6 L we will define in a canonical way a triangula-

tion K„ of the solid torus o2 X Sx; Ka will be isomorphic to the triangulation shown

in Figure 1 (where the two triangles on the left and right are assumed identified)

The vertices of Ka will be ia, i 6 o2, 1 < « < 3. Corresponding to each vertex / of o2

there will be three 'vertical edges' in Ka, viz. [il, il), [il, ¿3} and [i3, il) and

corresponding to each edge {,, j) of a2 there will be three 'horizontal edges' in K ,

V1Z- {'1. ;'!}. {/2, j2) and (/3, j3}. Further corresponding to each edge {i j) of o2

where i precedes; with respect to the orientation of o2, there will also be three

sloping edges' in Ka; if (/, j) has colour 0 (resp. 1) then these edges will be M m

{¿2, ;3} and {/3, jl} (resp. {¿2, jl}, {/3, j2) and {il, j3}).

Figure 1

^2.3) Let a be any 1-simplex of L; it is incident to precisely two 2-simplices o2,

o2 of L. Let o - {i, j); if i precedes (resp. follows); with respect to the orientation

of a, then ¿ follows (resp. precedes); with respect to the orientation of a2 So by

adding the three new tetrahedra {,1, jl, i2, ;2}, {,2, ;2, ¿3, ;3) and {/3, ;3, il, jl)

to Ka¡ U K02 we get a triangulation of (a space homeomorphic to) (a, U a2) X Sx

We continue this process till all the 1-simplices of L are exhausted; this gives us the

required neighbourly triangulation K of M2 X Sx.
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(2.3) //Af2 and N2 are closed neighbourly 2-manifolds of which one is orientable,

then M2 X N2 admits a neighbourly triangulation with xM.xN vertices.

(2.3.1) We assume that M2 is orientable and equip it with an orientation.

Furthermore M2 and TV2 are equipped with neighbourly triangulations L, and L2,

respectively; the edges of L, are equipped with a 'good' 2-colouring as in (2.2.1) and

the vertices of L2 are totally ordered and accordingly assigned the numbers

l,2,...,xN. Using this data we will construct a neighbourly triangulation K on

M2 X N2; the vertices of K will be all ordered pairs ia where i is a vertex of L, and

1 <a<xN.

(2.3.2) For each 2-simplex o2 E L, we will define in a canonical way a triangula-

tion Ka for the manifold a2 X A/2. The vertices of Ka will be ia, ¡£a!,l<«< xN.

Corresponding to each edge ox = {/', ;'} of o2, where i precedes; with respect to the

orientation of o2, and an edge 0X = {a, /?}, a < ß, of L2, the rectangle a1 X 01 will

be equipped with the triangulation of Figure 2a (resp. Figure 2b) if a1 has colour 0

(resp. 1).

Figure 2a Figure 2b

For each 2-simplex 02 E L2 one has a 4-cell o2 X 02 and within its boundary

there are nine rectangles of the above type; these nine rectangles constitute a 2-torus.

By means of the construction just given we have equipped this torus with a

triangulation isomorphic to that shown in Figure 3a.

Figure 3a Figure 3b

Such a toral triangulation has exactly 2 vertices x and y which are joined to all

other vertices by 1-simplices. Using the remaining 7 vertices one constructs a

triangulation of the 2-disk as shown in Figure 3b. We will equip the 4-cell o2 X 02

with the triangulation obtained by taking the join of the 1-simplex {x, y) and the

simplicial complex of Figure 3b. This completes the description of Ka.
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(2.3.3) Let a1 be any 1-simplex of L,; it is incident to precisely two 2-simplices of,

o2 of L,. Let ox = {/, ;'}; if i precedes (resp. follows); with respect to the orientation

of of, then i follows (resp. precedes) ; with respect to the orientation of o2. If a

rectangle ox X 0X occurs in one of the bounding manifolds 3(a,2 X TV2) and

d(o2 X N2) with the triangulation of Figure 2a then it will occur in the other with

the triangulation of Figure 2b. We 'patch' these two together by adding, for each

such rectangle, a new tetrahedron {ia, ja, iß, jß). In this way we get a space which

is homeomorphic to (a2 U o2) X N2 minus as many open 4-cells as there are 3-cells

of the type ox X 02 in of X N2 (or a22 X N2). Now we will 'fill' the 0th hold as

follows.

We examine the triangulation Te of its boundary. Firstly three tetrahedra will be

contributed to it by ox X 02 seen as a subspace of d(of X N2); this subcomplex is

isomorphic to the one shown in Figure 4a. The three tetrahedra contributed by

ox X 02 seen as a subspace of 9(ct22 X N2) will now be as in Figure 4b. Besides this

three more tetrahedra, viz. {1,2,3,4}, (3,4,5,6} and (5,6,1,2}, are contributed by

the patching process.

Figure 4a Figure 4b

Thus Te is a 6 vertex neighbourly triangulation of S3. (Note that the vertices of

Figure 4 are labelled so as to show that in fact Te is isomorphic to the cyclic

triangulation C3 of (4.1).) One checks that the two 2-simplices corresponding to

{1,3,5} and {2,4,6} have not already been used. Taking the join of one of these

triangles over the boundary of the other we can fill the hole in question.

By adding the simplices used in this patching and filling process to Ka¡ U Kai we

thus obtain a triangulation of (of U o2) X N2. We continue this process till all the

1-simplices ox of L, are exhausted. This gives us the required neighbourly triangula-

tion Koî M2X N2.

3. Neighbourliness of 3-manif olds.

(3.1) That all 3-manifolds admit combinatorial triangulations was proved by

Moise [21]; the following refinement is due to Bing [2].

(3.1.1) If M3 is a connected 3-manif old with nonempty boundary oM3, then it admits

a triangulation K all of whose vertices lie on aM3.

(3.1.2) A simplicial complex K will be called circular (or Hamiltonian) if all its

vertices lie on a subcomplex L which triangulates Sx.

Example. Let K be obtained by deriving all the 2-simplices of a triangulation T of

S2 having 5 or more vertices. Then K is not circular.
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(3.1.3) If M3 is a connected 3-manif old with a nonempty connected boundary oM3,

then it admits a triangulation K such that the induced triangulation oK of dM3 is

circular and contains all the vertices of K.

To prove this theorem we start with a triangulation K as in (3.1.1) and then

improve it step by step till the additional requirement, i.e. the circularity of dK, is

also satisfied.

Since dK is connected we can find a closed edge path X in dK which contains all

the vertices of K. Let e ={/,;'} be an edge of dK and let X(e) denote the number of

occurrences of e in the edge path. If X(e) > 1 we derive a 2-simplex o2 of dK

incident to e; in the ensuing triangulation K' of M3 we replace X by an edge path A'

which is the same as X except that one of the occurrences of e is replaced by the two

edges {/', a} and {ô, ;'}. We note that X'(e) — X(e) — 1. So without loss of generality

we can assume at the very outset that X(e) — 0 or 1 for all edges e of dK.

Having chosen K and X as above we let L be the connected 1-dimensional sub-

complex of dK formed by all edges e such that X(e) — 1. Note that each vertex of L

has an even valence, i.e., is incident to an even number of edges of L. Define

{L}={(     2     (valt(n)-2));
Vaevert(L) '

we note that {L} is a nonnegative integer and is zero if and only if \L\ is

homeomorphic to Sx.

If {L} > 0 let a be a vertex of L with valL(a) > 4. Let U — StdK(a); Figure 5a

shows a picture of L n U. For any choice of adjacent edges ex, e2 of L D U we

replace L by the graph L' = L,2, which is the same outside U and inside U as shown

in Figure 5b. We assert that with a proper choice of ex, e2 the graph Lx2 is connected.

Otherwise the component L'x2 of a is a proper subset of L,2; its complement

L',2 = L,2 — L',2 is also connected because any point of L'[2 not on the open arc (be)

Figure 5a
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LltAU:

Figure 5c

must be a point of L which can be joined in L to a via b or c. Furthermore

L',2 — (be) is connected because otherwise its component containing b will furnish

us with an example of a 1-dimensional complex in which exactly one vertex has an

odd valence; an impossibility. The arrows in Figures 5b and 5c show a path from b

to c in L"2 — (be); this shows that if L,2 is not connected then L23 will be connected

and so proves the assertion.

The process L -» L' of the last paragraph can be accomplished simplicially. One

enumerates the 1-simplices of the sector fag of U = StdK(a) as ex = o\, o2,... ,oxk =

e2 and then we derive them in succession at b = ô,, ô2,... ,ôk = c; this gives us a

triangulation TÍ'of Ai3 in whose boundary dK' the arc [be] is formed by the edges

{ô,, ô2}, {ô2, ô3},.. .,{ôk_x, ôk}. We note that K', L' have all the properties of K, L,

respectively, and, in addition, [L'} = {L} — 1. This proves (3.1.3).
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(3.2) Let [a, b, c} and {b, c, d} be two 2-simplices lying on the boundary of a

triangulated 3-manifold. If the 1-simplex [a, d} does not belong to this triangula-

tion, then one can obtain a new triangulation of the same 3-manifold by adding the

tetrahedra {a, b,c, d). One says that this new triangulation has been obtained from

the old by patching a to d. We note that this new triangulation has deficiency one

less than the old; here, by deficiency of a simplicial complex having x vertices, we

mean the excess of (2) over the number of its edges.

(3.2.1) // M3 is a closed connected 3-manifold, then there exists an integer v such

that for all integers x > v, M3 admits a neighbourly triangulation Kx with x vertices.

The least integer v having the above property will be denoted by vM. We note that

(3.2.1) is equivalent to the following theorem, since an extra vertex can be put in the

missing 3 ball.

(3.2.2) // M3 is a connected 3-manifold with boundary S2, then there exists an

integer v such that for all integers x > v, M3 admits a neighbourly triangulation Kx

with x vertices, all lying on the boundary.

(3.2.3) We show first that an M3 with dM3 = S2 admits a neighbourly triangulation

which satisfies all the properties of (3.1.3). To do this we pick any triangulation K as

in (3.1.3). If its deficiency is positive we will give a construction that enables us to

reduce the deficiency by one without losing any of the properties of (3.1.3).

Let L C dK be a circle such that all vertices of K lie on L. Since dK is a spherical

triangulation one can find a 2-cell T C dK such that 32" = L. Let x and y be 2

distinct vertices of K such that [x, y) is not a 1-simplex of K. These 2 vertices

determine two arcs L,, L2Q L such that {x} U {y} = 3L, = 3L2. We cone the

circles L, U [x, y) and L2 U [x, y) over 2 new vertices A and B, respectively, to get

the cells Tx and T2; one has 32", = L, U {x, y) and dT2 — L2 U [x, y). Next we

cone the spherical triangulation T U Tx U T2 over yet another new vertex X to get a

triangulation S of the 3-cell. It is clear that K U S minus the tetrahedra {B, X, y, bq),

where bq is the vertex of L2 adjacent to y, is a new triangulation of (a manifold

homeomorphic to) M3. It has 3 more vertices than K, and all the vertices he on a

2-cell of the boundary which is triangulated as in Figure 6a.

Note that the new vertex disjoined (by a 1-simplex) to each of the other vertices.

To ensure that A is joined to all the other vertices we modify this triangulation of

M3 by patching A, in succession, to B, bx, b2,...,bq. The ensuing triangulation of

M3 has all its vertices on a 2-cell of the boundary which is triangulated as in Figure

6b. Finally to ensure that B is joined to all other vertices we patch B, in succession,

to ¿j,, a 2,... ,ap. In so doing we pass from Figure 6b to Figure 6c. We note that this

new triangulation of M has deficiency one less than K and has all its vertices on the

boundary of the shaded 2-cell of Figure 6c. This proves the required assertion.

(3.2.4) To complete the proof of (3.2.2) we now show that // an M3 with

dM3 = S2 admits a neighbourly triangulation with n vertices satisfying the properties

of (3.2.3) then it also admits one with n + 1 vertices. Let the n vertices of K he on a

circle L C dK. We enumerate them in cyclic order as vx, v2,... ,vn and we choose a
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Figure 6a

Figure 6b
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2-cell T ç dK such that dT = L. If w is a new vertex we see that tV' = tí U (w.t") is

also a neighbourly triangulation of Af3 all of whose vertices lie on the circle

L' = [w, vx} U [vx, v2} U ■ ■ ■ U {«„_,, t>„} U {u„,w} contained in 3À"'.

(3.2.5) The conclusion of (3.2.2) holds for all connected 3-manifolds M3 with a

nonempty connected boundary dM3.

One needs to strengthen (3.1.3) and show that all vertices lie on a circle L whose

imbedding in 3AÍ3 is homotopically trivial. By examining the proof of (3.1.3) the

reader will see that this is very easy to accomplish; one starts with a homotopically

trivial closed edge path X and checks that the process L ^> L' given there does not

effect the homotopy type of the inclusion. The triviality of the imbedding L C dK

will ensure that we can choose the requisite 2-cells T of (3.2.3) and (3.2.4).

4. Order-orientable triangulations.

(4.1) A set of integers is called contiguous if any integer lying between two

members of this set is also in the set. (We can analogously speak of the contiguous

subsets of any totally ordered set.) For each pair of integers n, x, n > 0, x > n + 2,

we define C* to be the simplicial complex generated by all «-simplices o C

{1,2,... ,x) having the property that any maximal contiguous subset of o which has

odd cardinahty contains 1 or x.

(4.1.1) For each integer x > n + 2, the n-sphere S", n > 0, admits the [(n — l)/2]-

neighbourly triangulation Cx.

These cyclic triangulations of the sphere were discovered by Carathéodory [4], but

their combinatorial structure was understood only after their rediscovery by Gale

[10] and Motzkin [22]. The definition of C„* given above is based on "Gale's

evenness condition" as given in McMullen and Shephard [20, p. 85].

Note that the asserted neighbourliness is a simple consequence of the definition of

Cx. Furthermore it is clear that the unique triangulation of 5° is (isomorphic to) C0X

for all x > 2 and that the triangulation of Sx with x vertices is Cx; again it is obvious

that C"+2 is the boundary complex of an n + 1 simplex and so is a triangulation of

S" for all n. Assume now that C* triangulates S"; this imphes that its subcomplex

K = C„x — St(jc) triangulates the «-disk. We define L (resp. L') to be the subcomplex

of dK ( = C*~x ) generated by all n — 1 simplices a such that the maximal contiguous

subset of x.o containing x has odd (resp. even) cardinality. It is easy to verify that

besides L U L' = dK one also has L n L' = 3L = 3L' = CXI2 C dK. Hence L and

L' are the n — 1 disks formed by taking the closure of the two components into

which the n — 1 sphere dK is separated by the n — 2 sphere Cx~2 C dK. It follows

that K' = K U (x + l.L) is a triangulation of an «-disk and so K' U (x.dK') is a

triangulation of the «-sphere. One can check that this is nothing but Cx+X. This

proves (4.1.1).

Besides these cyclic triangulations S" admits many other [(« — l)/2]-neighbourly

triangulations (for « > 2); some of these can be constructed by using the following

lemma. This result may also turn out to be helpful in proving some generalisations

of the results of §3.
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(4.1.2) Suppose that the manifold M", with nonempty boundary, admits a d-

neighbourly triangulation K having v vertices. Suppose further that there exists a

sequence of disks £>,, D2,...,Dd of dimensions « — 1, « — 2,...,« — d, respectively,

such that (a) Z>, Q dK and Di+X C 3Z>, for 1 « i < d - 1 ¿z«d (b) 3Z>„ 1 < i =£ d,

contains all simplices of K with dimensions < d — i. Then for each integer x > v, M"

admits a d-neighbourly triangulation with x vertices.

Let w be a new vertex and replace K by K' = K U (w.Dx). Then K' is a

d-neighbourly triangulation of M" with v + 1 vertices. Choose any « — d — 1

dimensional simplex o of dDd; then the disks D'x = w.dDx — w.D2, D2 = w.dD2 —

w.D3,... ,Dd = w.dDd — w.o have the properties (a) and (b) vis-à-vis K'. This proves

(4.1.2).
(4.2) Let Af" be an orientable manifold; so Hn(M", dM"; Z) is isomorphic to Z.

Let K be any triangulation of Af ". A total ordering of the vertices of K associates to

each simplex o of K an oriented simplex [a]. We say that K is order-orientable if a

total ordering exists such that the sum of the oriented «-simplices is a cycle of

Kmod dK and so determines a generator of Hn(K, dK; Z) s H„(M", dM"; Z). We

will say that this total ordering orients K.

(4.2.1) If K is an order-orientable triangulation of M", then any simplex of K having

dimension < [(« — 2)/2] lies on dM".

This is an immediate consequence of the following result.

(4.2.2) If the vertices of K are labelled as 1,2,...,* in accordance with a total

ordering which orients K, then (int K) D C„x_, = 0.

Let a* be a simplex of C*_, n K; then it has at most n — 1 — k maximal

contiguous subsets of odd cardinality containing neither 1 nor x. This assertion

remains true if we replace 'contiguous' by 'a-contiguous'—i.e. contiguous when

considered as a subset of the smaller totally ordered set vertiSt^a)—and '1 nor x'

by '1„ nor xa' where 1„ (resp. xa) is the smallest (resp. biggest) vertex in vertiSt^a).

We can now choose a simplex (¡>k+x E StKo such that it has at most « — 1 — k — 1

maximal a-contiguous subsets of odd cardinality containing neither 1„ nor x„. Again

we can replace 'a-contiguous' by '^-contiguous' and '1„ nor xa' by '1,,, nor jc^,'.

Continuing in this way we choose an « — 1 simplex 0"~x E StKo which has no

maximal 0-contiguous subsets of odd cardinality containing neither \e nor xe. Using

the well-known formula 3[¿J0, ax,...,an] — 2"=o(-l)'[ß0, ax,...,âl,...,a„\it follows

that the sum of the oriented «-simplices of K has ±re[0] in its boundary; here the

sign depends on whether the maximal 0-contiguous subset of 0 containing le is of

even or odd cardinality and re — 1 or 2 depending on whether 0 E dK or int K.

Since our ordering orients K we must have 0"~ ' G dK and so its face ok also lies in

dK.

We note the following corollary.
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(4.2.3) If a manifold M", n > 1, admits an order-orientable triangulation, then it has

a nonempty boundary dM" and the inclusion map dM" -» M" induces an isomorphism

H,(dM") - HiiAf)for i < [(« - 2)/2].

(4.2.4) The 2-disk is the only 2-dimensional manifold which admits an order-orienta-

ble triangulation K; for such a K the conclusion of (4.2.2) can be strengthened to

dK = Cx.

We leave the proof of the second part to the reader and show how it implies the

first. Let L be triangulation of a 2-manifold other than the 2-disk. Then L can be

obtained from a triangulation K of the 2-disk, having the same number of triangles

as L, by identifying some pairs of edges on dK. If w: vert(TÏ) -» vert(L) is the map

defined by these identifications we can obviously hft any total ordering on vert(L)

to a total ordering on vert(TV) under which (i) m is order preserving and (ii) each

fiber of tr is a contiguous subset of \ext(K). If the ordering of vert(L) orients L then

such a lifting would orient K. Label the vertices of K as 1,2,... ,x in accordance with

this total ordering: by the second part of (4.2.4) we must have dK = Cx. Hence if a

and b axe 2 vertices of dK such that -n(a) = tr(b) it follows, using (ii), that every

vertex v of dK lying on one of the two arcs joining a to b is such that w(v) = w(a);

in particular there will be one such vertex v such that the 1-simplex {a, v} lies in dK.

This is not possible; so no total ordering on vert(L) can orient L.

(4.2.5) Examples, (a) For each pair of integers x, n, n> l,x> n + l,v/e denote

by Dx the [(« — l)/2]-neighbourly triangulation of the «-disk obtained by deleting

the star of x + 1 from Cx+X. Note that dDx = Cx_x. It is easily verified that the

natural order of the integers orients Dx.

(b) The proof of (4.3.2) will show how one can construct numerous order-orienta-

ble triangulations K of the «-disk, « > 1, for which the conclusion of (4.2.2) can be

strengthened to dK = Cx_x. However there exist order-orientable triangulations of the

3-disk for which dK is not isomorphic to a cyclic triangulation. If x is an integer > 5,

then the triangulation K of the 3-disk which is the join of the 1-simplex {2, x — 1}

and the triangulation {1, x), {x, 3], [3,4},..., {x — 3, x — 2}, {x — 2,1} of the circle

is oriented by the natural order of the integers. However for x > 6, dK is not

isomorphic to C2: C2 has exactly 2 vertices of valence 3 while 3/v has none.

(c) Any three-dimensional handlebody admits an order-orientable triangulation. (By a

handlebody we mean a 'pretzel with g holes'; g is called the genus of the hand-

lebody.) In fact we will inductively construct, for each integer g > 0, a simplicial

complex T such that (i) T is a triangulation of the handlebody of genus g, (ii)

vert(rg) = {1,2,3,... ,5g + 6}, (hi) the triangles {1,2, 3} and {5g + 4,5g + 5,5g +

6} lie on dTg, and (iv) the natural order of the integers orients T . We define T0 to be

the triangulation of the 3-disk shown in Figure 7a; obviously it satisfies the required

conditions for g = 0. For each g > 0, the simplicial complex Tg gives rise to an

isomorphic simplicial complex f if we replace the vertices 1,2,3,.. .,5g + 6 by

l,2,4,8,9,...,5g+ 10, respectively. By (iii) the triangles {1,2,4} and {5g + 8,5g

+ 9,5g + 10} lie on 37^. We obtain Tg+X from fg by attaching the handle Hg of

Figure 7b to these 2 triangles, i.e. we set T +, = Tg U H
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Figure 7b

Tg+X obviously satisfies (i), (ii) and (hi). To verify (iv) we note, from Figure 7b,

that the natural order of the integers orients Hg and it induces positive (resp.

negative) orientation on the triangle {1,2,4} (resp. {5g + 8,5g + 9,5g + 10}); on

the other hand, by the inductive hypothesis, the same order orients fg and induces

negative (resp. positive) orientation on the triangle {1,2,4} (resp. {5g + 8,5g- +

9,5g+10}).

(d) The reader can check that a triangulation K of the 2-disk with all vertices on

3/v is necessarily order-orientable. The analogous statement for 3-manifolds is false.

Consider, e.g., the seven tetrahedra triangulation Q of the solid torus shown in Figure

8a (where the two triangles on the left and right are identified as per the labelling).

Figure 8b shows the boundary triangulation dQ of the 2-torus.

3

Figure 8a

The triangulation Q of the solid torus is not order-orientable. The seven tetrahedra

of Q axe {1,2,4,5}, {1,2,6,7}, {1,3,4,7}, {1,4,5,7}, {2,3,5,6}, {2,3,6,7} and

{3,4,6,7}. Each cyclic permutation of 1 2 3 4 5 6 7 induces a simplicial isomorphism

Q -> Q. So if a permutation of 1 2 3 4 5 6 7 were to orient Q there would also be one

such which has 4 as its first entry. Then the induced total order on Lk 4 would orient

this 2-disk. We note that 3(Lk 4) is precisely the bounding circle of the shaded part
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of Figure 8b. Using (4.2.4) we are thus reduced to ruling out just 12 possibilities, viz.

4 1 3 6 7 5 2, 4 3 6 7 5 2 1,... and 4 1 2 5 7 6 3, 4 2 5 7 6 3 1,.... One can check that

none of these orients Q.

Figure 8b

Some more remarks regarding Q may be of interest. The 2-torus (resp. solid torus)

has no triangulation with less than 7 vertices; dQ (resp. Q) is, up to simphcial

isomorphism, the unique triangulation with 7 vertices. Q is a subcomplex of the

cyclic triangulation C3; the seven tetrahedra of C3 which are not in Q determine

another solid torus Q' (= Q): the minimal triangulation of the 2-torus splits up the

seven vertex cyclic triangulation of the 3-sphere into two solid tori each equipped with a

minimal triangulation. The automorphism group of C37 is the dihedral group formed

by cyclic permutations and reversals of 1 2 3 4 5 6 7; each of these automorphisms

preserves the two solid tori. This group is a normal subgroup of the group of

automorphisms of dQ = dQ'; the quotient being a cychc group of order 3. Corre-

spondingly the minimal triangulation of the 2-torus has 3 distinct extensions Q, Q',

Q" (Q = Q' = Q") which are 7 vertex triangulations of the sohd torus; and the

union of any 2 of these extensions is a triangulation of the 3-sphere isomorphic to

r7

It is interesting to note that a geometric construction of the minimal torus Q was

first discovered by Möbius [36, pp. 552-553] and rediscovered by Császár [34].

(4.3) Throughout this section A", « > 1, will denote an «-dimensional real affine

space and X will be a finite subset of A" containing x > « + 1 points which are in

general position, i.e. no proper affine subspace of A" contains « + 1 points of X. We

denote by Kx the triangulation of the « — 1 sphere determined by the boundary

facets of conv^), the convex hull of X. We need the following lemma.

(4.3.1) If ok Ç X Ç A", 0 < k < n, is a k-simplex, then there exists a simplicial

complex Ka such that vext(Ka) G X, ok E Ka, Kx C Ka and \Kn\= conv(X).
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Choose an origin and a basis for A" and thereby identify A" with R". Define

ícR"+1 = R"XRbyí= {(o, iv): o G X, i„ = 0 if v g a, iv = 1 if v G a}. We

can assume x > « + 1; so conviA') is an n + 1 disk and the boundary facets which

are farther away from the hyperplane R" X {0} determine a polyhedral subdivision

of an «-disk. Using the canonical linear surjection R" X R -* R" this images to a

polyhedral subdivision K„ of conv(X) having the desired properties. It is clear that

one can subdivide Ka further, without increasing vertices, to get a simplicial complex

Ka with the same properties.

As an apphcation of (4.2.2) we now give a new proof of the following result which

is presumably well known.

(4.3.2) If the elements of X Ç A" are labelled as 1,2,...,x in accordance with a total

ordering under which any n + 1 points of X determine the same orientation of A", then

KX= Cn-V

Let ok E Cx_x; since a'çlwe can find a simplicial complex as in (4.3.1). The

given hypothesis on the total ordering implies that Ka is an order-orientable

triangulation of the «-disk conv(X). So, by (4.2.2), ok cannot meet the interior of

conv^). Hence a* G Kx. Since the spherical triangulation C*L, cannot be a proper

subcomplex of the spherical triangulation Kx we must have Kx = Cx_,.

We have thus come back to the point from which Carathéodory [4] et al.

discovered the cyclic triangulations. For example Gale [11] defines it to be Kx,

where X ÇR" consists of x distinct points on the moment curve t h-> (t, t2,...,/");

clearly such an X satisfies the hypothesis of (4.3.2).

(4.3.3) X ÇA" will be called a monotone set if it admits a total ordering as in

(4.3.2). The elements of X arranged according to such an ordering form an

associated monotone sequence. This terminology is due to Hjelmslev [14]. We will

now study the following problem (which is the affine version of the one) raised by

Uhrin [29] and H. Gupta: Can the monotonicity of a set X Ç A" be characterised by

means of some geometric properties'!

(4.3.4) Let us first study the lower-dimensional cases. We point out that for « < 2

the solution is contained in Hjelmslev [14].

Case « = 1. This is trivial: any X ç Ax is monotone and each of the two

orientations of Ax determines uniquely an associated monotone sequence.

Case « = 2. By (4.3.2) we see that X Ç A2 is monotone only if each point of X lies

on the boundary of the 2-disk conv(X). Conversely this geometric criteria ensures

the monotonicity of X: take any point of X as the least point and arrange the other

points in sequence as one traces out the circle Kx. Thus each orientation of A2

determines precisely x associated monotone sequences.

Case « = 3. By (4.3.2) we see that Kx must be isomorphic to C2. One can describe

C2 as the boundary of the triangulation of the 3-disk obtained by taking the join of

a 1-simplex {vx,v2} with the triangulation Ik of the interval having k = x — 2

vertices. (Figure 9 indicates this for x — 1.) It follows that for x > 6, Aut(C2x) is the

four group whose elements are the permutations 1 2 ... x, x 2 3 ... x — 11,lx— 1

x — 2 ... 3 2 x and xx— lx — 2...321.
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Figure 9

There exists a nonmonotone X Ç A3 with x = 7 such that Kx = C2. Let X —

{1,2, 3,4,5,6,7} Ç A3 be as in Figure 9 and such that 2 and 6 lie on the same side

of the plane of {3,4,5}. If X were monotone, then—by (4.3.2) and the above remark

regarding Aut(C27)—it follows that either 1234567 or 1654327 must be an

associated monotone sequence; this cannot happen because 2 and 6 lie on the same

side of the plane of {3,4,5}.

If x > 6 the necesary condition Kx = d(vxv2.Ix_2) narrows down the search for

monotone sequences to just 2 possibilities, viz. vxixi2 ■ ■ • ix-2v2 andvxix_2ix_3 ■ ■ ■ ixv2.

This follows from (4.3.2) and the remark regarding Aut(C2x), x > 6. Note that at

most one of those possibilities holds; of course in that case its reversal is also a

monotone sequence. Thus if X Ç A3, x > 6, is monotone then one of the orientations

of A3 determines 2 associated monotone sequences while the other determines none.

To give a similar necessary condition for all « » 4 we will isolate those aspects of

the simplicial structure of Cx_x which do not depend on the natural order of the

integers.

(4.3.5) If X Ç A", x s* « + 3, is a monotone set the simplicial complex Kx has x

vertices and is [(« — 2)/2]-neighbourly. Further if n is odd (resp. even) then the link of

precisely two vertices (resp. of all vertices) v has x — 1 vertices and is [(« — 3)/2]-

neighbourly and, for each such vertex v, one can define in a canonical way a monotone

set Xv Ç A"~x with xv = x — 1 and an isomorphism irv: Lk(u) -*KX. Conversely

these necessary conditions ensure that the search for a monotone sequence can be

restricted to those sequences which (i) start with a fixed vertex v of Kx whose link has

x — 1 vertices and is [(« — 3)/2]-neighbourly, (ii) are such that the sequence induced

under ir„ on Xc is monotone, and (hi) end with another vertex of the same type as v.

(The definition of Xv and of nv will be given in the proof below.)

If X Ç A" is monotone we have Kx s Cx_, by (4.3.2) and so à fortiori Kx has x

vertices and is [(« — 2)/2]-neighbourly. If « is even the link of every vertex of Kx is

isomorphic to CXZ2 and so has x — 1 vertices and is [(« — 3)/2]-neighbourly. To see
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this note, since « is even, that a cyclic permutation of a monotone sequence is also a

monotone sequence. Since link of x in Cx_x is CXZ2 the assertion follows. For any «,

the reversal of a monotone sequence is also a monotone sequence; so by the same

argument there exist at least two vertices of Kx whose link has x — 1 vertices and is

[(« — 3)/2]-neighbourly. If « is odd, let k denote the integer (n — 3)/2; so k + 2 =

(n — I) — k. For each integer /' such that 1 < / < x we can choose, since x > « + 3,

a simplex ok+x of the type {(1 <)i — 2p, i — 2p + 2,...,i — 2, i, i + 2,...,i + 2m

-2,i + 2m(<x)}. Since a*-1"1 Ç {1,2,...,x) has k + 2 > (n - 1) - k - 1 maxi-

mal contiguous subsets of odd cardinahty containing neither 1 nor x it follows that

ok+x £ Cx_x, and so the simplex 0k defined by ok+x — i.0k does not lie in the link

of /'. Thus, if « is odd, there are precisely 2 vertices of Kx whose link has x — 1

vertices and is [(« — 3)/2]-neighbourly.

For any v E X one can choose an affine hyperplane A"~x ÇA" which separates v

from the other points of X; this is possible since all the points of x are the vertices of

the convex polytope conv(A'). We note that a line joining v to any other point of X

thus meets A"~x in a unique point; we define Xv Ç A"~x to be the set of all such

points. Since X Ç A" is in general position Xv Ç A"~x contains x — 1 points and is

in general position. It is^lear that the natural map mv: X — {v} -» Xv induces an

isomorphism wv: Lk(v)=>Kx. If Lk(u) has x — 1 vertices and is [(« — 3)/2]-

neighbourly, then we see from the last paragraph that there must be a monotone

sequence associated to X Ç A" which starts with v; so Xv Ç A"~x is monotone. The

converse is also obvious from the last paragraph. So (4.3.5) follows.

If X ÇA", x > « + 3, is a monotone set and n is odd (resp. even) then there are

exactly 2 (resp. 2x) associated monotone sequences.

We will prove this by induction on «. The fact that there are at least so many

monotone sequences is obvious because if « is odd (resp. even), then one can reverse

(resp. reverse and cyclically permute) any monotone sequence to get a new one. We

choose a vertex v of Kx whose link has x — 1 vertices and is [(« — 3)/2]-neighbourly.

If « is even, x such choices of v axe possible, and there are at most two monotone

sequences starting with v, viz. those which induce on A",, Ç A"~x its two monotone

sequences. If n is odd, two such vertices vx and v2 exist. Any monotone sequence

starting with t>, must induce on Xv a monotone sequence ending with the vertex

corresponding to v2; thus there are two such possibilities, say vxaxa2 • ■ • ax_2v2 and

vxax_2ax_3 ■ ■ ■ axv2. But one of them must be ruled out because if n = 1 mod4

(resp. 3 mod 4) then the two sequences assign the same (resp. different) orientation

to the simplex {vx, ax, a2,...,an) and different (resp. same) orientation to the

simplex [ax, a2,...,a„+x). Thus there are no more monotone sequences. If n = 0 or

3 mod 4 all these monotone sequences determine only one of the two orientations: if

« = 1 or 2 mod 4 the reversal of each monotone sequence determines the opposite

orientation. This follows from the fact that one does not change the orientation of an

«-simplex by reversing its vertices iff « = 0 or 3 mod 4. We note from the preceding

that there are just 2 sequences satisfying (i), (ii) and (Hi) of (4.3.5); so (4.3.5) can be

considered as a reasonable generahsation of the case « = 3 discussed before.
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(4.3.6) To formulate a linear version of the above, one introduces the notion of a

monotone set of half rays. This is a finite set of half rays in the «-dimensional vector

space V", which admits a total ordering under which any n of the half rays

determine the same orientation of V. Analogously one speaks of a monotone sequence

of half rays. This terminology is due to Hjelmslev [14].

The n-dimensional linear version of problem (4.3.3) is equivalent to the « — 1

dimensional problem (4.3.3). To see this note that we can pick one nonzero point on

each half ray in such a way that these points together with the origin form a set

X Ç V" which is in general position. We want to find a geometric characterisation of

the requirement that X admit a total ordering, with the origin as first point, under

which any « + 1 points of X determine the same orientation of V". In the notation

of (4.3.5), this is equivalent to characterising the monotonicity of X0 Ç A"~x.

5. Chromatic numbers.

(5.1) We fix an infinite set C whose objects will be called 'colours'; any function

taking its values in C is called a 'colouring'. If /' is an integer > 0 and K (resp. X) is a

simplicial complex (resp. triangulable space), then its ith chromatic number ch¡(K)

(resp. ch,(A')) is defined to be the smallest positive integer such that the z'-simplices

of K can be coloured in such a way that no /' + 1 simplex of K has all its faces of the

same colour (resp. = sup^ ch,.( 7? ), as K runs over all the triangulations of X). This

definition was given in [25].

The presence of neighbourly triangulations is often helpful in getting good lower

bounds for these chromatic numbers. For example, if M2 is a closed neighbourly

2-manifold then ch0(Af2) > xM where xM is the unique integer s* 4 which satisfies

dim(/Y,(Af; Z2)) = (x — 4)(x — 3)/6; this follows from Theorem (2.1.1) of Ringel

et al. Again, Theorem (3.2.1) ensures that ch0(M3) = oo. We will prove below, in

(5.1.3), a more general infiniteness result by following a much simpler argument.

(5.1.1) If i is an integer > 0 ¿j«d Kin) a simplicial complex consisting of all the faces

of an n-simplex, then limn^00 ch¡(K(n)) = oo.

To prove this we need to formulate a lemma.

Definition of o¡(K). If /' is an integer s* 0 and K any simplicial complex we set

o¡(K) = inf o,(/) where/runs over all the colourings of the /'-simplices of K and

o¡if) = 2aeIm ,/„, fa being the largest integer such that /_1(a) contains all the

/'-simplices of aKifa— 1). We note that

ch,(tf) = inf{o,(/)/(/ + 1)1/8.1./. = /+ lVa Elm/};

so ch¡iK) > o¡(K)/(i + I) and (5.1.1) is a consequence of the following equation.

(R) hm o,(7Y(«)) = oo.
n-*cc

I present below a proof of (R) which was found in January 1980. Later on some

library research revealed to me that (R) is a reformulation of a well-known

combinatorial theorem discovered in 1930 by F. P. Ramsey [23]. This theorem has

found numerous applications and has been generalised in many ways; see, e.g., [7, 8

and 12].
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Note that o¡(K(n)) increases with «; so it is enough to prove that oj(K(n)) can be

equal to k for only finitely many «.

Case i = 0. If o0(K(n)) = k choose a colouring/of the vertices with o0(f) = k;

so Im / contains at most k colours. One can find a set of vertices, at least

{(« + l)/k) in number, which is imaged by/to the same colour a: so k = o0(f) >

fa ** {(" + U/^} which can hold for only finitely many «.

(R),_, implies (R),. Let k = o,(Ä"(«0)) = o,-(/£(«)) where « > «0 and choose a

colouring/of the /-simplices of Kin) such that o¿(/) = k. Also choose a vertex v of

AT(«) and consider the AT« — 1) determined by the remaining vertices. We define a

colouring g of the i — 1 simplices of K(n — 1) by setting g(o) — f(v.o). We assert

that ga < «0 Va G Im(g) Ç Im(/). Otherwise there exists a K(n0) Ç K(n — 1) all

of whose /' — 1 simplices are given the same colour a; using the definition of g this

implies (f\v.K(n0))a— 1 + (f\ K(n0))a and so leads to the contradiction k =

»,(/) > "/(/I ». *(n0)) > 1 + otif\ Kin0)) >l+k.So

0,_,(7Y(«-l))<0,_,(g)=     2    ga^no-T^TT
fl£lmg

since Im(/)—and so Im(g)—does not contain more than k/ii + 1) colours (other-

wise o¡if) > (/ + l)k/ii + 1) = k). Now (R),_, implies that this inequality can

have only finitely many solutions in «.

(5.1.2) // K is a simplicial complex and X a triangulable space with dim X>

2(dim K) + 1, then X admits a triangulation L such that K Ç L.

The proof below is similar to that of Exercise 25 of Grünbaum [13, p. 67].

Let A* denote the simplicial complex determined by all the /-simplices o' ç

{l,2,...,x}. If dim K = i, then K is isomorphic to a subcomplex of A* for all x

large enough. So it suffices to prove the result when K — A*. If n>2i+ I,

x > « + 2, the cyclic triangulation Cx of the «-sphere is /-neighbourly, i.e. A* ç Cx.

Choose any triangulation Af of X" and identify an «-simplex a" of Af with the

«-simplex {1,2,...,« + 1} of Cx. Then L = (Af - a") U (Cx - o") is a triangula-

tion of X which contains A*.

(5.1.3) // / is an integer s* 0 and X a triangulable space with dim X > 2/ + 3, then

ch,(A-)= oo.

By (5.1.2) we see that for each integer n> i + I, (K(n))i+X, the / + 1 skeleton of

K(n), is a subcomplex of some triangulation Ln of X. Since ch^Z) > ch,(L„) >

ch,.((#(«)),+ ,) = ch,(/Y(«)), the result follows by (5.1.1).

We note that the result ch0(,S3) = oo goes back to Stäckel. (See Tietze [37].)

(5.2) If AÍ" is a closed triangulable manifold with dimension n < 2/ + 2, then the

chromatic number ch,(M") is finite. We hope to give a proof of this fact in another

paper. (Note that in [25] this assertion was proved for all pseudomanifolds Af ", but

under the stronger condition n < / + 2.) The map colour theorem of Ringel et al. [24]

and the four colour theorem of Appel and Haken [1] amount to the determination of

the zeroth chromatic numbers ch0(A/2) of closed 2-manifolds. (By using the four
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colour theorem we can prove that if Af ", « > 3, is a manifold, then ch„_2(M") < 4.)

The codimension one chromatic numbers are much more easy to calculate. It is clear

that ch0(5') = 3; the remaining cases are taken care of by the following theorem.

(5.2.1) // Af" is a closed triangulable manifold with dimension « > 2, then

ch„_,(AT) = 2.

Let K be any triangulation oî M". Let L be any subcomplex of K which contains

at least one «-simplex. We will prove, by induction on the number of « — 1 simplices

of L, that ch„_,(L) = 2. Let a"-1 = v.0"~2 E L. By the inductive hypothesis we

can assign to the « — 1 simplices of L-StLa two colours a and ß in such a way that

not all faces of an «-simplex of L-StLa have the same colour. We can extend this

"good" colouring of L-St¿a to a good colouring of L unless L contains two

«-simplices u.o"~x and w.o"~x; and all faces of u.o"~x other than a have been

ascribed the same colour (say a) and all the faces of w.o"_1 other than a have been

ascribed the other colour (ß). In this "exceptional" case we will alter the colouring

in (L-StL a) n (StK 0) so as to obtain another good colouring of L-StL o which is no

longer exceptional.

Let the vertices of the circle Lk^- 0"~2 be u — ax, a2, a3,... ,¿/y_, = w, a¡ — v as

in Figure 10. We change colour of u.0"~2 = ax.0"~2 from a to ß. This can be

objectionable only if ax.a2.0"~2 E L-StL o and all faces of this «-simplex, other than

ax.$"~2 carry the colour ß. If this is so we change colour of a2.0"~2 from ß to a.

This can be objectionable only if a2.a3.0"~2 E L-StL o  and all faces of this

«-simplex other than a2.0"~2 carry the colour a_Since aj_x.aj.0"~2 $ L-StL o we

will reach a stage when such a change in colour is no longer objectionable. The

resultant colouring of L-St¿a is both good and nonexceptional and so can be

extended to L. This proves (5.2.1).

6. Concluding remarks.

(6.1) We discuss below some problems and conjectures concerning neighbourly

triangulations.

(6.1.1) For any manifold M we denote by xM the least number of vertices required

to triangulate it. The reader can verify that, for neighbourly 2-manifolds, this agrees
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with the notation of (2.1.2). Thus, in general, the problem of calculating xM is

forbiddingly hard: already, for closed 2-manifolds, it is equivalent to the map colour

theorem of Ringel et al. [24].

However it should be interesting to find methods which would allow one to

calculate xM for a large enough class of 3-manifolds; e.g. for all handelbodies Af3 for

which 3Af3 is neighbourly. Such methods would probably also lead to a clearer

understanding of the map colour theorem. Note that (4.2.5)(d) shows that if

Af3 = D2 X Sx, then xM = 7; we refer the reader to Altshuler [30] (see also [31]) for

the proof of the fact that if M3 = S2 X Sx, then xM = 10.

We expect that there exist closed connected 3-manifolds Af3 for which the number

vM of (3.2.1) is strictly bigger than xM; however no such example has yet been found.

(6.1.2) Upper and lower bounds. We conjecture that for any closed connected

manifold M" and any integer x 3= xM there exist triangulations Kx and Kx such that

if AT is a triangulation of M" with a0(K) = x, then a¡(Kx) *s a¡(K) < a,(Kx) for all

i, 1 < i < n. Furthermore Kx can be defined inductively as follows: Kx is a

triangulation with xM vertices having the least number of «-simplices, and Kx+X is

obtained by deriving an «-simplex of Kx. If, in addition, the homotopy groups

7r,(Af"), 0 </<[(« — l)/2], are trivial, then for all x sufficiently big, Kx will be an

[(« — l)/2]-neighbourly triangulation of Af".

We note that if Af" = S", then the conjectured lower bound a¡(Kx) agrees with

that on p. 183 of Grünbaum [13]; also, in this case, Stanley [28] has proved the

second inequality with Kx = Cx for each x > n + 2. It seems that the above lower

bound conjecture has been proved for S" by D. Barnette. See [32, p. 354 and 33].

(6.1.3) The last part of conjecture (6.1.2) implies, in particular, that we expect the

homotopy groups ir¡(M), 0 </<[(« — l)/2], to be the only obstructions to the

existence of [(« — l)/2]-neighbourly triangulations.

If d > [(« - l)/2] then it¡(M") = 0, 0 < i < d, does not suffice to ensure the

existence of d-neighbourly triangulations. This is already indicated for « = 2 by

(2.1.1); we will now prove that not every simply connected A-manifold Af4 admits a

2-neighbourly triangulation. If K is any triangulation of Af4 then we have the

Dehn-Sommerville equations 2a3(K) = 5a4(K), 2ax(K) = 3a2(K) — 6a3(K) +

l0aA(K) and %(M4) = a0(K) - ax(K) + a2(K) - a3(K) + a4(K): see (6.1.4). If

K is 2-neighbourly and has x vertices (x > 6), then a0(K) = x, ax(K) = (2) and

a2(K) = (3). Substituting these values in the above equations and simplifying we see

that Af4 can admit a 2-neighbourly triangulation only if the Euler characteristic

%(M4) is such that 609C(M4) = x(x2 - 15x + 74) for some integer x > 6. The

connected sum (S2 X S2)#(CP2) is a simply connected 4-manifold with Euler

characteristic 5; further it is easily seen that 300 = x(x2 — 15x + 74) has no integer

solutions > 6.

However we do conjecture that a closed 3-manifold admits a 2-neighbourly

triangulation if and only if it is simply connected. This is merely a simple reformula-

tion of the celebrated Poincaré conjecture: if a closed simply connected 3-manifold

Af3 admits a 2-neighbourly triangulation with x vertices then x — (2) + if) — 2(3)

= 0; this cubic has the roots 0, 4 and 5; so Af3 has a triangulation with 5 vertices
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and must be homeomorphic to S3. Thus Poincare's conjecture is the natural

analogue of the 'colouring theorem' (2.1.1).

The above discussion indicates why we expect the general problem of finding

homotopy theoretic conditions equivalent to the existence of d-neighbourly triangu-

lations to be very hard when d > [(« — l)/2].

(6.1.4) A functional equation. For any simphcial complex K we define aKiz) = 1

— a0iK).z + axiK).z2 — a2iK).z3 H-. If A' triangulates a closed manifold Af",

then the link of each /-simplex has the homology groups of S"~'~x (see, e.g., [35,

Proposition 1.2]) and so has Euler characteristic 1 + (-1)"~,_1. From this fact one

gets the equations

(i+(-D-'-,h= 2 (-i)f+;;2)«,+i+,
J3-0 V *   ~   * '

These equations are due to Dehn [5], Sommerville [27] and Klee [15]. They can be

written in a concise way as

(F) (-l)"aK(z) + aK(l -z) = l + (-1)" - %(M").

This functional equation is given in I. G. Macdonald [17].

An easy consequence of (F) is that if Kx (resp. K2) triangulates M" (resp. Af2") and

9C(Af,") = 9C(M2"), then a,(A",) = a¡iK2), 1< f < [(it - l)/2] implies a,(7T,) =

a,(K2) for all /'. So if Kx is an [(« — l)/2]-neighbourly triangulation of Af " (this can

happen only if ir,.(M") = 0, 0 « / < (n - l)/2) and %(M") = 9C(5"), then we

must have a¡iKx) = a¡iCx) for all i. This suggests a conjecture: if A" is a triangula-

tion of M" with x vertices and 9C(Af") =9C(S") then a,.(AT) < a^Cx) for all i.

However the homotopy groups w,(Af "), 0 </<[(« — l)/2], may not be trivial; thus

these upper bounds will not be, in general, the best possible.

(6.1.5) A Riemann hypothesis. If K triangulates the closed manifold Af" and

%(M") = %iS"), then the functional equation (F) shows that the roots of the

polynomial aKiz) axe symmetrically situated with respect to the real axis and the

line Re z = {. We will say that the Riemann hypothesis holds for K if all the roots lie

on these two lines. The problem is to characterize all triangulations of Af " for which

the Riemann hypothesis holds.

Examples. (1) The Riemann hypothesis holds for the minimal triangulation of S". In

fact now aKiz) = (1 - z)"+2 - (-l)"+2z"+2; so z is a root only if w = z/(l - z) is

a root of w"+2 = (-1)"+2; hence |z/(l -z)|= 1 and so Re z = {.

(2)(a) Any closed 3-manifold admits an infinite number of triangulations for which the

Riemann hypothesis holds. If K is a triangulation of the closed manifold Af3 and

a0iK) = m, axiK) — n, then aKiz) — 1 — mz + nz2 — 2(« — m)z3 + (n — m)z4.

Put z = \ + z'\ in the resulting polynomial the coefficients of z' and (z')3 will be

zero. Now let w — (z'y2; we will get

(« - m)w2 + ((3m - n)/2)w + (16 - 5m + «)/16.

The Riemann hypothesis holds for K iff the roots of this quadratic are real i.e. iff

((3m - n)/2)2 - (16 - 5m + «)(« - m)/4 > 0, i.e. iff m2 + 4m > An. Now for

each x> xM let Kx be as in (6.1.2): so m = x and « = c + 4(x — xM) where
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c = ax(KXu). Thus the Riemann hypothesis holds for Kx iff x2 + 4x > 4c + 16x —

16xM which will be true for all x sufficiently large, (b) Any closed 3-manifold admits

an infinite number of triangulations for which the Riemann hypothesis does not hold. By

(3.2.1) there exists an integer vM such that for all x > vM, M admits a neighbourly

triangulation Kx having x vertices. If x > 7 the Riemann hypothesis will not hold

for Kx. To see this note that m = x, n = (2) and so the requirement m2 + 4m> An,

i.e. x2 + 4x 3s 4(2) reads x < 6.

We expect the general situation to be similar to that shown by Example (2) above:

if M" is a closed manifold and 9C(Af") = 9C(5"), then the Riemann hypothesis will

hold (resp. will not hold) for all triangulations Kx (resp. Kx) provided x is

sufficiently large. Here Kx and Kx axe as in (6.1.2).

(6.1.6) We conjecture that every orientable connected 3-manifold with connected

nonempty boundary admits an order-orientable triangulation: compare (4.2.5)(c). It

is possible that such manifolds in fact admit neighbourly order-orientable triangula-

tions; such triangulations would generalise the triangulation D3 of (4.2.5)(a).

(6.2) The following historical and bibliographical remarks regarding monotone

sequences may be useful to the reader.

(6.2.1) Infinite monotone sequences. In his paper of 1914, Hjelmslev [14] proved the

following theorem. If ¿j,, ¿j2,. .. is an infinite bounded monotone sequence of A",

then it has a unique limit point a and for eachp, 1 < p *£ n, a p-dimensional affine

subspace determined by p + 1 entries of this sequence tends towards a p-dimen-

sional affine subspace through a; conversely the existence of these limits guarantees

that a given sequence of A" is eventually monotone.

(6.2.2) A directed arc in^4" is called a monotone curve if any « + 1 of its points are

af finely independent and determine the same orientation of A". This terminology is

also due to Hjelmslev [14]. But it is important to note that already in 1886 A. A.

Markov [18] had proved a beautiful theorem which solved the following problem

when the curve in question is differentiable and monotone.

The Chebyshev-Markov moment problem. Let L = acb be an arc in A" and letp be

a point lying in the convex hull of L; it is required to find inf ¡i(ac) and sup fi(ac) as

¡i varies over all (normalised, positive, Radon) measures on L having centre of

gravity p.

A concise history of the above problem and an elegant presentation of Markov's

theorem is given in Krein [16]. We remark that people working in the theory of

moments usually refer to monotone curves as "Chebyshev (or Tchebycheff or T-)

systems"; this terminology was coined by S. N. Bernstein in 1934 (see Krein [16]).

(6.2.3) It is easy to see that an arc of A" is monotone if and only if every

codimension one affine subspace of A" cuts it in < « points; for this reason some

people refer to monotone curves as "curves of order < « " (see, e.g., McMullen and

Shephard [20, p. 82]). This reformulation suggets that a homeomorphism of an

m-dimensional manifold Mm into A" be called a monotone imbedding if every

codimension m affine subspace cuts it in < « — m + 1 points. It is easy to give

numerous examples of such imbeddings.

(6.2.4) One can show that any (finite) monotone sequence can be extrapolated to a

monotone curve. (This result resembles Theorem 2.1 of Fr. Fabricius-Bjerre [9].)
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Using this lemma one can also prove (4.3.2) in the usual way as on pp. 84-85 of

McMullen and Shephard [20].

(6.2.5) If/: S1 -* A" is a monotone imbedding, then f(Sx) ç A" is called a closed

monotone curve. For example one has the curve L Ç R2" given by 0 h-»

(cos0,sin0,.. . ,cos«#,sin n0).

Carathéodory' s problem. What are the conditions on a point c = (c,, c2>... ,cn) E

C" so that there exists, on the open unit disk, a holomorphic function with positive

real part whose power series expansion reads { + cxz + c2z2 + ••• +cnz" + ■••?

This is an easy problem which was raised and settled by Carathéodory [3] in 1907:

if one identifies C" with R2" under (z,, z2,...,zn) h» (Rez,,Im z,,.. .,Rez„,Im z„),

the necessary and sufficient condition is that c belong to the convex hull of the

closed monotone curve L ç R2". Note that this result can obviously also be stated as

a theorem in the theory of moments: the necessary and sufficient condition is that

there exists a measure on L whose centre of gravity is c. There are some problems in

complex function theory (e.g. the celebrated "Bieberbach conjecture') which are

much deeper than Carathéodory's problem but yet have the same flavour. These

problems are intimately related to parallel questions in the theory of moments and in

all these considerations the concept of monotonicity has played a key role. See e.g.

[26 and 6].

In 1911 Carathéodory [4] published a sequel to [3] in which he indicated that for

any finite set X of L ç R2" with x 5= 2« + 1 the simplicial complex Kx is « — 1

neighbourly; however the combinatorial nature of Kx, e.g. the isomorphism Kx =

C2n_x, was understood only after the work of Gale [10, 11] and Motzkin [22].

References

1. K. Appel and W. Haken, Every planar map is four colorable, Bull. Amer. Math. Soc. 82 (1976),

711-712.

2. R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, Lectures on

Modern Mathematics, Vol. II, edited by T. L. Saaty, Wiley, New York, 1964, pp. 93-128.

3. C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene

Werte nicht annehemen, Math. Ann. 64 (1907), 95-115.

4.   _,   Über den   Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen

Funktionen, Rend. Cire. Mat. Palermo 32 (1911), 193-217.

5. M. Dehn, Die Eulersche Formel in Zusammenhang mit dem Inhalt in der nicht-Euklidischen Geom-

etrie, Math. Ann. 61 (1905), 561-586.

6. W. F. Donoghue, Jr., Monotone matrix functions and analytic continuation. Springer-Verlag, Berlin

and New York, 1974.

7. P. Erdös and R. Rado, A combinatorial theorem, J. London Math. Soc. 25 (1950), 249-255.

8._, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489.

9. Fr. Fabricius-Bjerre, On polygons of order n in projective n-space, with an application to strictly

convex curves. Math. Scand. 10 (1962), 221-229.

10. D. Gale, Neighboring vertices on a convex polyhedron. Linear Inequalities and Related Topics

(Editors H. W. Kuhn and A. W. Tucker), Princeton Univ. Press, Princeton, N.J., 1956, pp. 255-263.

11. _, Neighborly and cyclic polytopes, Convexity, Proc. Sympos. Pure Math., vol. 7, Amer. Math.

Soc., Providence, R.I., 1963, pp. 225-232.
12. R. L. Graham and B. L. Rothschild, Some recent developments in Ramsey theory. Combinatorics,

Proc. NATO Advanced Study Inst. (Editors M. Hall Jr. and J. H. van Lint), Reidel, Dordrecht, 1974, pp.

261-276.

13. B. Grünbaum, Convex polytopes, Wiley, New York, 1967.

14. J. Hjelmslev, Introduction à la théorie des suites monotones, Dan. Vid. Selsk. Forh. 1 (1914), 1-74.



ON NEIGHBORLY TRIANGULATIONS 239

15. V. Klee, A combinatorial analogue of Poincaré's duality theorem, Canad. J. Math. 16 (1964),

517-531.
16. M. G. Krein, The ideas of P. L. Cebysev and A.A. Markov in the theory of limiting values of

integrals and their further development, Amer. Math. Soc. Transi. (2) 12 (1959), 1-121 (= Uspehi Mat.

Nauk 6 (1951), 3-120).
17. I. G. Macdonald, Polynomials associated with finite cell complexes, J. London Math. Soc. 4 (1971),

181-192.
18. (A. A. Markov), Extrait d'une lettre adressé à M. Hermite, Ann. Sei. Ecole Norm. Sup. 3 (1886),

81-88.

19. P. McMullen, The number of faces of simplicial polytopes, Israel J. Math. 9 (1971), 559-570.

20. P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture, Cambridge

Univ. Press, Cambridge, 1971.

21. E. E. Moise, Affine structures in 3-manifolds. V: The triangulation theorem and Hauptvermutung,

Ann. of Math. (2) 56 ( 1952), 96-114.
22. T. S. Motzkin, Comonotone curves andpolyhedra, Abstract 111, Bull. Amer. Math. Soc. 63 (1957),

35.

23. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930), 264-286.
24. G. Ringel, Map color theorem, Springer-Verlag, Berlin and New York, 1974.

25. K. S. Sarkaria, On coloring manifolds, Illinois J. Math. 25 (1981), 464-469.

26. J. A. Shohat and J. D. Tamarkin, The problem of moments. Amer. Math. Soc., Providence, R.I.,

1943.

27. D. M. Y. Sommerville, The relations connecting the angle sums and volume of a polytope in space of n

dimensions, Proc. Roy. Soc. London Ser. A 115 (1927), 103-119.

28. R. P. Stanley, The upper bound conjecture and Cohen-Macaulay rings, Stud. Appl. Math. 54 (1975),

135-142.

29. B. Uhrin, problem proposed in the Fifth Hungarian Colloquium, Keszthely, 1976, Colloq. Math.

Soc. János Bolyai 18, North-Holland, Amsterdam, 1978.

30. A. Altshuler, Neighborly ^-polytopes and neighborly combinatorial 3-manifolds with ten vertices,

Canad. J. Math. 29 (1977), 400-420.

31. A. Altshuler and L. Steinberg, An enumeration of combinatorial 3-manifolds with 9 vertices. Discrete

Math. 16(1976), 91-108.

32. D. Barnette, A proofof the lower bound conjecture for convex polytopes, Pacific J. Math. 46 (1973).

33. _, Graph theorems for manifolds, Israel J. Math. 16 (1973), 62-72.

34. A. Császár, A polyhedron without diagonals, Acta Sei. Math. (Szeged) 13 (1949-50), 140-142.

35. D. E. Galewski and R. J. Stern, Classification of simplicial triangulations of topological manifolds.

Ann. of Math. (2) 111 (1980), 1-34.

36. A. F. Möbius, Gesammelte Werke, Vol. 2, Leipzig, 1886, pp. 552-553.

37. H. Tietze, Über das Problem der Nachbargebiete im Raum, Monatsh. Math. Physik 16 (1905),

211-216.

38. D. W. Walkup, The lower bound conjecture for 3- and A-manifoIds, Acta Math. 125 (1970), 75-107.

213, 16A, Chandigarh 160016, India


