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DISCRETE SERIES CHARACTERS AND FOURIER INVERSION

ON SEMISIMPLE REAL LIE GROUPS

BY

REBECCA A. HERB1

Abstract. Let G be a semisimple real Lie group. Explicit formulas for discrete series

characters on noncompact Cartan subgroups are given. These formulas are used to

give a simple formula for the Fourier transform of orbital integrals of regular

semisimple orbits.

1. Introduction. Let G be a connected semisimple real Lie group with finite center.

Let G denote the set of equivalence classes of irreducible unitary representations of

G. Associated with each 77 G G is its distributional character 0n, an invariant

eigendistribution on G. A central problem of harmonic analysis on G is the Fourier

inversion problem of expanding an arbitrary invariant distribution in terms of these

distributional characters.

An important class of invariant distributions on G arises as follows. Let y be a

regular (semisimple) element of G with centralizer Gy. Let dx denote a G-invariant

measure on the quotient G/Gy, and set

Ay(/) = (     f(xyx-x)dx,       fECr(G).
JG/Gy

A y is an orbital integral of the type appearing in the Selberg trace formula. H = Gy

is a Cartan subgroup of G, and for fixed y, Ay(/) is, up to a constant, the invariant

integral F"(y) defined by Harish-Chandra. The main theorem of this paper gives a

Fourier inversion formula for the distribution/ -> F"(y).

Orbital integrals Ay can be defined for other elements of G. If y is semisimple, but

not regular, it is known that there is a Cartan subgroup H oí G containing y and a

differential operator D on H so that

Ar(/) = lim DF/1(A)

where the limit is taken through regular elements of H. If u E G is unipotent, Au(f)

can also be obtained as the derivative of an invariant integral evaluated at a singular

point, although the explicit differential operators needed are only known in some

cases [1]. Thus Fourier inversion formulas for FfH(h), « G H regular, will yield

Fourier inversion formulas for many singular orbital integrals as well. In particular,
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when y = 1, A,(/) =/(l) is a singular orbital integral, and the Plancherel theorem

can be obtained via Fourier inversion of regular orbital integrals.

When G has real rank one, Sally and Warner computed Fourier inversion

formulas for A , y semisimple (including y = 1) [10]. Barbasch used these results to

compute Fourier inversion formulas for A„, u unipotent [1].

For G of real rank greater than one, the methods used by Sally and Warner can be

extended to obtain a Fourier inversion formula for Ay when y is in a dense subset of

the set of regular elements [5b]. This formula is stated as Theorem 4.3 in this paper,

and serves as a starting point. It contains certain complicated terms which can be

interpreted as Fourier series in several variables. These series are not absolutely

convergent, as the functions FfH have jump discontinuities, and have no obvious

closed form. Thus this formula gives httle insight into the functions F" and is not

suitable for applications.

In [2] and [5d, e], simple Fourier inversion formulas are obtained for certain

averaged orbital integrals obtained as follows. Let H be a Cartan subgroup of G, W,

the Weyl group generated by reflections in imaginary roots of H. Then W¡ acts on H,

and for regular y G H, the averaged orbital integral is given by

Xy(/)= 2 Awy(f).
wew,

In this paper, Fourier inversion formulas for Ay are obtained using those for A .

Heuristically, the idea is as follows. Consider weighted averages

AKY(/)=   2   *{w)Ky(f)   where k(w) = ±lforwG W,.
w£W,

For k = 1, A"y = A . For other suitable choices of k, Shelstad proves in [12a, b, c]

that A"y corresponds to an ordinary averaged orbital integral for a lower-dimensional

group. Thus Fourier inversion formulas for A" can be obtained as in [5d]. This is

done for sufficiently many choices of k that the original Ay can be recovered as a

sum of the A"y.

Theorem 1 of this paper gives a simple Fourier inversion formula for A , y

regular. The proof uses ideas of Shelstad. But rather than identify explicitly the

groups and correspondences involved in [12], it is simpler to use an identity for

discrete series characters which accomplishes the same purpose of reducing the

problem to the study of averaged orbital integrals. This identity is stated as Theorem

2. It is the explicit form of a character identity proved by Shelstad in [12c] as a

corollary of her results on orbital integrals. We give an elementary direct proof of

this theorem in §3.

A more general (fewer restrictions on G), but less explicit, Fourier inversion

formula has been announced by Harish-Chandra [3c].

I would like to thank Diana Shelstad for explaining to me her work on orbital

integrals and suggesting its applicability to the Fourier inversion problem.

2. Statement of theorems. Let G be as in §1. Let g denote the Lie algebra of G, gc

its complexification. If Gc is the simply connected complex analytic group with Lie

algebra gc, we assume that G is the subgroup of Gc corresponding to g.
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Let K be a maximal compact subgroup of G and 0 the corresponding Cartan

involution. Let g = f + p be the Cartan decomposition of g where f is the Lie

algebra of K. If if is a 0-stable Cartan subgroup of G with Lie algebra b, write

& = &* + &, where bk = b<~)t, bp = bnp, and H = HKHp where HK = H n K

and H = exp(b ). The set of roots of gc with respect to bc will be denoted by

0 = $(gc, be)- ®+ denotes a choice of positive roots in 4>. The subsets of $ taking

real and pure imaginary values on b will be denoted by <J>Ä = <PR(g, b) and

®¡ — $/(8, &), respectively. Let r,(H) = ¿[O,]. For any root system $, L(0)

denotes the weight lattice and W(<b) the Weyl group of $.

As in [5e], for any root system $ spanned by strongly orthogonal roots, we say a

root system <p Ç $ is a two-structure for $ if: (i) all simple factors of <p are of type

Ax or 7?2 s C2; (ii) if <p+ is any set of positive roots for <¡p then {w G W(<S?) | w<p+ =

tp+ } contains no elements of determinant -1.

Let ^O) denote the set of all two-structures for Í». All elements of 9"(0) are

conjugate under W^O). If <I>+ is a choice of positive roots for 0, let <p+ = qs n $+

for any tp G ÍF(Í>). In [5e] a distinguished element <p0 G 9"(<í>) is chosen for each type

of root system. Then each <p G ?í(<í>) is assigned a sign e(<p : 3>+ ) = det a where a is

an element of W(<&) satisfying atjp^ = <p+ . Because of (iii) above, det o is well

defined even though a may not be unique. Alternatively, the signs e(<p: $+) are

uniquely determined by:

(i) for all qp G ÍT($) and a G IF such that oy+ Ç $+ ,

£(o<p : $+ ) = det a e(<p : 0+ );

(Ü) l?ev(9)e(q> : 0+ ) = 1.
If $ is simple, 5"(0) will consist of all root systems <p contained in $ of type given

by the following table which also gives the values of [S"($)] and [L(<p) : L(0)].

<D

B2n

B2n+\

c2n

G2n+\

D2n

Ei

Es
E4

G2

<P

*2

B2 X Bx
C"c2

C2" X c,

A2"

A]

B¡

[Viv)]
1

(2«)!/«!2"

(2« + l)!/«!2"

(2«)!/«!2"

(2« + l)!/«!2"

(2«)!/«!2"
5 X 33

52 X 34

32

3

[L(<p):L(*)l
1

'jn— 1

2"

1

1
Til- I

23

2

2

Let IT(G, 77) = NG(H)/H where Ac(t7) is the normalizer in G of //. For each

a G 0Ä, let Ha E bp be dual to á = 2a/{a, a) under the killing form. Let ya =

exp(iriHa) E Hc. Then (ya | a G $Ä} generate the subgroup Z^) = K D exp(ibp)

of TV,K-
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Let LH = CG(Hp), the centralizer in G of Hp, and write LH = MHHp in its

Langlands decomposition. Then M = MH is a reductive group with compact Cartan

subgroup HK. Let Car(Af) denote a full set of 0-stable representatives of M-con-

jugacy classes of Cartan subgroups of M. These representatives can be chosen so

that for J G Cax(M), J% Ç HK. Each J E Cax(M) corresponds to a set R of

strongly orthogonal singular imaginary roots in $/+(g, b,). Let v be the correspond-

ing Cayley transform. Then v(bk) = \k + i\p and vR spans 0^(m, j). For each

J E Cax(M), J = JHp is a Cartan subgroup of G. There may be distinct elements

J, J' E Cax(M) with/conjugate to/' in G.

The unitary character group of H will be parameterized by pairs (b*, p) where

b* E Hk and p G bp, the real dual of bp- To each such pair (b*, p) there corresponds

a tempered invariant eigendistribution 0(H, b*, p) on G defined as in [5b]. If

b* E H'k = (¿>* G 77^ | wb* ¥= b* for w G W($77, w ¥= 1}, then 0(t7, 6*, p) is, up to

a sign, the character of a tempered unitary representation of G induced from a

parabolic subgroup of G with split part Hp. If ¿>* is not regular, 0(H,b*,\i) also has

a character-theoretic interpretation given in [6].

Let G' be the set of regular semisimple elements of G and let H' = H D G'. For

A G77',/GCc°°(G),define

Ff"(h) = eR(h)à(h) f    f(xhx~x)dx
G/H

where eÄ(«) and A(«) are defined as in [14]. Let 0+ (gc, be) De tne set 0l positive

roots inherent in the definition of A. Assume all Haar measures are normalized as in

[5b] and let voliHK) denote the total mass of HK.

Theorem l.Letf E C^iG) and let hkhp E H' where hk E HK and hp E Hp. Then

F»(hkhp)=vol(HKyXi2vyd^

dimi, (_l)r'(y)

jectiM^2'      [w(M,j)][z(bp)nz(ip)]

X    1    f h-^'í 0(JHp,b*,v.'®li)(f)
b*£JK   ^ lp

X        2        detwK(M,J,b*,n,whk)d¡xdix'.
weW(M,HK)

Let / G Car(Af ), and let R be the corresponding set of strongly orthogonal

singular imaginary roots of (m, fj¿), v the Cayley transform. Fix b* G JK, p Ej*,

and hk E HK n A/'. Then K(M, J, b*, ¡i, hk)is defined as follows. Let <D = $R(m, j)

and $+ = 4> n ï»<Ï>+ (gc, í)c). Let yR be a two-structure for $ with rÄ Ç <pÄ.

Decompose g>Ä = <p, U • • • U<pA where the q^, 1 <y =£ /c, are simple root systems.

Write j = a, © ■ • • ©a¿ where 1 <j < k, a; = 1ae<pRHa. Then Wi¿ can be de-

composed as vhk =j0ax ■ ■ ■ ak where j0 E JK and a- E exp(/'ay),  1 <y < k. Let
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Hj G a* be the restriction of p to aJt b* the restriction of b* to Z(aj). Then

K(M, J, b*, p, hK) = £(^:$+)^W] ¿ï(-)  rr K(   + j &;> )
[L(<p„):L($)J j=x

is a product of factors corresponding to the simple root systems <p-.

Let <jp = cpj be one of these and write a — ay, q>+ = qp D 0+ . Suppose <p is of type

/I, and <p+ = (a). Write a E exp(/'a)' as a = expi-i0Ha) where 0 <| 0 |< w. Each

p G a* is determined by p(//a) which we also denote by p. Define

where

,  + .        2    smhp(fl-nr)
S(qT , p, a) = 77—77-r-^--

a sinhirp

0-Í0-77       if 0 < Ö < 7T,

(0 + 77       if -W < 0 < 0.

Then fore* G Z(a)",

/?(qp+ , ¿*, p, a) = 5(qp+ , p, a) + b*iya)Si<p+ , p, yaa).

Suppose <p is of type t32 and qp+ = (a,, a2, /?,, ß2} where ßx = ¿(a, + a2) and

& = 2(ai — «2)- Then exactly one of v~xßt, i = 1, 2, is compact. Write

1      iiv~xß2is compact,
e(q»   ) — \

I -1     if v~xßx is compact.

Then a E exp(z'a)' can be written as a = exp(-i12=x0jHa ) where 0 <| 0. |< w,j — 1,

2, and | 0, | ̂  \ 02 \ . For p G a* write p, = n(Ha). Define

S(<p+ ,n,a)

X

sinhp,0, sinhp2(02 ■+■ ir)

sinh7rp, sinhw^p, + p2)

sinhju,(0, + 7r)sinh/x2(02 + (l + fi,ju2')w)

sinhwp, sinh7r(p, + p2)

if|0,|<|0 '2 I .

If 10,   l>|07

Write <pf = {a,, a2} and qps+ = {/?,, /32}. Define

and

S(qp+,p,a)

^4e(y+)

110, II2

.   + . _      4     sinhp,(0, ■+■ w)sinhp2(02 -1- 77)

II n. || 2 sinh wp, sinhwp2

sinh(p, + p2)((0, + 02)/2 + 7r)sinh(p, - p2)((0, - 02)/2 + tt)

sinhîr(p, + p2)sinh7r(p, — p2)

|  sinh(p, + p2)((0, + 02)/2)sinh(p, - p2)((0, - 02)/2)

sinh7r(p, + p2)sinh7r(p, — p2)
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Then for b* E Z(a),

/v(<p+ , p, b*, a) = -25(qp+ ,\i,a) + \S(tf , p, a)

+b*iyp){-2S(<t>+ ,n,yßa)+\S(<p? ,p,yßa)}

+ b*iyai)2S(<pf,n,yaa).

Theorem 1 will be obtained by simplifying the formula for F" given in Theorem

4.3. The main result needed is an identity involving constants which appear in

discrete series character formulas. Let $ be a root system spanned by strongly

orthogonal roots, <P+ a choice of positive roots. We assume <ï> comes equipped with a

subset $CPT called the set of compact roots. Let L = Li<b), W — Wi<&), and

WK = Wi$CPT). For each t E L, w E W, there is a constant c(w : t : d>+ ) which

arises as follows.

Let G be a split real group satisfying our hypotheses with root system of type 0.

Then G has a compact Cartan subgroup T with Lie algebra t, and L can be

identified with the lattice of elements t G it* for which £T(exp7Y) = exp(r(H)),

H E tc, gives a well-defined character of Tc. We assume that when $ is identified

with $(gc, tc), <&CPT corresponds to the set of compact roots of t. Corresponding to

each t G L there is an invariant eigendistribution 0T defined by Harish-Chandra in

[3a] and [3b]. If t G L' = {t G L | IIaEi,(a, t)¥= 0}, 0T is, up to sign, the character

of a discrete series representation of G.

Let A be a split Cartan subgroup of G with Lie algebra uÇ|3. Let v be a Cayley

transform satisfying vt = ia. Let a+ = [H E a \ va(H) > 0 for all a E $+ }. Then

for « G A+ = exp(a+ ),

0T(«) = A(«)~'   2   detwc(»v:T:<D+)¿H,T(^1«).
wEW

The constant c(h> : w~xt: <E>+ ) depends only on the coset of W in W/WK and we

define

c(t:<I>+)=      2     cÍw:w-xt:®+).
w^W/WK

Then it is proved in [5c, e] that

(2.1) c(t:1>+)=     2    e(<p:$+)c(t:<p+).
<peTj(<i>)

Since all simple factors of each two-structure <p for 0 are of type Ax or 52, c(t : qp+ )

can be evaluated explicitly as in [5c]. Theorem 2 gives a formula for c(w : t : $+ ) in

terms of averaged constants c(wr: <I»+(X)) where the Í»(A) are root systems con-

tained in d>.

Using reduction procedures described by Harish-Chandra in [3a], knowledge of

the constants c(w: t: 0+) is sufficient to determine discrete series character for-

mulas on any Cartan subgroup of any group G satisfying our assumptions.
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Let A = A(0) denote the root lattice of 0. For A G A, let 0(X) = {/3 G $ |

(ß, X)/(ß,ß)EZ}. Then for X„ X2 G A, $(X,) = $(X2) if and only if X, - X2

G A0 = {X G A | (X,ß)/(ß, ß) G Z for all /? G $}. Define a homomorphism x:

A -» Z/2Z by setting

(   \ = i°     ifaGOc#r>

XW      [1     if a G $„7-

and extending linearly. This extension is well defined because if a, ß, and a + ß are

all roots, then x(a + ß) = x(«) + xiß) (mod2). For X,, X2 G A, define X,

X(X, - X2) = 0. Then for X G A and w E Wi$) we define

' 1      ifvv-'X = X,

-1     ifvv-'XsX.

X2if

K\(*>)

It is easy to check from the definitions that kx depends only on the coset of X in

A/A0andof win W/WK.

Suppose $ is simple. Then the root systems $(X), X G A, will be all root systems

$(X) Ç 0 of type given by the following table.

B„

C„

E>2r,

Ey

Ea

•(X)

Ax
BpXBn.p,0<p<n

D2p X Cn_2p, 0 < 2p -

D2p^<D2in_p),Q<p

E7, D6 X Ax

E%, Lj X Ax, Z78

F4, B3 X Bx, C4

G2,A\

i n

n

We note that when $ is identified with $(gc, tc) as above, then (ka | X G A} is a

subset of the set of "characters" k of ^(T) considered by Shelstad in [12a] and that

d>(X) is the root system of the endoscopie group H associated to kx. The characters k

which are of the form kx, X G A, are exactly those for which H "shares" both T and

A with G.

Given a fixed choice 0+ of positive roots for $, we will describe in §3 a way of

assigning to each X G A a sign e(X : 0+ ). For each X G A, let $+ (X) = O(X) n $+ .

Theorem 2. Let n - rank 0. Then for w E W, t G L,

c(w: t:<D+) = 2""    2     e(X: *+)kx(w)c(wt: *+(X)).
XeA/A0

Combining Theorem 2 with (2.1) and known values for c(t : $+ ) when 0 is of

type Ax ox B2 gives a complete description of the constants c(w: t: <P+). Much

simpler formulas for these constants have been obtained in special cases, for

example when the corresponding discrete series representation is holomorphic. Our

formula can be simplified to agree with the formula of Hecht [4] in this case.
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Although complicated, the formulas of Theorem 2 and (2.1) are well suited to

simplifying the terms occurring in the Fourier inversion formula for F,H. For other

discrete series character formulas the reader is referred to work of Hirai [7], Schmid

[11], Martens [8], Midorikawa [9], and Vargas [13].

3. Proof of Theorem 2.

Lemma 3.1. Let X G A and s E W(§(\)). Then for all w E W, kx(sw) = kx(w).

Proof. It is enough to prove that for all a E $(X) and w E W, Kx(saw) = kx(w)

where sa denotes the reflection corresponding to a. But w'^X = w'x\ —

2((a, X)/(a, a))w~xa = w~xX since (a, X)/(a, a) G Zand2«/3 = 0 for any « G Z,

|8e$. The result follows from the definition of kx.

Lemma 3.2. Let X G A, v, w E W. Then kvX(w) = kxív'x)kxív'xw).

Proof. This follows trivially from the definition of kx.

We note that the above two lemmas appear in [12a] as Propositions 3.1 and 3.3.

We will now assign to each X G A and system <S>+ of positive roots for $ a sign

e(X : $+ ). We will first do this for positive systems chosen as follows.

(3.3) If O is of type Ax, B2n+X, D2n, E1, E%, or G2, pick 4>+ so that all simple roots

are noncompact. If 0 is of type t32„, C„, or F4, pick $+ so that all long simple roots

are noncompact and all short simple roots are compact. If 0 is not simple, pick

positive roots for each simple factor as above.

For í>+ chosen as above, if 0 is of type Ax, Bn, D2n, En, E%, or G2, set

e(X : <ï>+ ) = 1 for all X G A. For $ of type C„, denote the simple roots for 0+ by

(a,,. ..,«„} when <a„a,.+ ,)= -1, 1 < i < n - 1, and (a„_,,a„>= -2. Let A, =

{a, + a3 + • • • +a2p_x |0<p<A:} where« = 2k or 2k + 1. If $ is of type F4, let

A, = {0, a,, a2} where a, is a short simple root and a2 is a long simple root for <1>+ .

In either case, for X G A,, define W(X :$+)= [o E W\ o® + (X) Ç $+ }. Then for

any X G A there are X, G A, and o E W(XX : $+) with $+(X) = a$+(X,). Define

e(X : 0+ ) = det a kx (a-1). For $ of type F4, X, and o axe uniquely determined by X.

For $ of type C„, X, is uniquely determined by X. Each element of H^X, : 3>+ ) is of

the form a = vs where v EWKf\ H^X, : 4>+ ) and s G {o G W\ <x<ï>+ (X,) = <î> +

(X,)). Again, v is uniquely determined by X but j is not. However, det onxio~x) =

det v is well defined.

If O is not simple, write 0+ = Of U • • • U05+ where the 0, are simple. Then for

X, G A(*,.), 1 « i « s, define e(X, + ■ • • +XS : 0+ ) = Il;=1£(X, : <f>,+ ).

If $+ is chosen as in (3.3) and v E W, define e(X : ü<p+ ) = kx(ü)£(i;"1X : $+ ) for

all X G A.

Lemma 3.4. Lei X G A and o E W(\: $+) = {a G W\o$+(\) Ç $+ }. Then for

all w EW, e(aX : $+ )koX(vv) = det o e(X : $+ )kxío~xw).

Proof. Using (3.2), it is enough to prove that e(aX : $+ ) = Kx(a"')det a e(X : $+ )

for all a G W(\:$+). Suppose first that 0+ has been chosen as in (3.3). Write

e(X : $+ ) = e(X). If 4> is of type C„ or F4 and X G A,, then (3.4) follows directly

from the definition of e(oX). If X is arbitrary, then $+(X) = t$+(X,) for some
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X, G A, and t G W(XX, $+ ). If o G I^(X : $+ ), then or E W(XX : 4>+ ) and the

result follows from using (3.2) and the definitions of e(orX,) and e(tX,).

If 4> is of type Ax, Bn, Dn, En, Es, or G2, e(X) = 1 for all X so we must show that

kx(o--') = det o for all o G W(X : $+ ). Write o E W(X : $+ ) as o = sa¡ ■ ■ ■ s„k

where the a, are simple roots and k is minimal. In this case each a, is noncompact.

The proof is by induction on & = l(o).

If k = 0 the result is obvious. Suppose l(o) — k > 1. Because sa • • ■ sa is a

reduced expression for a, o0 — sai ■ ■ ■ sak E W(X : $+ ) also and s G W(a0X : <í>+ ).

Using (3.2) and the induction hypothesis, kx(o'x) — k0 x(sa )Kx(a0_1) =

det a0K0oX(50i). Further ia$+(a0X)C$+ implies that a, G $(o0X) so that

2«a0X, ax)/(ax, a,»«, z 0 and sap0X z o0X. Thus K0oX(jai)det o0 = -det a0 =

det o.

If u$+ is another choice of positive roots, v~xW(X : u$+ )v = W(v'xX : 4>+ ) and

the result follows by using the first case, (3.2), and the definition of e(X : t>3>+ ).

Theorem 2. Let w E W, t G L. Let n = rank $. Then

c(w:t:$+) = 2-"     2     e(X : *+)kx(w)c(ivt : 0+(X)).
XeA/A0

Before proceeding with the proof of Theorem 2, we will illustrate it in the cases

« = 1,2, where all values of c(w : t : <I>+ ) are known [5a]. Note that in these cases all

the signs e(X : <t>+ ) are one.

Case I. Suppose $+ = {a} is of type Ax. Then for w G W, t G L,

, -i     /K+A      \l     if(a,T><0,c(w: w 't: 4»+ ) = \   '   /       '
10    otherwise,

and

c(t:0+) = c(1:t:<D+) + c(í„ : s„t : 0+)

2    if(a,T><0,

, 0    otherwise.

In this case A/A0 = {0} so that Theorem 2 just says ciw : w~xt : $+ ) = ^c(t : i>+ ).

Case II. Suppose i>+ = [a, ß, y, 8} is of type t32 where ô is the compact root and

a = y + 8, ß — y — 8. In this case A/A0 = {0, y + A0} where $(y) = (y, 5} is of

type Ax X Ax and

fl       \fwEWKUsyWK=W0,

Ky(w)     {-1     if w E saWK U sßWK = saWQ.

If t G L is written as t = na + mß, then the nonzero values of c(w: w~xr: $+ ),

c(t : <E>+ ), and c(t : <ï>+ (y)) are given by the following table. Since c(w : w~xt : $+ )

is constant on cosets of W/W0, only values for w = 1, sa axe given.

0>w>« 0 > « > m 0 > -« > «i

c(1:t:$+) 1 1 2

c(5a:*aT:<I>+) 1 -1 0

c(t:0+) 4 0 4

c(T:0+(y)) 0 4 4
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Clearly in each case c(w : w~xt : 0+ ) = \[c(t : $+ ) + ky(h-)c(t : $+ (y))].

Case III. Suppose 0+ = [a, ß, y, a', ß', y'} is of type G2 where a is simple and

short, ß is simple and long, a + ß — y, and a', ß',y' axe orthogonal to a, ß, y,

respectively. We assume that y, y' are the compact roots. Then A/A0 = (0, a, ß, y}

and W = WKU sJVK U sßWK. For each X G A/A0, <ï>+ (X) and values of kx(vv) are

given in the following table.

0 a ß y

0+(X) $+ {a,«'} {ß,ß'} {y, y'}

kx(1) 1111

Kx(sa) 11 -1 -1

Kx(sß) l-l l _i

For fixed t G L, write r — na + ma'. Then the nonzero values of the c(w : w~xt : $+ )

and c(t : $+ (X)) are as follows, verifying the formula of Theorem 2.

0 > 3m > n m> n > 3m m < n < 0   0 < n < -m    -m < n < -3m

c(1:t:$+) 2 2 4                  2 2

c(í„: í„t: 3>+) 2 0 0-2 0

c(j/8:í/3t:*+) 0-200 2
c(t:*+) 4 0 4                     0 4

c(t: *+(a)) 4 4 4                     0 0

cXt:0+(/8)) 0 0 4                     4 4
c(t:<J>+(y)) 0 4 4                     4 0

Proof. We first assume that 3>+ has been chosen as in (3.3). Write e(X : 3>+) =

e(X). For t G L', Theorem 2 will be proved by induction on «, the rank of 3>. When

« = 1,2, it has been verified above that Theorem 2 holds. We assume that n > 3.

The induction step will make use of an identity of Harish-Chandra [3a] which relates

the constants c(w : t : 4>+ ) to constants for root systems of rank « — 1 as follows.

Let a E S, the set of simple roots for 4>+ . Let $„ = {ß E <S> | (ß, a)- 0} and

®a = $+ n$a. It is easy to check in each case that $+ is a set of positive roots for

3>a satisfying (3.3). For t G L', let ra be the unique element in the weight lattice La of

$a satisfying (ra,ß)=(r,ß) for all /? G 3>a. The Weyl group Wa of $a can be

considered as a subgroup of W.

For w G W and t G L, define

c(w w-'t-0+) = Jc(w': w<"'t««:*«+)     ifw = w,n«i,w1 G ITa)vv2G M^,

V ' '      [0 ifwG WaWK.

Let soe W^be the reflection corresponding to a. Then for i EL':

(3.5) c(w: t: $+) + c(5aw: t : <I>+ ) = c(w : x: 0+ ) + c(saw: t: 0>a+ );

(3-6) c(t: $+) + c(S„t:*+) = 2c(t„: $q+ ).

Identity (3.5) together with the fact that c(w : r>~'t : $+ ) = 0 if t G L+ = {tGL|

(t, a)> 0 for all a E <I>+ } determines the constants c(w : t : í>+ ) inductively [5a].

Thus if we define

s(w:r:<l>+) = 2-"     2     e(X)Kx(w)d(wr : <D+ (X)),
XeA/A0



FOURIER INVERSION ON SEMISIMPLE REAL LIE GROUPS 251

to prove Theorem 2 for t G U it is only necessary to verify that s(w: w'xr: $+) = 0

for T G L+ and that for all a E S,

(3.7)

s(w: w'xr: $+) + i(savv: w'xr : $+ ) = c(w: w~xr: $+ ) + c(saw: w~xt: ®¿ ).

The first identity follows from the fact that for t G L+ and any XGA,(r,a)>0

for all a E <£>+ (X) Ç 4>+ so that c(t : $+ (X)) = 0. The second identity requires a

detailed analysis of the terms occurring in (3.7).

Fix t G L', w G W, and a simple root a and denote the left-hand-side of (3.7) by

LHS. Then

LHS = 2"     2     e(X)[Kx(wYc(T:a>+iX)) + Kxisaw)c(saT:<i>+(X))].
XeA/A0

If a £ ®(X), then since a is simple, sa E W(X : $+ ). Using (3.4),

^»KaM^: *+ ('.*)) + "Jox(^)c(S„t : <D+ (*aX))]

= -e(X)[Kx(iaw)c(V: $+ (X)) + kx(w)c(t: <D+ (X))],

so that if jaX + A0 t^ X + A0, the corresponding terms in LHS cancel, and if

saX + A0 = X + A0, the corresponding term is zero.

Define A(a) = [X E A \ a E $(X)}. If X G A(a), then by (3.1), Kx(saw) = kx(w)

and a is a simple root of $+ (X) so that using (3.6),

LHS = 2-"      2       e(X).cx(w)2c(T:<P+(X)a).
XeA(a)/A0

For any X G A(a), Xa = X - (X, a)a/(a, a) E {X G A | (X, a)= 0} which can

be identified with A(<E>a), the root lattice of Oa. The mapping X + A0 -» XQ + A0($o)

gives a homomorphism of A(o)/A0 onto A(<Pa)/A0($a) which is bijective if a G A0

and has kernel {A0, a + A0} if a G A0. It can be checked case by case (only

0 = C„ or F4 are nontrivial) that for X G A(a), e(X) = e(X + a), and that these signs

agree with the sign e(Xa) = e(Xa : d>+ ). Finally, note $(X)Q = $(X + a)a = $a(Xa)

and that Kx+a(w) = kx(w) if and only if w~xa = a.

Case I. Suppose a E A0. (Since rank $ > 3, this occurs only when $ = C„ and a

is the long simple root.) Then

LHS = 2"+' 2 e(XK(w)c(T:$0+(X)).
X£A(*„)/A0(*„)

If w E W\VK, then LHS is equal to c(w: w~'t: $+ ) by the induction hypothesis

and saw G WaW* so that cisaw: w'xr: «P+ ) = 0. Conversely, if w G WaWK, then

c(w : w_1t : 0+ ) = 0, but savv G H^W^ and LHS = cisaw : w~xt : 3>+ ).

Case II. Suppose a G A0. Then

LHS = 2-+1 2 e(X)c(r: $; (X))(Kx(*) + Kx+a(w))
AeA(*a)/A0(*o)

{0 if w~xa z a,

2c(w: vv"'t: <& + )     ifw~'a = a.
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In this case, w E WaWK if and only if saw E WaWK and c(w : w xr : $ + ) =

cisaw : w'xr : $+ ). Further, if w~xa z a, then w G WaWK so that c(w : w'xt : $+ ) —

0.

This concludes the proof of Theorem 2 for t G L'.

Let t? denote the real vector space spanned by 0. Let tJ+ be any component of

tJ ' = (t G 7?|IIae$<T, a>^0). Define c(w : <ï+ : $+) = c(w: t: 4>+) where t G

7î+ HL'. This is independent of the choice of t [3a]. Let t G L1 = L\L'. Let

W^t) = {w G If| WT = t}. Let <3+ be a component of 9' with t G cl(f+ ). Then it

follows from the definitions of c(w : t : $+ ) and c(t : $+ ) that

and

c(t:<D+)=[H/(t)]-1    2    c(^+:«D+).
ueW(T)

For X G A, let f'(a) = {tëtÎ| Ilae$(A)(T, a>^ 0). Let tï+(X) be the compo-

nent of f'(X) containing f+ . Define t/ = t/(X, t) = (w G Wir) | wt?+ Ç §+ (X)),

and F = F(X,t) = {h> G W(Í>(X)) | wt = t}. Then Wir) = VU and UD V = {I}.

ForwG Uandr' E<$+ DL, c(wr' : $+(X)) = c\^ (X) : $+(X)). Thus for r G U,

r' E tJ+ HL', using Theorem 2 for r' G L',

c(w:h>-1t:<Ï>+) = 2-''     2     ^Ki")^)]"'     2    c(t>T': $+(X))
AeA/A0 cEWIf)

= 2-    2    ^MHOl^irXOr' 2c(i;7Î+(X):<I»+(X))
XeA/A0 DEC

= 2-    2     £(X)Kx(w)c(t:$+(X)).
X6A/A0

This finishes the proof of Theorem 2 for 4>+ chosen as in (3.3). Let v E W. Then

using (3.2) and the definition of e(X : t>«P+ ),

c(w: t: v®+ ) = c(u_1w : r: dp+ )

= 2""     2     e(X : <f>+ )KX(V-Xw)c(v-Xwr : $(X) n $ + )
XeA/A0

= 2-"    2     e(irIX:*+)Kx(i>)icx(w)c(trW:$(tr,X)n$+)
XeA/A0

= 2""    2     e(X:u$+)Kx(w)c(wT:$(X)nu$+).
XeA/A0

4. Proof of Theorem 1. Let H G Car(G). We will use the notation established in

§2. Let Car'(M) = Cai(M)\{HK}. Fix J G Car(M) with Lie algebra j = \k + \p.

Let If be the Weyl group of $ = <!>(mc, jc), WR and W, the subgroups correspond-

ing to 3>Ä and <!>,. Let W„ = [w E W\ w\ = j}. Then WR, W„ and WiM, J) axe

subgroups of Wa, and as in [5d], we define

(4.1)      w(m, j) = [WR][WiMj, JK)]/[W(M, J)] = [WR][Wr]/ [Wa].
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Let IXi^) be a full set of representatives for WR orbits in Zi\p). The representa-

tives can be chosen so that Vi\p) Ç H^. For y G Y(\p), let

<My) = {« e*Ä|««(y) = 0.   ** (y) = <My) n ^+(9c, &c).

Let WRiy) = Wi$Riy)) and let WKiy) be the subgroup of WR(y) generated by

reflections in the roots a of $R(y) for which j>"'a is a compact root of (m, í)¿). Let

i+ (y) ={HE\p\ a(H) > 0 for all a E <S>+ (y)}. Then for y G T^), « G expO'j,),

and p G j*, we define

(4.2) //(y:«:p)=[H/^(y)]-1     2     del vf 2     ÍJt^)

Xc(c : tr'r : $+ (y))exp(r - i'p)(t7) ¿77.

Let §(tY, /) be the set of all sequences J0,JX,...,J, where J0 = H,J¡ = J = JHp,

and for Ki<l,J,E Cax\Mj ). ForO < i < /,leta, = (i^.Theni, = ©2{=1a,..

For hk E HK, write vihk) = h0hx • • • ht where «0 G 7^ and for K i < I, «, G

exp(/'a,). For p G j£, write p, for the restriction of p to a,.

Theorem 4.3. 77iere is a dense open set H* Ç H' so that for « = hkhp E H*,

/GC-(G),

w = (-ir[^.^)=y,^)]    2   detw
VOl(7VA-)(27r) ' »E«/(M«,/i»)

x    2    (4vr)-d,m4^(My,/J,)]-1 2 /a;",7^6*.m'®m)(/)
yeCar(A7) ft,e^   0? I¡S

X      2      i-l)'liS :b*:¡i:whk) du dp'.
seS(//,7)

For 5 G S(tV, J), è* EJK,\iE \* and vhk = «0«, •■■h,EHK,

IiS:b*:¡x:hk)=     2      ■"•2     ^*(y. " " " Y/«o) Il ^^'(y,: «, : p,).
y,er(Q,)       y/er(o,) ¡=i

Here w, = vv(m,_„ i,)/[Z(a,) n Z(a,._,)] w«ere 5, = ©2}=0a,, 0 « J < /.

Proof. This result is proved in the same way as Theorem 3.7 of [5d], using

Theorem 3.4 of [5d]. Note that for / G Car'(M), WiMf, Jg) C v(WiM°, H%)), so

that all Weyl group sums can be combined. The subset H* of H' for which the

formula is valid will be smaller than that for Theorem 3.4 [5d], as when each

remainder term is analyzed, it is necessary to eliminate certain elements.

The remainder of this section will be devoted to evaluating the integrals Iff,

H E Car(G), J E Cax\MH), which occur in the inversion formula. Sally and Warner

derived a simple formula for I?(y:h:fi) in [10] when $ is of type Ax. For

rank $ > 2. Theorem 2 will be used to express if in terms of factors of the type

which occur in the Fourier inversion of stable orbital integrals, which are then

simplified as in [5d, e] into products of rank one and two type factors.
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Fix y G T(\p). Write 0 = ®R(y), $Cpt = {a G $ | j< "a is a compact root of

(m, bk)}, a+ = i+ (y), W = WR(y) = W($), and WK = W{$CPT). We will use the

notation of §§2 and 3. Let A, be a subset of A so that for each X G A there is a

unique X, G A, with X G wX, + A0 for some w E W. Then every coset X + A0 can

be represented by one of the form oX + A0 where X G A, and o E W(X : <P+ ) = {a

£ If |o$+(A)C$+}. This representation is unique only up to an element of

Wx(<& : $+(X)) = (a G W|aO+(X) = 4)+(X)}. Fix X G A, and 9 = <p(X) E

5"(4>(X)). Write qp = <p, U ■ • • UqPj where the qp, are simple. Let a, = 2ae<PiR7fa,

1 < i < s. Then \p = a, © • • • ®ar Write T0 = exp(i\p) and 7} = exp(/oy), 1 <y <

s. Then T0 = Tx ■ ■ • Ts, but the product need not be direct. Thus for t G L(qp), £T

need not be well defined on T0, although it is on f0 = Tx X ■ ■ ■ X Ts, the abstract

direct product, by £t(tj,,. .. ,t¡s) = IIy=1£T(T)7) where t- is the restriction of r to a,.

Let £={(î,1,...,î,,)ef0|nj-=1îj/=l}/ Write LR = L(QR(m, j)). Then [E} =

[L(q>) : LR], and for r E L(<p),

¡A a\ V        t I \- |[£]     ifTGLR,
(4-4) ,     2      €T(n„...,n,)-   0       UrçL

For p G i* let Hj denote the restriction of p to a,, 1 <j < s. For « G T0, write

« = WSj=xhj where hj E T¡. This decomposition is unique only up to componentwise

multiplication by an element of E. Define

(4.5) P(qp+,M,«)= 2 nS(<P,+ ,M,^A)
(i),-i)s)e£ ¡'=1

where the S(qp,+ , p,, h¡) axe defined as in Theorem 1. Define

c(X) = e(<p : *+ (X))e(X : 3>+ )2"[E][WX(<!> : <P+ (X))][^($(X) : <p+ )]

where « = rankí», and for any root system 4> and subset ^, IF,(Í> : \p) = {w E

Wi$) I Wrp = (//}.
To shorten formulas, we use the following notation. For o* G 7^-, p G j*, «¿. G H'K,

we say g(o*, n,hk)= g\b*, p, «J if for «p G //;,

2    /* «;'"'/" *(/, 6*,p®p')(/)g(0*,P,«J¿p¿p'
b'eJK   '" ip

=   1    [ h;*[ 0(J,b*,ii®v')if)g'ib*,v,hk)diidvi',
- •'íi* •'i*

b*ejK fl" '"

where g and g' are functions of (6*, p, «¿) for which the sums and integrals above

converge. Because of the transformation rule for 0(7, b*, p <8> p')(/), for vv G

^(m,i),

(4.6) gib*, p, « J = giviw) <8> wo*, wp, hk)

where 7j(w) G 7^ is defined as in [5d]. Recall that (t?(w) ® wo*)(y/t) = b*(jk) if
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Lemma 4.7 For hK E HK, decompose vhK — «0«, where«0 G JKandhx E exp(/'j ).

Then

o*(Y«0)//(y.«,:p)^(7r/)"[^]-1o*(Y«0)

X   2   c(X)"1  2  deivKx(v)P(<p+(X),iL,yvhx).
XeA, view

Proof. Using (4.2) and Theorem 2,

6*(y"o)'7"(y:«,:p)=M"'2-"6*(y«0)    2   /(X.P.Y*,)
XeA,

where for X G A, and j E exp^i^),

/(X,pJ/)=[lf1($:4)+(X))]-1       2 2 detc
oE W(X:4>+) v<EW

XÍ     2   i^)e(aX:$+)KoX(ü)C-(T:a$+(X))exp(T-ip)(7Y)í//í.

Fix X G A,. Write W0 = WiX : $+ ),  Wx = Wxi$ : 4>+ (X)), and e(aX : $+ ) =

e(aX). Then using (3.4),

Z(X,M, i") =[*.]-'   2     2  det(ao)
aSW0 v£W

x[     2   ÍaT(ovj)EÍoX)Kaxiov)cior:o^+iX))expior-iti)ÍH)dH

= <V[Wl]-i  2 detuve)   2
cEH' JEHi

xf 2   ?I^yc(T:a>+(X))exp(T-/'a-1p)(/7)¿//.
V'a%ez.R

Let <p G 5"($(X)). Define W0(qp, X) = {j G IF($(X)) | sy+ ç <D+ (X)}. Then as in

[5c, e] tT(*(X))= {aqp|aG W0i<p, X)}, e(o(p : 3>+(X)) = det ae((p : <D+(X)), and

(2.1) can be rewritten as

c(t:$+(X))=[H',($(X):(p+)]-1e((p:$+(X))       2      det sc(s~xr : <p+ ).
jeir0((p,X)

Write "^(X) : qo+ ) = W\, W0i<p, X) = W¿, and e(<p) = e(q> : 0+ (X)). Thus, using

(3.1),

IiX,li,j) = eiX)[WxYx[W'xYXEÍcp)   2  detí 2  det *>*„(»
IE»Î l)E(C

X   2   / S   0™/)c(T:<p+)exp(T-«-la-1p)(7V)d7V
oei^o s '" 'a+TE¿s

= e(X)[»F1]-1[ryir,e(«p)  2  detuvo)
cElf

X   2      2   l(vj,s-xo-xVL,s-xo-xa+)

o<EW0 s<EW¿
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where

7(/,p,a+) = /     2   W)cir:<p+)expir-i,i)iH)dH,

fox j G exp(/'ay), p G j*, and a+ a component of o' = (77 G a | a(77) ¥= 0 for ail

a G $}.

Because every element of W = WRiy) centrahzes y«0, using (4.6),

o*(y«0)7(yt;«,,5-1a-1p, s~xo-xa+ ) =b*(yh0) l(yvhx, p, s~xo-xa+ )

for all v E W, s E W¿, and a G W0. Note that

U    U s-xo~xa+ = a+ (tp) = {77 G \p | a(77) > 0 for all a E cp+ }.
iewó oeWo

Thus

'b^l^IiX,ii,yhl) = ei\)[Wl]-l[W{]Mv)W^Ô)

X   2  detvKx(v)f 2   IJvÄJcir:<p+)expir-ili)iH)dH.
vew Ja+(y) t<eLr

Using the notation of (4.5), write a* = {77 G a, | a(77) > 0 for all a E qp,+ } and

yt>«, = n?=iA,-(ü) where «,(t>) G 7), 1 < i" < s. For any p G af, « G T¡, write

7(«:p:qp,+ )=/+    2     ÖÄ)>(T:<P,+ )exp(T- ifi)iH)dH.
a¡ TeL(ç),)

Then using (4.4),

6*(Y«0)7(X,p,y«,)=2"c(Xr'o*(Y«0)   2  détone)
CE W

x    2    n/M^)^,:^)-
(1.r)s)e£,= l

The factors 7(« : p : qp(+ ) defined above are exactly the terms associated with the

simple root system <p, of types A, or 7?2 which arise in the Fourier inversion formulas

of stable orbital integrals. It follows from results of Sally and Warner [10] for the Ax

case and Chao [2] for the 7?2 case, which are summarized in Lemma 4.6 [5d], that

b*(yh0)     2    àelu       2 n/U"M»):/V<P,+ )
uew(<p) (i,,.i¡s)eE i=i

= itTi)"b*iyhQ)     2     deluPi<p+ ,n,uyvhx).
uew(<p)

The lemma now follows from observing that ««,(«) = «,(wt>) for all u E Wiy),

v E W, and 1 < /' < s, and that Wiy) C IF(Í>(X)) so that kx(uv) = kx(v) for all

u E W(<p), vEW.

In (4.7) we have obtained an expression for if in terms of factors S(y>+ , p, «), <p

of types Ax ox B2, which occur in the Fourier inversion formulas for stable orbital

integrals. In Lemma 4.9 we will do more simplification to eliminate the sum over A,

and the "characters" kx.
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Fix \p = qp, U • • • Uqps G 9"(<í>) for which every long root is of noncompact type.

(We call a a long root of ^ if a belongs to any factor qp, of type Ax or if a is a long

root of a factor qp, of type B2.) We use the notation of (4.5). Let 1 < i < j. Let

p G af, h E T¡. Define T(qp,+ , p, «) = S(qp,+ , p, «) if qp, is of type Ax. If qp; is of type

7?2, let qp,+ denote the short positive roots of qp,, and define S(qp,+ ,p, h) as in

Theorem Í. Then define 7\qp,+ , p, «) = S(qp,+ , p, h) + |5'(<p+, p, «). Set
S

(4.8) GOT,/»,*) =        2 D%+,M„4
(%    ,i,)e£'=i

Lemma 4.9. Lei ^ G 3"($) /or w/n'c« every long root of \¡/ is of noncompact type.

Then

2        detwb*(yh0(w))lf(y:hx(w):,i)
w<=W(M°,H%)

^i^iy[Wxi^:r)yX[L,:LR]-XeU:<S>+)

X 2 detw6*(y«0(w))ß(^+,p,y«,(iv)).
weW(Ma,H%)

Proof. Suppose first that $+ has been chosen so that $+ and \p+ = \p n 0+ both

satisfy (3.3). Then A, can be chosen so that for all X G A,:

(i)e(X:$+)=l;

(ii) <p(X) = 4, n $(X) G 5"($(X)) and e(<p(X) : $+ (X)) = e(^ : <E>+ );

(hi) Wxi$ : $+ (X)) ç Wxi$ : <p+ );
(iv) X is a sum of long roots of O(X).

Fix qp Ç i// such that A,(qp) = (X G A, | qp G tT(4)(X))} ̂ 0. Let i/(qp) =

S(qp)IF,(<P: qp+) where S(qp) is the subgroup of W(qp) generated by reflections in

long roots of qp. It is clear from the explicit formulas of the 5(qp,+ , p,, «,) in Theorem

1 that for s E S(qp), 7>(qp+ , p, sh) = det sPiq>+ , p, «) for all p G j* and «G

exp(i j,). For m G Wxi<S> : <p+ ), 7>(qp+ , p, ««) = 7>(<i,+ , «"'p, «). Finally, v~xWK Ç

WiM°, 77°). Thus

2    ciX)-x[WKyx        2        detw6*(y«0(w))

XeA,(<p) w<ew(M°,hI)

X   2  dett;Kx(u)7>(<p+,p,YU«i(w))
o€lf

=[Ui<p)nWKYx 2 detw6*(Y«0(uO)

iveiftw",^)

X 2 detü7>(qp+,p,yü«1(w))
v(EU(<p)\W/WK

x[S(qp)]     2    c(Xyx        2       detMKx(«ü).
XeA,(cp) wew,(<l>: <p+)

Using (3.2), kx(wu) = kx(u)ku-ix(u). In the case that qp = t//, <// G tT(O) imphes that

det m = 1 for all u E Wxi<b : ¡p+ ). Since all long roots of t// are noncompact, and

because of assumption (iv) on X, u~xX = X for all u E Wx(<b : i>+ ) so that kx(w) = 1.



258 R. A. HERB

In the few cases that qp Ç ^ it is easy to check that det m = kx(u) for all u G

Wx($ : qp+ ). Thus det u kx(uv) = ku-ia(o) for all u E Wx($ : <p+ ).

Clearly qp G tJ($(kX)) for all u E Wx(<& : qp+), X G A,(qp). Conversely, if 9 G

S"(<Ï>(X)) for any X G A, then X + A0 = wXx + A0 for a unique X, G A,(qp). Since

qp, w"'qp G :T(<I>(X,)), there is a G W($(XX)) with w"'qp+ = aqp+ so that u = wo E

Wx(®:<p+) and 4>(wX,) = $(X). Further, for ux, u2 E Wx($ : <p+ ), ®(uxX) =

<t>(u2X) if and only if uxxu2 E [u G W($) | w<ï>(X) = O(X), w(p+ = <p+ } =
W,(»:*+(A))J*r,(#(X):ç>+).

Thus

[5(9)]     2    c(Xyx       2       detii.cA(«t>)
XeA,((p) weif,(i>: <p+)

= £(^:$+)[L,:LR]-1 2 «cx(0).
A + A„)<pe7j(<I>(A))

Case I. Suppose that <p = ■$. Then (X G A | \j/ G tJ(0(X))} = {X G A | ̂  ç $(X)}

is a sublattice of A containing A0 which we will denote by A.. Further, for fixed

v E W, X -» kx(v) is a character A^/Aq. Thus

2     K (0) = |[A^: A°]     ifKx(u) = HorallXG A^,

xeA+/A0 U otherwise.

Note A^ = {X G A I (X, a)/{a, a) G Z for all a E >/>} and A0 - (X G A |

(X, a)/(a, a)EZ for all a G $}. Thus [A+ : A0] = [L+ : L] and [£]-'[A^ : A0] =

[L : LR]~X. It can be checked that A^/A0 = {2f=,a, + A0 | a, is a long root of \p,

I <;<&}. The set tyf of positive long roots of t// is a set of strongly orthogonal

roots of noncompact type and X -* kx(u) is the trivial character of A^/Aq if and

only if v~xa = a for all a E i//,+ . This is the case if v E U(4>)WK. Conversely, if

v~xa = a for all a G t^+ , then t//,+ and v~xip, n $+ are two sets of strongly orthogo-

nal roots of noncompact type in 0, and hence conjugate by an element of WK. Thus

wv~x4*i = 4>i for some w E WK and so v E UWK where U — [u E W\ u\¡/¡ = \¡/¡}. In

all cases, UWK = U(^)WK. Finally, note that Wx(® : ^+ ) ç WK so that [U(\P) n

WK\ = [£(*) n WK][Wxi* : V )] and [S(*) n W^] = [L* : L]. Thus

2     c(X)-'[^r' 2 det,vo*(Y«0(w))
A£A,(i(/) weW(M°,//£)

X   2 detvKxiv)P(t+ ,n,yvhx(w))
vew

^E(^:^)[Wxi^:^)]-x[L,:LR]-X

X 2 det w b*(yh0(w)) P(t+ , p, y«,( w)).
«<eir(A/0,/r£)

If ^ is of type /!,, then A,(^) = A, and 7>(«//+ , p, y«,(w)) = Q(xp+ , p, y«,(w>)) so

the proof is complete.

Case II. Suppose qp C ^ and 3> is simple of type 7?2j, s > 1, or 7r2j, í = 2. Then i// is

of type 73| and qp is of type B¡x X B2. Then {X + A0 | qp Ç $(X)} is the disjoint
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union of {X + A0 | <p G ?T(*(X))} and {X + A0 | ̂  C 4>(X)}. Thus

2 "x(«0=      2     Kx(e) -      2     «a(«)>
A + A0*pe3"(*(X)) XeA,,/A0 XeA+/A0

where, as before, Ac = (X G A | qp ç $(X)}. Now {/(qp)«^ = tWW^ so that if

v G Ui\p)WK, X -> kx(ü) is non trivial on A^ and hence also on A^DA^ and so

Sx+Ao^eiwA))'^) = °- The double coset t/(qp)H^ of Ui<p)\W/WK can be repre-

sented by v — 1 so that

2 kx(1)=[L9:L]-[L^:L]=[L^:L].
A+A0>pe7j(*(A))

Further, [L^ : L]/[i/(<p) n WK\LV : LR] = s/[Wxi<t> : *+ )]4[L+ : LR] so that

2     c(X)-'[^r' 2        detw b*(yh0(w))
AeA,(<p) w<EW(Ma,H°K)

X   2  detüKx(ü)7>(qp+,p,Yü«,(w))
vEW

= s/4[Wxi*:>¡/+)]-l[Ly.LR]-\it:<i>+)

X 2        detw o*(y«0(w))7>(qp+,p,y«,(w)).
wfEW(M°, H%)

In this case A, = A,(^) U A,(qp). If E is defined as in (4.5) with respect to

i|/ = qp, U • • • Uqp^, then there is 1 <j < s so that

s

P(<i>+ ,/»,*) = 2 II  5((P,+ , p„ T,,«,) X S(qP+ , p,, I,,«,)
(1,.i,)e£'=l

<*7

for all p G j*, « G expí/'j^). Further, the 5 possible qp's which could have been

chosen, corresponding to 1 < j < s, are all conjugate by elements of determinant one

in WK ÇvWiM0, 77°). Thus

2 detwo*(y«0(w))7/(y:«,(w):p)
wtEW(M°, H%)

= itTi)n[Wxi<S>:^+)}-x[L^.LR}-Xeii,:<S>+) 2 deXw b*(yh0(w))

w<EW(M°,Hl)

x     2      2 n%,+ ,f,,iA)x%+,/.J,>iA).
(li.!),.)££ y=l ;'=1

<*7

The lemma follows because any term in Q(4>+ , p, «) which contains a factor of the

form S(q>£s, p„ h¡)S(<pys, py, A,) for some 1 < i ¥=j < s is stable under h => vh,

where u is an element of W^ of determinant -1 and thus will cancel out in the sum

over W(M°, H%).

Case III. Suppose i> is simple of type t32j+1. Then \p — qp, U • ■ • Uqpi+, is of type

B2X Bx and Ax(\p) = A,. The lemma follows from Case I together with the

observation that any term in Q(\p+ , [i, h) which contains a factor of the form
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S(<p+S, p,, A,)S(qpy+ , Hj, hj) for i, j with qp, of type t32 and qp, of type Bx is stable

under h -> vh for an element t; G WK with det v = -1.

Case IV. Suppose qp Ç t// and <ï> is simple of type C„. Then <f is of type C2 ox

C2 X C, depending on whether n = 2k ox 2k + 1, and qp is of type A2p X C2~p or

A2p X C2~p X C, for some 0 <p < k where the Ax roots are short. In any case,

Uif)WK — Ui<f>)WK = W, so the only double coset of Uiy)\W/WK can be repre-

sented by v = 1. Also in this case, for a given qp, there is only one coset of A/A0

with qp G ?T(*(X)). Finally, [U(*) n WK] = 2-'(*)[t/(qp) n H^] and [L„ : L+] = 2"

so that

2    ciXr't^r'        2        detw6*(yA0(w))
^EA,((p) wEIC(M0,ffi)

X   2  dett;Kx(t;)P(qp+,p,yüA,(w))
vew

^(kpy-p[Wxi^:^)]-x[L,:LR]-Xei^:^)

X 2 detvvo*(yA0(u,))7>(qp+,p,y«,(>v)).
wE.W(Ma, H%)

Now, if E is defined as in (4.5) with respect to ip = <p, U ••• U<ps, s = k ox k + 1

depending on whether 0 is of type C2k or C2k+X, there is a subset P of {1,...,s)

with p elements so that

p(v+, p, a) =   2    n ^(«p,+, /»/, i.A,) n s(ç+, p,, 7,,-a,.).

For fixed p, 0 <p < k, there are (*) such qp which could have been chosen all

conjugate by elements of determinant one in WK. Thus

2 detwo*(y«0(w))7/(y:«,(w):p)
weW(M°,H%)

s(„-)"[ïF1(»:*+)]-I[lv:LJI]-,«(*:»+)

X 2 detwo*(y«0(w))ô(^+,p,y«,,(w)).

w<EW(M°, Hl)

This concludes the proof of the lemma for $ + chosen as above.

Now suppose $+ is replaced by u$+ , v E Wi<i>). The the left-hand side of (4.9)

changes by det v. Write v = wct"1 where u E Wity) and o\p+ Ç 4>+ . Then

e(»//:ü$+) = e(r/-'.//:<E>+) =det oe(^ : <P+ ).

Further, if Í1 uit+ = mi//+ and

2 detw b*(yhQ(W))Q(u4,+ ,p,yhx(w))
weW(M°,H%)

= detu 2 detwo*(y«0(w))ô(^+,p,y«,(w)).

weW(M°,H%)
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Thus (4.9) is valid for any choice of positive root system for 0.

We now have, using (4.9), a complete description of the terms lf(y : j : p) which

appear in Theorem 4.3. To complete the proof of Theorem 1, it is only necessary to

use this information to compute the terms

2       (-l)'7(S:o*:p:«J
seS(//,y)

appearing in (4.3). This stage of the proof can be accomphshed in the same way as

the corresponding analysis in [5d, e]. It is slightly more complicated for three

reasons.

First, comparing the formulas for if to those for if in [5d, e], we see that the if

may have extra terms. These will be carried along at each stage and cause no extra

difficulties. Second, in computing the Fourier inversion formula for Ff1(hkh ), many

sums of the form "Zw£w(m°,h%) det wg(b*, p, whk) appear, where g is some function

of o* G JK, p G j*, and hkE HK where 7 G Car'(A7). In [5d], the corresponding

terms would be averaged over the larger Weyl group W, = Wf(Q, b) = W(mc, bkc)-

Frequently 2we w¡det wgib*, p, whk) = 0, while 2wetV(Mo Ho, det wgib*, p, whk)

makes a nonzero contribution to the Fourier inversion formula for FfH. Thus in

passing from 7/(y : j : p) to 2yeT(ip)b*iy)lfiy : j : p) and on to

2      (-l)'7(5:o*:p:Aj,
5eS(7/, J)

terms which would make no contribution to the Fourier inversion formula for an

averaged invariant integral, need to be retained in the formula for Fj1. However,

they can be handled by the same techniques used in [5d].

Finally, in [5d, e] we restricted ourselves to the case that 77 = T is a compact

Cartan subgroup of G. In this paper, we drop that simplifying assumption. For the

most part, this causes no problems. For example, for 7 G Car'(M), S (77, 7) can be

described in the same way as S(7) in [5d], where M° takes the role of G and 77^ that

of T. For a fixed S E S( 77, 7), the constants picked up in evaluating

/

IK     2    o*(y,)7f.(y:Ä/:p,)
i=l     y,er(a,)

are the same as those occurring in [5d,e], except that if Z(bp) D Z(\p) is not trivial,

the extra term [Z(bp) n Z(\ )]"' factors out. In this way, we obtain the following.

Lemma 4.10. Let J E Cax(M). Then

(-iy(H) v detw 2      i-l)'liS:b*:ix:whk)
i^)dmXp[WiMj,JK)\ weW{M\H^ seHH.J)

(-\)r'(J) i i \dir»i»

[w(M,j)][z(bp)nz(ip)]\2

X 2        detwK(M,J,b*,n,whk).
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To complete the proof of Theorem 1 it is necessary to make two observations.

First, representatives w of W(M, HK)/W(M°, H%) can be chosen so that for all

hk E HK, K(M, 7, 6*, p, whk) = detwK(M, 7. o*, p, hk). Thus

[W(M, HK):W(M°, 77°)] 2 det wK(M, 7, 6*, p, wAk)
wEW(M°,H%)

ee        2        detw7i(M, 7, o*,p,w/¡J.
wŒW(M, HK)

Second, although Theorem 4.3 is vahd only for A in the dense open subset 77* of 77',

both sides of the equation in Theorem 1 are continuous functions of A G 77'. Thus

the formula is true for all A G 77'.
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