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ON DERIVATIONS OF CERTAIN ALGEBRAS RELATED

TO IRREDUCIBLE TRIANGULAR ALGEBRAS

BY

BARUCH SOLEL

Abstract. This paper deals with derivations on algebras that are generated by a

maximal abelian selfadjoint algebra of operators & on a Hubert space and a group of

unitary operators acting on it. A necessary and sufficient condition for such a

derivation to be implemented by an operator affiliated with & is given. The results

are related to the study of derivations on a certain class of irreducible triangular

algebras.

1. Introduction. This paper continues the study of derivations on a certain class of

algebras of operators on a Hilbert space that started in [8]. In [8] we studied the

structure of a class of irreducible triangular algebras and the C*-algebras generated

by those algebras. The irreducible triangular algebras are those generated by a

maximal abelian algebra & and an ordered semigroup G of unitary operators acting

on$.

The investigation in [8] follows two paths. Along the first, it is a further

development of the structure theory of a subclass of nonselfadjoint operator algebras

—the irreducible triangular algebras. Along the second, it is an exploration of some

parts of noncommutive ergodic theory—with emphasis on nonself adjoint features of

the theory.

The study of triangular operator algebras was initiated by Kadison and Singer in a

paper [4] which appeared in 1960. With 77 a complex Hilbert space and 73(77) the

algebra of all bounded operators on it, a subalgebra § of 77(77) such that § D S* is

maximal abelian in 73(77) is said to be triangular and S n S* is said to be its

diagonal.

If the only projections E in B(H) that are left invariant by each operator T in S

(i.e. ETE = TE) axe E = 0 and E = 7, then the algebra S is said to be irreducible.

As proved in [8, Corollary 1.5], if G is an ordered semigroup of unitary operators

acting freely and ergodically on a maximal abehan algebra 6B, then the algebra S,

generated by & and G, is an irreducible triangular algebra.

The derivations and automorphisms of S are closely related to the skewadjoint

derivations and the *-automorphisms on the *-algebra S + S*. Those objects are

studied in Chapter IV of [8] (under the further assumption that the *-automorphisms

leave each operator in & fixed, and the derivations vanish on 6£). The group of

*-automorphisms of S + S* that leave each operator in 6B fixed will be denoted
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Aut(iÔ, <£) ($ is the C*-algebra generated by S). The set of all skewadjoint

derivations on S + §* that vanish on & will be denoted 7J>(S + §*, <£). A map e is

defined, from 7)(S + §*, <£) into Aut(<3&, â), such that £(5)(7) = (exp(/5))(r) for

each 7 in S + S*.

For the next result we will assume that the group generated by G is amenable.

For a derivation 8 in 7)(§ + §*, &) we proved the equivalence of the following

conditions (see [8, Lemma 4.12 and Theorem 4.20]):

(1) 8 is bounded.

(2) There is an operator D in & implementing 8 (i.e. 5(7) = DT - TD, T E S +

S*).
(3)Sup{||S(t/)||: UEG} < oo.

We present here a different proof of this fact (Theorem 2.2) using averaging

techniques (see [6, Lemma 4.2]).

The main result of this paper is Theorem 4.7 which gives a necessary and

sufficient condition for a derivation in D(S + S*, 6B) to be "implemented" by a

linear, selfadjoint (not necessarily bounded) operator affiliated with &.

For this, we will analyze groups of automorphisms on the algebra P<$>P, for P a

projection in 6B. This is done in §3.

2. Preliminaries. We now describe the notions and the results basic to the

remaining work.

We will deal with the action of a semigroup of unitary operators on a maximal

abelian von Neumann algebra. For this, we define an ordered (unitary) semigroup to

be a semigroup G such that:

(1) G U G'x is a group, to be denoted by G.

(2) G n G"1 = {7} where 7 is the unit element.

(3) For each Win G, WGW~X = G.

Henceforth X will denote a locally compact Hausdorff space and m a a-finite

regular Borel measure on X. Let 77 be the Hilbert space L2(Ar, m) and 77(77) be the

algebra of all bounded linear operators acting on 77. For each function / in

L°°(X, m) define the operator Lf in 77(77) by Lfg = fg (multiplication by /). The

algebra & — [Lf: f E L°°(X, m)} is a maximal abelian subalgebra of 77(77). Every

unitary operator U that satisfies U*&U = & is said to act on 6B, the action being

A -> U*AU.

We say that U acts freely on 6E if for each nonzero projection Q in &, there is a

nonzero projection E in <$, such that E < Q and EU*EU — 0. We say that a

semigroup G acts freely on ¿E when each Í7 in G, other than 7, acts freely on (&.

From now on, G will be an ordered semigroup of unitary operators in 77(77) and S

will be the algebra (not necessarily closed or selfadjoint) generated by â and G. The

*-algebra generated by & and G is S + §*.

Definitions. (1) We say that G acts ergodically on & (or that G is ergodic) if for

each nonzero projection P in &, I = V [U*PU: UEG}.

(2) An algebra § of operators on a Hilbert space 77 is called irreducible if

Lat S = {0, 7} where Lat § = [P E 77(77): P is a projection and PTP =TP,T E

§}.
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Theorem 2.1 [8, Corollary 1.5]. Let G be an ordered semigroup acting freely and

ergodically on &. Then S is an irreducible triangular algebra.

The main step in the proof of the theorem is the "6B-independence" of G, i.e. the

property that if A¡ axe in & and U¡ axe in G, then

n

2 AtUt = 0 implies A, = 0,      1 < /' < «.
;=l

We will assume, throughout this paper, that G is an ordered semigroup of unitary

operators acting freely and ergodically on &. Furthermore, we assume that G is an

amenable group (i.e. there is a finitely additive probability measure p on the field of

all subsets of G such that p(xE) = p(7s ) for all x G G, E Ç G).

We now turn to study the derivations on S + S*. A skewadjoint derivation 8 on a

*-algebra 91L is a linear map, from 9H into itself, satisfying:

(1) 8(ab) = 8(a)b + aè(b), a, b E 911,

(2) 8(a*) = -(5(a))*, a E <31t.

We let 7)(S + §*) denote the set of all skewadjoint derivations on S + S*.

Theorem 2.2. Let 8 be a derivation in 7J>(S + §*) such that:

il) Its restriction to & is bounded.

(2)Sup{||S(t/)||: UEG} < oo.

Then there is an operator S in 77(77) such that

8iT) = ST- TS,        7GS + S*.

Proof. Let % be the unitary group of (£, and let °V~be the group generated by %

and G. Since each U in G acts on &, % is a normal subgroup of Tand cV/% is

isomorphic to G via the map Ki/% -* U, V E%, UEG. (We use here the

éE-independence of G, mentioned above.) Since both G and % are amendable (G is

amenable by assumption and % is commutative and, hence, amenable by [3, Theo-

rem 1.2.1]) Tis also amenable (see [3, Theorem 1.2.6]).

Let BC(°V) be the Banach space of all bounded continuous functions from Tinto

77(77), with the norm

Hill =Sup{||f(W)||: WE^}.

By [6, Lemma 4.2] there is a norm decreasing function g from BC(T) into 77(77),

such that:

(i) If  V,  UE% iGBQT) and t'(W) = Vt(W)U for all  W in % then

git') = Vgit)U.

(ii) If V E % t E BCCV) and tv(W) = t(VW) for all Win % then gitv) = git).
(iii) git) = Ä if r(W) = 7? for all IT in T.

We will use this result for t E BC(°\f ) defined by

tiW) = 8iW)W*.

To show that t is in BQT ), note first that t is bounded (by the hypothesis of the

theorem). It is also a continuous map. To see this, let VnUn -» VU, Vn, KE%, Un,

U E G. By [8,Lemma 2.15], if || V„U„ - VU\\< JÏ, then U„ = U. So we can assume
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that Un= U for all « and Vn -> V, in &. But 8 is continuous on 6E, hence

t(VnU„) = t(VnU) = 8iVnU)U*Vn*

= 8iVn)V* + Vn8iU)U*V* -> 8iV)V* + V8iU)U*V* = t(VU).

Therefore we can let S be git). Then for all V, W E % tv(W) = t(VW) =

8(VU)U*V* = 8(V)V* + V8(W)W*V* and S = g(t) = g(tv) = 8(V)V* + VSV*.

Thus

8(V) = SV- VS,        VE'Y.

Since Tspans § + S*, as a hnear space,

8(T) = ST- TS,      reS + S*.   D

In Theorem 4.7 we will generalize this result (with the assumption that 8 | <$, — 0)

by imposing a weaker condition than Sup{||ô(i7)||: U E G} < oo. As a result, the

operator S will be replaced by an unbounded operator.

3. Automorphisms of the algebra P%P. Let P be a nonzero projection in &. By

[8, Proposition 2.22] the algebra 7°§P is an irreducible triangular algebra. Let

7°(S + S*)7> denote the selfadjoint algebra generated by P'èP, and P<$>P its norm

closure (P%P is a C*-algebra).

Let Aut(P%P, P<£) denote the set of all the *-automorphisms on P%P leaving

each member of P& fixed.

Lemma 3.1. For \p E Aut(P%P, P&) there is a map (p from G into P&such that for

each U in G,

^iPUP) = tpiU)PUP.

Proof. Fix ^ in AutiPC&P, Pâ) and fjin G. For each A in &,

tiPAUP) = 4>iPA)4,iPUP) = PA^iPUP)

and   MPAUP) = ^PUPU*AUP) = ^(PUP)^(PU*AUP) = yp(PUP)PU*AUP.

Hence

(*) PA^(PUP) = ^(PUP)PU*AU

and

A^(PUP)U* = xp(PUP)U*A.

Thus xP(PUP)U* E&' = 6£and, since 4>(PUP) = P^(PUP), ^(PUP)U* is in &P.

We can write ̂ (PUP) = BUfor some 77 in &P, and we have PABU = BUPU*A U

(by (*)) for each A in &. In particular BU = PBU = BUP (let A = I) and 77 =

BUPU*. Hence 77 G &PUPU* and we can write B = (p(U)PUPU*. This implies

that t(PUP) = <p(U)PUP.    D

Let a: t -» a, be a homomorphism from R into Au^P^P, Pâ) and assume that a,

is implemented by <p, (in the sense of the previous lemma). Assume also that for each

Tin 7"SP, the map t -» a,(T) is norm-continuous.

In particular, t -» <p,(U)PUPU* is norm-continuous. Let <p,'(t7) be 7° - PUPU* +

(p,(U)PUPU*, then <jp,'(l/) is a unitary operator in Pâ (acting on P(H)), and the map

t -* <p',(U) is a norm-continuous one-parameter unitary group. (Since <p¡(U)<p^(U) =

P - PUPU* + <p,(U)<ps(U)PUPU* = P - PUPU* + <pt+s(U)PUPU* = tp¡+JiU).)
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Hence there is a selfadjoint operator C(U), in Pâ, such that <f>',(U) = exp(itC(U))

(see [2, Theorem VIII. 1.2]).

Let A/(R) denote the Banach space of all complex finite regular Borel measures on

R with the total variation as the norm. For each/in L'(R) the measure/(i) dt is in

M(R) and its total variation equals II / II,. For each p in A/(R) and T in P%P there is

a unique bounded operator ap(T) in <$ such that, for each g in the dual space of

P%P

g(alliT))=(gia,(T))dnit).

Also, for each p in Af(R) and U in G, there is a unique bounded operator y'ALJ) in

&P such that for each g in the dual space of &P,

gU(U))=fRg(<p't(U))d¡x(t).

We will denote y'A^U) as fR(p't(U)dn(t). For details on the last two statements see

[1, Proposition 1.2 or 8, Corollary 4.2].

When the measure p, in A/(R), is the measure f(t) dt (for some/ G L'(R)) we use

the notations q>'f and a¡ for q>' and a^ respectively.

We will employ analysis, similar to the analysis in [8, Chapter IV], for the algebra

P%P.

Lemma 3.2. For every p in M(R), U in G, and A in Pâ, aJ[APUP) = A(p'¡í(U)PUP.

Proof. Fix U in G, A in P&, and p in M(R). For g in the dual of P%P,

g{aliiAPUP))=fg(aliAPUP))diiit)=fg(A<p'liU)PUP)diiit).

Let g0 be defined by g0(73) = g(BAPUP). As g is linear, g0 is linear and

\g0iB)\ = \g(BAPUP)[<\[g\\\\B\\\\A\\;

so that g0 is in the dual of Pâ. By the definition of <p¿ we now have

g(%iAPUP)) =/Rgo(tí(í/))dp(0

= g0(<p;(^)) = gU«p;(i/)i>w)-

Since this holds for each g in the dual of P<$>P we obtain aA[APUP) = Atp'fl(U)PUP.

D

Let ñ be an open set in R. Denote by AT(R, £2) the set of functions / such that the

support of/(the Fourier transform of/) is compact and contained in fi.

For a closed subset Z of R we define Ma(Z) to be the set of all operators T in

P<$>P such that af(T) = 0 for each/in ÄT(R,R\Z).

Lemma 3.3. Afa(Z) = P%P if and only if for each f in K(R,R\Z) and each U in

G, PUPU*<p}iU) = 0.

Proof. Assume, first, that Ma(Z) = P<$>P. Then, for each/in A"(R,R\Z) and

each t/in G, af(PUP) = 0. Hence 0 = af(PUP) = tf(U)PUP.
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For the other direction, note that Ma(Z) is closed in the norm topology hence it

will suffice to show that 7>(S + S*)7> is contained in Ma(Z).

But every T in P(% + %*)P has the form 1AVPUP (where Av are in &) and,

therefore, for each / in tT(R,R\Z), af(T) = 2Au<p}(U)PUP = 0. Thus T is in
Ma(Z).    D

The spectrum of a is defined as the smallest closed set Z in R such that

Ma(Z) = P%P and is denoted by sp(a). For the spectrum of an operator T we will

use the notation o(T).

Theorem 3.4. Let t -* a, be a homomorphism from R into Aut(P<$>P, Pâ) such that

a, is implemented by <p,' and for each operator T in P%P the map t -» a,(T) is

norm-continuous. For U in G, let C(U) be the operator in P&such that exp(itC(U)) =

<p',(U), then

sp(a) =    U oiCiU)PUPU*)
U£G

where Y denotes the closure of the set Y.

Proof, (a) Fix U in G. If t' is in o(C(U)PUPU*) but not in sp(a) then there is an

/in AT(R,R\sp(a)) with/(r') = 1. Since Ma(sp(a)) = P%P, Lemma 3.3 implies that

<p'f(U)PUPU* = 0; hence

0 = <p'AU)PUPU* = f <p¡(U)PUPU*fit) dmit)
JR

= f expiitCiU)PUPU*)fit) dmit).
JR

(Note   that  / G /C(R, R\sp(a))   implies   /R/(0 dmit) = 0.)   Since   t'   is   in

oiCiU)PUPU*\ there is a pure state r of P& such that t' = riCiU)PUPU*). Then

0 = r(<p}(U)PUPU*) = ¡ expiitriCiU)PUPU*))fit) dmit)

= f expiitt')fit) dmit) = fit').

But this contradicts the choice of t' and so proves that o(C(U)PUPU*) is contained

in sp(a). Since U is arbitrary (in G) and since sp(a) is a closed set,

U a(C(U)PUPU') C sp(a).
Í/EG

(b) Let Z denote Ui/e^a(C((7)7>L/7><7*) and let/be in K(R,R\Z). Fix U in G,

then for each pure state r of Pâ, we have r(<p}(U)PUPU*) = ¡(r(C(U)PUPU*)) =

0, thus (p'f(U)PUPU* = 0. Since this holds for each Í7 in G, it implies, by Lemma

3.3, that Ma(Z) = P<$>P. Hence sp(a) Ç Z and the proof is complete.    □

4. Unbounded derivations on S + S*. A derivation 8 on an algebra 91L is a linear

map from the algebra into itself satisfying: For each a, b in 911

8(ab) = 8(a)b + a8(b).
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The derivation will be said to be skewadjoint if for any a in the algebra 911,

«(a*) = -5(a)*.

We denote by Z)(§ + §*) the set of the skewadjoint derivations on S + S* and by

D(% + §*, &) the set of the skewadjoint derivations on S + S* that vanish on &.

For a nonzero projection P in 6? and a derivation 5 in 7)(S + S*, (2) we let ôp be

the restriction of S to P(S + S*)7>. As 8PiPTP) = SiPTP) = P8iT)P, 8P is a

skewadjoint derivation on 7>(S + S*)7\

By [8, Lemma 4.11], there is a map C from G into the selfadjoint operators of 6B

such that for each A in & and each {/ in G, 5(^f/) = ,4 C( {/)[/. Therefore for A in

PA and i/inG,

8ÍAPUP) = ACiU)PUP.

Such a map C, associated with 5, is said to implement 8.

Proposition 4.1. 7/5, in D(% + §*, (£), ¿j implemented by C and if

Sup{||C(I/)Pl7Pi/*||: UEG) < oo

iAe« 5,, is a bounded derivation.

Proof. By [8, Lemma 4.14] there is a homomorphism a' from R into Aut(®, &)

such that for each Tin § + §*, «;(P) = exp(<i5)(r).

Let a: R -> Aut( P<$P, P(£) be defined by the restriction of a' to P<&P. Since

a'tiPTP) = Pa'tiT)P, a is well defined. By [8],

a,iPUP) = a'XPUP) = iexpiitCiU)))PUP.

Let <p,(t/) be exp(<((C(i/)Pt/Pt/*)) then a,iPUP) = <p,iU)PUP.

Thus we can apply Theorem 3.4 to get

sp(a) =   U o(C(U)PUPU*) .
i/ec

By the hypothesis of the proposition, sp(a) is compact and hence, by [5, Theorem

8.1.12], the map t -* a, is norm-continuous. Using [2, Theorem VIII.1.2] there is a

bounded map tj on PIP satisfying a, — expiit-q) and tj = lim,^0 )(a, — id) where

id is the identity automorphism and the limit is in the norm topology.

For each A in P& and U in G we have

■niAPUP) = lim -(a,(APUP) - APUP)
r-»0   t

= hm ~iA expiitCiU))PUP - APUP)
r-»0   t

= ACiU)PUP = 8PiAPUP).

By linearity tj = 5P on P(S + S*)t° and, therefore, 5P is bounded.    D

We say that 5 has a bounding sequence if there is a sequence of projections {Pn} in

6B such thatP„ T7and, for every n,Sup{||5(P„L/P„)||: Í7 G G} < oo.

Assume now that 5 has a bounding sequence {P„} such that PXUPXU* ¥= 0.

Proposition 4.1 shows that 8P is a bounded derivation on Pn(S + S*)P„. We can

extend 5^ and view it as a derivation on the C*-algebra Pfô>P„. Thus there is an
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operator Dn (acting on P„(77)) that is selfadjoint and satisfies 8P — ad(7)n) (see

[7, Corollary 4.1.7]). Since 8P(Pn&) = 0 and P„6E is a maximal abelian algebra on

P„(77), Dn E Pß.

Lemma 4.2. For m> n,8P— ad(DmPn) and there is r ER such that DmPn — Dn =

rP .n'

Proof. For Pin P„(S + S*)P„,

8¿T) = 5(P) = 5(PmPPm) = 8PmiT) = DmT- TDm

= DmPnT- TDmPn = ad(DmPn)(T).

Since this shows that ad(Dn) = ad(£>mP„) we see that Dn — DmPn commutes with

P„(S + S*)P„. The irreducibihty of P„SP„ completes the proof.    □

If {D'n} is a sequence of selfadjoint operators satisfying:

5Po = ad(7)„')    onP„(S + S*)P„,

then there is a sequence {/•„} of real numbers such that D'nPx — D{ — rnPx. Let Dn be

D'n - rnPn, then DnPx = TJ», and, for m > n,

DmPn = Dn.

A closed, densely defined, linear operator T is affiliated with a von Neumann

algebra ÇR- if U*TU = T for each unitary operator U in the commutant of <3l.

Theorem 4.3. Let 8 be a derivation in D(S + §*, &) with a bounding sequence

{P„}. Then there is a selfadjoint linear operator D, affiliated with &, such that for every

Uin G and fin %D) D U*^(D),

8(U)f=DUf-UDf.

If Uf is in ty(D) for every U in G, then for each T in S + S*, 8(T)f = DTf - TDf.

Proof. Recall that AT is a locally compact Hausdorff space with a a-finite regular

Borel measure m, H is L2( X, m) and â is the multiplication algebra on 77.

For each n, Pn is the operator of multiplication by the characteristic function of

some measurable set En of X. Since P„ î 7, we can assume that En Ç En+X for each «

andA'= U E„.

For each «, Dn, viewed as an operator in &, is the multiplication by some

real-valued, bounded, measurable function g„ satisfying g„x„ — g„ where x„ is the

characteristic function of En.

We can now define a measurable function g on X by gx„ = g„. Since DmPn = Dn,

gmX„ — g„ for «i > «; and g is well defined.

Let 6Î)(D) be the dense linear subspace {/G 77: g/G 77) and D be the (not

necessarily bounded) linear operator of multiplication by the function g, defined on

ty(D). The operator D, such defined, is affiliated with the algebra &.

For each / in 77, PjE<$(D) and DPJ= DJ= D„PJ because gXJ= gj.

Since ôp = ad(Dn),

8(P„UP„)f = D„P„UPn f - P„UP„Dn f = DPnUPn f - PnUDPn f.

Thus if/ G %D) n U*^(D) then

8(P„UP„)f= C(U)PnUPJ= (DU- UD)U*P„UPJ
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and, since P„ Î 7, PnU*P„U Î 7. Thus

8(U)f = C(U)Uf = DUf- UDf.

Each T in S + S* can be written as LAyU, where UEG and ^^ G 6E. Hence, if Uf

is in ^(TJ) for every U in G, then

8(T)f= 2°(AuU)f= 2Ayo(U)f= 2AuiDUf- UDf).

Since ADf = DAf for each/ G ^(T)) and A E &,

8(T)f=2(DAuUf-AuDf) = DTf-TDf.    D

We now discuss the existence of a bounding sequence for a given derivation. We

will need the following lemma.

Lemma 4.4 Let 8 be a derivation in 7)(§ + §*, a) and E0, Ex,...,En be projections

in &such that:

(1) For eachj there is Uj in G such that U*EJUj < E0.

(2) Ex, E2,...,En are pairwise orthogonal.

(3) The restriction of 8 to £0(S + S*)P0 is bounded.

Then the restriction of 8 to P(S + %*)F is bounded, where F = Ex + E2 + • ■ ■ +En.

Proof. Let K be the norm of the restriction of 5 to £0(S + S*)P0 and let FJt for

/ > 1, be U*EjUj. For Pin P(S + S*)P,

T=   2   EJTEk=   2   VjFjU*TUkFAJ* =   2   UjTjJJg
j,k>\ j,k^\ j,k>\

where Tjk G £0(S + S*)£0 and \\Tjk\\ < ||P||. Hence,

o(T)=   2   {8(Uj)TjkU* + Uj8(TJk)Ut + UjTjk8(U¿))
j,k»\

< 2 (ii«(^)iiii7;-ji + ii«(2;*)ii + ii7;-tiiiifi(^)ii)
7,*S»1

<\\T\\   2   (\\8(Uj)\\+K+\\8(Uk*)\\) = \\T\\M
y,A>l

where M is a real number independent of P.    D

Lemma 4.5. Let E0 be a nonzero projection in ($,. Then there is a sequence {£,) of

pairwise orthogonal projections in & with sum I such that for each i there is some U¡ in

G such that U*EtU, < £0.

Proof. Since G acts ergodically on â,

7= V {UE0U*: UEG}.

Let {£,} be a maximal set of pairwise orthogonal projections in & such that for each

i there is some U¡ in G such that U*EiUi < E0. The existence of such a set is

guaranteed by the Zorn's Lemma (the set is countable since 77 is separable).

If 7 — 2£, (denoted E) is a nonzero projection, then there is some U in G such

that UE0U*E ¥= 0. We can, therefore, add UE0U*E to {£,} and, since

U*(UE0U*E)U < E0, it will contradict the maximality of {£,}. Thus 2P, = 7.        D
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Corollary 4.6. Let 8 be a derivation in 7J)(S + §>*, &). If there is a nonzero

projection F0 in &such that the restriction of 8 to P0(§> + §*)^o " bounded, then 8 has

a bounding sequence.

Proof. Let {£,} be the set given by the previous lemma and let P„ be 21S„£,. By

Lemma 4.4, the restriction of 5 to P„(S + S*)P„ is bounded and, since 2£, = 7,

P„îl.    □

We conclude:

Theorem 4.7. Let 8 be a derivation in 7J)(S + %*,&). Then the following are

equivalent:

(1) There is a nonzero projection E in âsuch that

Sup{||5(PÍ7P)||: UEG) < oo.

(2) There is a selfadjoint linear operator D, affiliated with â, such that for each T

(= A0 + AXUX + ■ ■ ■ +AnUn) in S + §* and each f in a dense subspace of H, namely

(/ G 77: / G <$(/>), Ukf E <^iD)for each 1 < k ^ «}, we have 5(P)/ = DTf - TDf.

Proof. (1) implies (2): Theorem 4.3, combined with Corollary 4.6, proves that, for

each/in {/ G 77: / G <¡u{D), Ukf G <%(D) for each 1 =£ k < «}, we have 8{Uk)f =

DUkf — UkDfiox each k < «. Therefore,

8iT)f=Ax8iUx)f+---+An8iU„)f=DTf- TDf.

It is left to prove that the subspace is dense in 77.

As D is affiliated with the maximal abehan algebra of multiphcations by functions

in UaiX,m), D is the operator of multiplication by some measurable function g

(and D is defined on ty(D) — (/G 77: g/G 77} which is dense in 77) and, thus,

there is a sequence of projections {Ef} in £E such that Ej T 7 and, for each/, DEj G â.

Let Fj be the projection EjU*EjUxU*EjU2 ■ ■ ■ U*E/Un. Then Fj \ I and, for eachy and

each/in Fj(H),f is in 6£)(D) and so is Ukf for every 1 < k < n. This completes the

proof that the subspace is dense in 77.

(2) implies (1): Let U be in G and E be any nonzero projection in â such that DE

is in &. For every function A in U*EUE(H), h and Í/A are in fy(D). Hence, for every

/in 77,

8(EUE)f= 8(U)U*EUEf= DEUEf - UDU*EUEf= DEUEf - UDEU*EUf.

Therefore, \\8(EUE)\\ < 2||7)P|| and, since the right-hand side is independent of U,

Sup{||5(Pt7P)||: í/GG}<oo.    D

Example 4.8. Let X be R and m be Lebesgue measure on R. Fix a negative

irreducible number u and define the set S in R: S = {au — r: r > 0, r G Q, a > 0,

a G Q} U {bu + r: r, b G Q, b s* 0, r s* 0}. Let G be the semigroup of translations

by s in S, i.e. U in G (to be denoted f/.) is of the form í//(í) = fit — s) for some s in

5, where / is in L2iX, m). It can be seen [8, Example 1.9] that G is an ordered

semigroup that acts freely and ergodically on & (the multiplication algebra on

L2iX, m)). Let S be the algebra generated by & and G, then S is an irreducible

triangular algebra.

Let 5 be defined by 8iAUs) = sAUs, A E â, Us E G, and by linearity. Then 5 is in

7J>(S + §*, 6E). Let E be the projection in 6E which is the multiplication by the
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characteristic function of the interval (0,1). For s in S, EUSE ¥^ 0 only if | s |< 1,

hence

\\8{EUsE)\\ = \\sEUsE\\<\,       sES.

Therefore, there is a hnear operator D, as in Theorem 4.7, satisfying: For each P

in S + S*, 5(P) = DT — TD on a dense supspace of 77. In fact, this operator is just

the operator of multiplication by the function g(t) = t and is defined on {/G 77:

g/e/f}.
Example 4.9. Let X be any locally compact Hausdorff space with a a-finite

regular Borel measure. The Hilbert space 77 would be L2(X, m) and â will be the

algebra of multiplication by functions in U°(X, m). Let U be a unitary operator

acting ergodically on 6E and assume that X is an infinite set. Then, by [8, Lemma 1.7]

the algebra S (generated by ¿E and U) is triangular irreducible.

Let 5 be defined by: 5(^1 Uk) = kA Uk, A E &, k E Z, and by linearity. Then 5 is

in D(S + §*, &). Let E be any projection, different from 0, in &. By ergodicity, we

can find a sequence k(n) of integers such that, for each «, EUk(n)EU~kin) ^ 0;

hence \\8(EUk(")E)\\ = k(n). Therefore there is no operator that implements 5 in

the sense of Theorem 4.7.
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