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ON DERIVATIONS OF CERTAIN ALGEBRAS RELATED
TO IRREDUCIBLE TRIANGULAR ALGEBRAS
BY
BARUCH SOLEL

ABSTRACT. This paper deals with derivations on algebras that are generated by a
maximal abelian selfadjoint algebra of operators @ on a Hilbert space and a group of
unitary operators acting on it. A necessary and sufficient condition for such a
derivation to be implemented by an operator affiliated with @ is given. The results
are related to the study of derivations on a certain class of irreducible triangular
algebras.

1. Introduction. This paper continues the study of derivations on a certain class of
algebras of operators on a Hilbert space that started in [8]. In [8] we studied the
structure of a class of irreducible triangular algebras and the C*-algebras generated
by those algebras. The irreducible triangular algebras are those generated by a
maximal abelian algebra @ and an ordered semigroup G of unitary operators acting
on @.

The investigation in [8] follows two paths. Along the first, it is a further
development of the structure theory of a subclass of nonselfadjoint operator algebras
—the irreducible triangular algebras. Along the second, it is an exploration of some
parts of noncommutive ergodic theory—with emphasis on nonselfadjoint features of
the theory.

The study of triangular operator algebras was initiated by Kadison and Singer in a
paper [4] which appeared in 1960. With H a complex Hilbert space and B(H) the
algebra of all bounded operators on it, a subalgebra & of B(H) such that & N &* is
maximal abelian in B(H) is said to be triangular and & N 5* is said to be its
diagonal.

If the only projections E in B(H) that are left invariant by each operator T in &
(i.e. ETE = TE) are E = 0 and E = I, then the algebra & is said to be irreducible.

As proved in [8, Corollary 1.5], if G is an ordered semigroup of unitary operators
acting freely and ergodically on a maximal abelian algebra @, then the algebra S,
generated by @ and G, is an irreducible triangular algebra.

The derivations and automorphisms of & are closely related to the skewadjoint
derivations and the *-automorphisms on the *-algebra & + &*. Those objects are
studied in Chapter IV of [8] (under the further assumption that the *-automorphisms
leave each operator in @ fixed, and the derivations vanish on @). The group of
*-automorphisms of & + &* that leave each operator in @ fixed will be denoted
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Aut(®, @) (B is the C*-algebra generated by §). The set of all skewadjoint
derivations on & + &* that vanish on @ will be denoted D(S + &*, &). A map ¢ is
defined, from D(S + §*, @) into Aut(%, &), such that &(8)(T) = (exp(i8))T) for
each Tin & + &*.

For the next result we will assume that the group generated by G is amenable.

For a derivation 8 in D(S + §* @) we proved the equivalence of the following
conditions (see [8, Lemma 4.12 and Theorem 4.20]):

(1) é is bounded.

(2) There is an operator D in & implementing 8 (i.e. 8(T) = DT~ TD, TE S +
o*).

3) Sup{ll6(U)Il: U € G} < 0.

We present here a different proof of this fact (Theorem 2.2) using averaging
techniques (see [6, Lemma 4.2]).

The main result of this paper is Theorem 4.7 which gives a necessary and
sufficient condition for a derivation in D(S + §* @) to be “implemented” by a
linear, selfadjoint (not necessarily bounded) operator affiliated with @.

For this, we will analyze groups of automorphisms on the algebra PRP, for P a
projection in @. This is done in §3.

2. Preliminaries. We now describe the notions and the results basic to the
remaining work.

We will deal with the action of a semigroup of unitary operators on a maximal
abelian von Neumann algebra. For this, we define an ordered (unitary) semigroup to
be a semigroup G such that:

(1) G U G™"is a group, to be denoted by G.

(2) G N G™' = {I} where I is the unit element.

(3) For each Win G, WGW ™' = G.

Henceforth X will denote a locally compact Hausdorff space and m a o-finite
regular Borel measure on X. Let H be the Hilbert space L*( X, m) and B(H) be the
algebra of all bounded linear operators acting on H. For each function f in
L*(X, m) define the operator L, in B(H) by L,;g = fg (multiplication by f). The
algebra @ = {L;: f € L*(X, m)} is a maximal abelian subalgebra of B(H). Every
unitary operator U that satisfies U*QU = @ is said to act on @, the action being
A - U*AU.

We say that U acts freely on @ if for each nonzero projection Q in @, there is a
nonzero projection E in @ such that E< Q and FU*EU = 0. We say that a
semigroup G acts freely on @ when each U in G, other than I, acts freely on (.

From now on, G will be an ordered semigroup of unitary operators in B(H) and &
will be the algebra (not necessarily closed or selfadjoint) generated by @ and G. The
*-algebra generated by @and G is S + S*.

DEFINITIONS. (1) We say that G acts ergodically on & (or that G is ergodic) if for
each nonzero projection Pin @, I = V {U*PU: U € G}.

(2) An algebra & of operators on a Hilbert space H is called irreducible if
Lat S = {0, I} where LatS = {P € B(H): P is a projection and PTP = TP, T €
S).
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THEOREM 2.1 [8, COROLLARY 1.5]. Let G be an ordered semigroup acting freely and
ergodically on @. Then S is an irreducible triangular algebra.

The main step in the proof of the theorem is the “@-independence” of G, ie. the
property that if 4, are in @ and U, are in G, then

n
> AU =0impliesd, =0, 1<i<n.
i=1
We will assume, throughout this paper, that G is an ordered semigroup of unitary
operators acting freely and ergodically on @. Furthermore, we assume that G is an
amenable group (i.e. there is a finitely additive probability measure p on the field of
all subsets of G such that u(xE) = p(E) for all x € G, E C G).
We now turn to study the derivations on & + 5*. A skewadjoint derivation 8 on a
*-algebra 9N is a linear map, from 9N into itself, satisfying:
(1) 8(ab) = 8(a)b + ad(b),a, b € M.
(2) 8(a*) = —(8(a))*, a € .
We let D(S + &*) denote the set of all skewadjoint derivations on & + &*.

THEOREM 2.2. Let 8 be a derivation in D(& + $*) such that:
(1) Its restriction to @ is bounded.

() Sup{lI8(U)Il: U € G} < 0.

Then there is an operator S in B(H) such that

8T)=ST—TS, TeS+5*

PROOF. Let A be the unitary group of @, and let V' be the group generated by AU
and G. Since each U in G acts on @, A is a normal subgroup of ¥ and /U is
isomorphic to G via the map VUU - U, VEQ, UEG. (We use here the
@independence of G, mentioned above.) Since both G and 9 are amendable (G is
amenable by assumption and 9 is commutative and, hence, amenable by [3, Theo-
rem 1.2.1]) Vis also amenable (see [3, Theorem 1.2.6]).

Let BC(V') be the Banach space of all bounded continuous functions from V'into
B(H), with the norm

llell = Sup{lle(W)ll: W eV},

By [6, Lemma 4.2] there is a norm decreasing function g from BC(V') into B(H),
such that:
@ If Vv, Ue W, t€BC(V) and /(W)= V(W)U for all W in <V, then
g(1") = Vg(n)U.
@) IfV eV, reBC(V)andt, (W)= (VW) for all Win YV, then g(z,)) = g(2).
(iii) g(¢z) = Rif (W) = R for all Win V.
We will use this result for r € BC(V') defined by

(W) =8(W)w=.
To show that ¢ is in BC(V'), note first that ¢ is bounded (by the hypothesis of the

theorem). It is also a continuous map. To see this, let V,U, - VU, V,, V € A, U,,
U € G. By [8,Lemma 2.15), if |V,U, — VUl <2, then U, = U. So we can assume
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that U, = Ufor allnand ¥, - V, in @. But § is continuous on @, hence
(V,U,) = 1((VU) = 8(VU)U*V;r
=8(V,)V¥ + VS(U)U*V¥ - 8(V)V* + V8(U)U*V* = t(VU).

Therefore we can let S be g(¢z). Then for all ¥V, W eV, ¢ ,(W)=1u(VW) =
S(VUHU*V* = §(VWV* + VE(W)W*V* and S = g(¢) = g(z,) = 8(V)V* + VSV*,
Thus

8(V)=Sv-—vrs, Ve-w.
Since V'spans & + S*, as a linear space,
8(T)=ST-TS, TeES+5* O
In Theorem 4.7 we will generalize this result (with the assumption that § | @ = 0)

by imposing a weaker condition than Sup{l|8(U)ll: U € G} < . As a result, the
operator S will be replaced by an unbounded operator.

3. Automorphisms of the algebra PBP. Let P be a nonzero projection in @. By
[8, Proposition 2.22] the algebra PSP is an irreducible triangular algebra. Let
P(S + $*)P denote the selfadjoint algebra generated by PSP, and PP its norm
closure (PP is a C*-algebra).

Let Aut(P%P, PR) denote the set of all the *-automorphisms on PBP leaving
each member of P@ fixed.

LEMMA 3.1. For § € Aut(PBP, PQ) there is a map ¢ from G into PQ such that for

eachUin G,
Y(PUP) = ¢(U)PUP.
PRrOOF. Fix y in Aut(P®P, P&) and U in G. For each 4 in @,
V(PAUP) = y(PA)Y(PUP) = PAY(PUP)
and {(PAUP) = Y(PUPU*AUP) = (PUP)Y(PU*AUP) = (PUP)PU*AUP.
Hence
(%) PAY(PUP) = y(PUP)PU*AU
and
AY(PUP)U* = y(PUP)U*A.

Thus y(PUP)U* € @ = @ and, since Yy(PUP) = PY(PUP), y(PUP)U* is in @ P.

We can write ( PUP) = BU for some B in @ P, and we have PABU = BUPU*AU
(by (%)) for each 4 in &. In particular BU = PBU = BUP (let A =1) and B =
BUPU*. Hence B € @PUPU* and we can write B = (U)PUPU*. This implies
that y(PUP) = (U)PUP. O

Let a: t — a, be a homomorphism from R into Aut(PB P, PQ) and assume that a,
is implemented by ¢, (in the sense of the previous lemma). Assume also that for each
T in PP, the map ¢ - a,(T) is norm-continuous.

In particular, t - ¢,(U)PUPU* is norm-continuous. Let ¢;(U) be P — PUPU* +
@,(U)PUPU*, then ¢,(U) is a unitary operator in P& (acting on P(H)), and the map
t — ¢,(U) is a norm-continuous one-parameter unitary group. (Since /(U)¢i(U) =
P — PUPU* + ¢ (U)o (U)PUPU* = P — PUPU* + ¢, (U)PUPU* = ¢, (U).)
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Hence there is a selfadjoint operator C(U), in P@, such that ¢/ (U) = exp(itC(U))
(see [2, Theorem VIII.1.2)).

Let M(R) denote the Banach space of all complex finite regular Borel measures on
R with the total variation as the norm. For each fin L'(R) the measure f(¢) dt is in
M(R) and its total variation equals || f ||,. For each p in M(R) and T in PBP there is
a unique bounded operator a,(7') in % such that, for each g in the dual space of
PP

a,(T)) = [ g(a(T)) du().

Also, for each p in M(R) and U in G, there is a unique bounded operator @ (U) in
@ P such that for each g in the dual space of @ P,

g(o(v)) fg(qv,(U)) dp(1).

We will denote ¢;(U) as [ge,(U) dp(¢). For details on the last two statements see
[1, Proposition 1.2 or 8, Corollary 4.2].

When the measure g, in M(R), is the measure f(¢) dt (for some f € L'(R)) we use
the notations ¢f and a, for ¢, and a, respectively.

We will employ analysis, similar to the analysis in [8, Chapter IV], for the algebra
PRHP.

LEMMA 3.2. For every pin M(R), U in G,and A in PQ, a,(APUP) = Aq>,:(U)PUP.
Proor. Fix Uin 5, A in P@, and p in M(R). For g in the dual of PR P,

8(a,(4PUP)) = [ g(a,(APUP)) du(1) = [ g(Awi(U)PUP) di().

Let g, be defined by g(B) = g(BAPUP). As g is linear, g, is linear and
|80(B) |=|g(BAPUP) |<ligl I BIl I All;
so that g is in the dual of P@. By the definition of ¢; we now have

g(a,(4PUP)) = fR go(@(U)) dp(1)

= g(9(U)) = g(4g,(U)PUP).
Since this holds for each g in the dual of P% P we obtain a (APUP) = Ag,(U)PUP.
a
Let Q be an open set in R. Denote by K(R, ©) the set of functions f such that the
support of f (the Fourier transform of f) is compact and contained in .
For a closed subset Z of R we define M%(Z) to be the set of all operators T in
PBP such that a;(T) = 0 for each f in K(R,R\ Z).

_ Lemma 3.3. M%(Z) = PRBP if and only if for each f in K(R,R\ Z) and each U in
G, PUPU*¢,(U) = 0.

PROOF. Assume, first, that M*(Z) = PBP. Then, for each f in K(R,R\ Z) and
each Uin G, a;,(PUP) = 0. Hence 0 = a,(PUP) = ¢;(U)PUP.



268 BARUCH SOLEL

For the other direction, note that M%(Z) is closed in the norm topology hence it
will suffice to show that P(& + $*)P is contained in M*(Z).

But every T in P(S + S*)P has the form £A4,PUP (where 4, are in @) and,
therefore, for each f in K(R,R\Z), a((T) = ZA,@;(U)PUP =0. Thus T is in
M«Z). O

The spectrum of a is defined as the smallest closed set Z in R such that
M*%(Z) = PRP and is denoted by sp(a). For the spectrum of an operator T we will
use the notation o(7T").

THEOREM 3.4. Let t > a, be a homomorphism from R into Aut(PBP, PQ) such that
a, is implemented by ¢, and for each operator T in PRP the map t » a(T) is
norm-continuous. For U in G, let C(U) be the operator in PQ such that exp(itC(U)) =
o, (U), then

sp(a) = U_o(c(U)PUPU*)

where Y denotes the closure of the set Y.

PROOF. (a) Fix Uin G. If ' is in o(C(U)PUPU*) but not in sp(e) then there is an
fin K(R,R\sp(a)) with f(t’) = 1. Since M*(sp(a)) = PBP, Lemma 3.3 implies that
@, (U)PUPU* = 0; hence

0 = ¢ (U)PUPU* =qu>;(U)PUPU*f(t) dm(t)

= fk exp(itC(U)PUPU*)f(1) dm(1).

(Note that f € K(R, R\sp(a)) implies [gf(?) dm(t) = 0.) Since ¢’ is in
o(C(U)PUPU™), there is a pure state 7 of P& such that ¢’ = 7(C(U)PUPU*). Then

0 = 7(¢} (U)PUPU¥) = fRexp(m(C(U)PUPU*))f(z) dm(t)

=/Rexp(m')f(z)dm(z) = f(r').

But this contradicts the choice of ¢" and so proves that ¢(C(U)PUPU*) is contained
in sp(a). Since U is arbitrary (in G) and since sp(«) is a closed set,
U o(c(U)PUPU’) C sp(a).

UEG
(b) Let Z denote U, 50(C(U)PUPU*) and let f be in K(R,R\ Z). Fix Uin G,
then for each pure state 7 of P@, we have (g (U)PUPU*) = f(+(C(U)PUPU*)) =
0, thus @(U)PUPU* = 0. Since this holds for each U in G, it implies, by Lemma
3.3, that M*(Z) = PBP. Hence sp(a) C Z and the proof is complete. [J

4. Unbounded derivations on & + 5*. A derivation 8 on an algebra 91 is a linear
map from the algebra into itself satisfying: For each a, b in 9

8(ab) = 8(a)b + ad(b).
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The derivation will be said to be skewadjoint if for any a in the algebra 9N,
8(a*) = -6(a)*.

We denote by D(S + &*) the set of the skewadjoint derivations on & + §* and by
D(S + 5*, @) the set of the skewadjoint derivations on & + $* that vanish on &.

For a nonzero projection P in @ and a derivation & in D(S + 5*, @) we let §,, be
the restriction of 8 to P(S + S*)P. As 8,(PTP) = 8(PTP) = P§(T)P, 8, is a
skewadjoint derivation on P(S + 5*)P. B

By [8, Lemma 4.11], there is a map C from G into the selfadjoint operators of @
such that for each 4 in @ and each U in G, 8(AU) = AC(U)U. Therefore for A in
P@and Uin G,

8(APUP) = AC(U)PUP.

Such a map C, associated with &, is said to implement é.

PROPOSITION 4.1. If 8, in D(S + &*, &), is implemented by C and if

Sup{lIC(U)PUPU*|: UE G} <

then 8p is a bounded derivation.

PROOF. By [8, Lemma 4.14] there is a homomorphism &’ from R into Aut(%, @)
such that for each Tin & + §*, a)(T) = exp(itd (T).

Let a: R > Aut(PR®P, PQ) be defined by the restriction of a’ to PBP. Since
a)(PTP) = Paj(T)P, ais well defined. By [8],

a,(PUP) = «,(PUP) = (exp(itC(U)))PUP.
Let ¢,(U) be exp(it(C(U)PUPU*)) then a,(PUP) = ¢(U)PUP.
Thus we can apply Theorem 3.4 to get
sp(a) = U o(C(U)PUPU*) .
UeG

By the hypothesis of the proposition, sp(a) is compact and hence, by [S, Theorem
8.1.12), the map ¢ - «, is norm-continuous. Using [2, Theorem VIII.1.2] there is a
bounded map n on PR P satisfying a, = exp(itn) and 7 = lim,_ ¢ +(a, — id) where
id is the identity automorphism and the limit is in the norm topology.

For each 4 in P@ and U in G we have

n(APUP) = lim %(a,(APUP) — APUP)
-0

= ]jrré %(A exp(itC(U))PUP — APUP)
11—

= AC(U)PUP = 8,( APUP).

By linearity n = 8, on P(S + $*)P and, therefore, 8, is bounded. O

We say that & has a bounding sequence if there is a sequence of projections { P, } in
@ such that P, 1 I and, for every n, Sup{l|8( P,UP,)Il: U € G} < 0.

Assume now that & has a bounding sequence {P,} such that P\ UP,U* # 0.
Proposition 4.1 shows that 8, is a bounded derivation on P(5 + 5*)P,. We can
extend 8, and view it as a derivation on the C*-algebra P,%BP,. Thus there is an
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operator D, (acting on P,(H)) that is selfadjoint and satisfies 8, = ad(D,) (see
[7, Corollary 4.1.7)). Since §,(P,&) = 0 and P,@ is a maximal abelian algebra on
P(H),D, € PQ.

LEMMA 4.2. For m > n, 8, = ad(D,,P,) and there is r € R such that D, P, — D, =
rP,

PROOF. For T'in P(S + S*)P,,
8,(T)=8&(T)=8(P,TP,) =98,(T)=D,T— TD,
=D, PT— TD,P,= ad(D,P,)(T).
Since this shows that ad(D,) = ad(D,,P,) we see that D, — D, P, commutes with

P(S + &*)P,. The irreducibility of P,5P, completes the proof. O
If {D,} is a sequence of selfadjoint operators satisfying:

8, =ad(D;) onP(S+*)P,
then there is a sequence {r,} of real numbers such that D,P, — D; = r,P,. Let D, be
D, —r,P,, then D,P, = D, and, for m > n,
D.P,=D,.
A closed, densely defined, linear operator T is affiliated with a von Neumann
algebra @R if U*TU = T for each unitary operator U in the commutant of ¢} .

THEOREM 4.3. Let 8 be a derivation in D(S + 5*, @) with a bounding sequence
{P,}). Then there is a selfadjoint linear operator D, affiliated with @, such that for every
Uin G and finD(D) N U*(D),

8(U)f = DUf — UDf.
If Uf is in D(D) for every U in G, then for each T in S + $*, 8(T)f = DTf — TDf.

PrROOF. Recall that X is a locally compact Hausdorff space with a o-finite regular
Borel measure m, H is L*( X, m) and @ is the multiplication algebra on H.

For each n, P, is the operator of multiplication by the characteristic function of
some measurable set E, of X. Since P, 1 I, we can assume that E, C E, ., for each n
and X= UE,.

For each n, D,, viewed as an operator in &, is the multiplication by some
real-valued, bounded, measurable function g, satisfying g,x, = g, where x,, is the
characteristic function of E,.

We can now define a measurable function g on X by gx, = g,. Since D,,P, = D,,
8nXn = 8, for m > n; and g is well defined.

Let 9)(D) be the dense linear subspace {f € H: gf € H} and D be the (not
necessarily bounded) linear operator of multiplication by the function g, defined on
%D(D). The operator D, such defined, is affiliated with the algebra @.

For each fin H, P,f € )(D) and DP,f= D,f= D,P, f because gx,f= g, /-
Since §, = ad(D,),

é(puUP,)f= D,PUP,f — PUP,D,f= DPUP,f— PUDP,{.
Thus if f € D(D) N U*D(D) then
8(PUP,)f= C(U)PUP,f= (DU — UD)U*P,UP, f
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and, since P, t I, PU*P,U 1 I. Thus
8(U)f = C(U)Uf = DUf — UDf.
Each T'in & + &* can be written as 34,U, where U € G and 4, € @. Hence, if Uf
is in (D) for every U in G, then
8(T)f=28(A4,U)f =2 A4,8(U)f =X A,(DUf — UDS).
Since ADf = DAfforeachf € D(D)and 4 € @,
8T)f= Y (DA,Uf — AyDf) = DTf— TDf. O

We now discuss the existence of a bounding sequence for a given derivation. We
will need the following lemma.

LEMMA 4.4 Let 8 be a derivation in D(S + §*, @) and E,, E,,. .., E, be projections
in @ such that:

(1) For each j there is U, in G such that U*E,U; < E,.

(2) E,, E,,...,E, are pairwise orthogonal.

(3) The restriction of 8 to E(S + S*)E, is bounded.

Then the restriction of 8 to F(S + S*)F is bounded, where F= E, + E, + --- +E,.

n

PROOF. Let K be the norm of the restriction of § to Ey(S + 5*)E, and let F;, for
Jj=1,be U*E,U. For Tin F(& + &*)F,

T= 3 ETE = 3 UFUTUFU: = 3 UT,U;
Jok=1 j.k=1 jok=1

where T, € Ey(& + 5*)E; and |IT;, || < [T |l. Hence,
8T)= 3 (8(Y)T,lt + Us(T)Ur + UT,d(Up))

Jok=1
< 3 (I8(U)INT, + US(T ) + 1T 118U
J k=1
<ITI 3 (18(Y)I + K + 18(UHI) = ITI M
Jok=1

where M is a real number independent of 7. [

LEMMA 4.5. Let E, be a nonzero projection in &. Then there is a sequence {E.} of
pairwise orthogonal projections in @ with sum I such that for each i there is some U, in
G such that U*EU; < E,,.

PROOF. Since G acts ergodically on @,
1=V {UEU*: U € G).

Let { E;} be a maximal set of pairwise orthogonal projections in @ such that for each
i there is some U, in G such that U*E,U, < E,. The existence of such a set is
guaranteed by the Zorn’s Lemma (the set is countable since H is separable).

If I — 3E,; (denoted E) is a nonzero projection, then there is some U in G such
that UEU*E #+ 0. We can, therefore, add UEU*E to {E;} and, since
U*(UEU*E)U < E,, it will contradict the maximality of {E;}. Thus ZE, = I. d
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COROLLARY 4.6. Let 8 be a derivation in D(S + 5*,@). If there is a nonzero
projection Fy in @ such that the restriction of 8 to E|(S + S*)E,, is bounded, then § has
a bounding sequence.

PROOF. Let {E;} be the set given by the previous lemma and let P, be X, ., E;. By
Lemma 4.4, the restriction of 8 to P (S + S*)P, is bounded and, since ZE, = I,
P11 0O

We conclude:

THEOREM 4.7. Let 8 be a derivation in D(S + &*, Q). Then the following are
equivalent:
(1) There is a nonzero projection E in @ such that

Sup{lI8(EUE)|: UE G} < 0.

(2) There is a selfadjoint linear operator D, affiliated with &, such that for each T
(=Ay+ AU, +---+4,U,) in S + &* and each f in a dense subspace of H, namely
(f€ H:f€ VD), U, f € WD) for each 1 < k < n}, we have 8§ T)f = DTf — TDf.

PRrOOF. (1) implies (2): Theorem 4.3, combined with Corollary 4.6, proves that, for
each fin {f € H: f € )(D), U, f € D(D) for each 1 < k < n}, we have 8(U,)f =
DU, f — U, Df for each k < n. Therefore,

8(T)f= Ala(Ul)f-l— +An8(Un)f= DTf — TDf.

It is left to prove that the subspace is dense in H.

As D is affiliated with the maximal abelian algebra of multiplications by functions
in L*(X, m), D is the operator of multiplication by some measurable function g
(and D is defined on (D) = {f € H: gf € H} which is dense in H) and, thus,
there is a sequence of projections { E;} in @ such that E; 1 I and, for each j, DE; € @.
Let F, be the projection E,UFEU\USE;U, - - - UFEU,. Then F; 1 I and, for each j and
each fin Fy(H), fis in ¥)(D) and so is U, f for every 1 < k < n. This completes the
proof that the subspace is dense in H.

(2) implies (1): Let U be in G and E be any nonzero projection in @ such that DE
is in @. For every function 4 in U*EUE(H), h and Uh are in %D( D). Hence, for every
fin H,

8(EUE)f = 8(U)U*EUEf = DEUEf — UDU*EUEf = DEUEf — UDEU*EUY.
Therefore, ||6( EUE)|l < 2|| DE || and, since the right-hand side is independent of U,
Sup({lI8(EUE)|I: U € G} < 0. O

ExaMPLE 4.8. Let X be R and m be Lebesgue measure on R. Fix a negative
irreducible number u and define the set SinR: S={au—r: r=0,r€Q,a >0,
a€Q)U {(bu+r:r,beQ,b=0,r=0}. Let G be the semigroup of translations
by sin S, i.e. Uin G (to be denoted U,) is of the form Uf(¢) = f(¢t — s) for some s in
S, where f is in L2(X, m). It can be seen [8, Example 1.9] that G is an ordered
semigroup that acts freely and ergodically on @ (the multiplication algebra on
L?*(X, m)). Let S be the algebra generated by @ and G, then S is an irreducible
triangular algebra.

Let 8 be defined by 8(AU,) = sAU,, A € @, U, € G, and by linearity. Then 8 is in
D(S + 8*,@). Let E be the projection in @ which is the multiplication by the
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characteristic function of the interval (0, 1). For s in S, EU,E # 0 only if |s|<1,
hence

I8(EUE)| = IsEV,EIl<1, s€S.

Therefore, there is a linear operator D, as in Theorem 4.7, satisfying: For each T
in& + 8*,8(T) = DT — TD on a dense supspace of H. In fact, this operator is just
the operator of multiplication by the function g(¢) = ¢ and is defined on {f € H:
gf €E H).

ExaMPLE 4.9. Let X be any locally compact Hausdorff space with a o-finite
regular Borel measure. The Hilbert space H would be L*( X, m) and @ will be the
algebra of multiplication by functions in L*(X, m). Let U be a unitary operator
acting ergodically on @ and assume that X is an infinite set. Then, by [8, Lemma 1.7]
the algebra S (generated by @ and U) is triangular irreducible.

Let & be defined by: 8(4U*) = kAU*, A € @, k € Z, and by linearity. Then & is
in D(S + 5*, @). Let E be any projection, different from 0, in @. By ergodicity, we
can find a sequence k(n) of integers such that, for each n, EUK™MEU k™ = (;
hence |8( EU¥™E)| = k(n). Therefore there is no operator that implements & in
the sense of Theorem 4.7.
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