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SYSTEMS OF FIXED POINT SETS
BY

A. D. ELMENDORF

Abstract. Let G be a compact Lie group. A canonical method is given for

constructing a C-space from homotopy theoretic information about its fixed point

sets. The construction is a special case of the categorical bar construction. Applica-

tions include easy constructions of certain classifying spaces, as well as C-Eilenberg-

Mac Lane spaces and Postnikov towers.

0. Introduction. Let G be a compact Lie group and X a G-space. The equivariant

homotopy theory of X is reflected to a remarkable extent in its system of fixed point

sets, defined as a functor from a certain category 0G to Top, the category of

topological spaces. (Our spaces will be compactly generated weak Hausdorff; they

may or may not be equipped with a basepoint, depending on the context.)

These functors, or systems, have considerable technical advantages over G-spaces;

it is easy to apply most homotopy theoretic constructions to them, whereas in many

cases it is unclear how to proceed for G-spaces. It is the purpose of this paper to

present a canonical way of recovering from any system a G-space which preserves all

the homotopy theoretic structure of the system. This allows us to give easy equi-

variant versions of some standard topological constructions such as Eilenberg-Mac

Lane spaces and Postnikov towers, and to simplify other equivariant constructions.1

1. Statements of the main theorems. Throughout, G is a fixed compact Lie group.

Definitions. The category of canonical orbits, written 0G, is a topological

category with discrete object space

\0G\ = (G/77: 77 a closed subgroup of G}

and morphisms the G-maps, topologized by requiring the natural bijection

(•) Hoxn0ciG/H,G/K)^{G/K)H

to be a homeomorphism. By an Oc-space we shall mean a continuous contravariant

functor from 0G to Top; these functors form the objects of a topological category in

the usual manner. We will also consider GG-rings, Oc-groups, etc., defined similarly.

Definition. Let A1 be a G-space. The fixed point set system of X, written $X, is an

GG-space defined as follows:

$ *( G/77) = X",
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276 A. D. ELMENDORF

and if 0: G/H -» G/K corresponds to gK E iG/K)H under the correspondence (*),

we define

<l>X{0){x) = gx E X"

for any x E XK. It is clear that $ is a functor from G-spaces to Oc-spaces.

Definition. A G-map/: X -> Y is a weak G-equivalence if fm: rrniXH) -» ir„iYH)

is an isomorphism for all « > 0 and all closed subgroups 77. If X and Y axe G-CW

complexes, it follows that/is a G-homotopy equivalence.

Definition. A CW-0G-space is an 0G-space P such that each space P(G/77) is a

CW-complex and each structure map P(G/77) -» TiG/K) is cellular. We will call P

regular if it is homotopy equivalent (in the sense detailed below) to a CW-0G-space.

Definition. Let P, U be 0G-spaces. Define P X 7 to be the GG-space given by the
T X /

composite functor 0G -* Top -» Top. There are the usual maps /'0, i, from P to

T X I, and we say two maps /, g from TtoU axe homotopic if the diagram

P.

i'o

PX7-
H

tí,

Tv-

can be filled by the homotopy 77. As usual, this gives rise to a homotopy category of

Oc-spaces; we denote the set of homotopy classes by [P, U]0 .

Theorem 1. There is a functor C: Oc-spaces -* G-spaces and a natural transforma-

tion ij: $C -» id such that for each Oc-space T and each 77, rj: (CT)H -* T(G/H) is a

homotopy equivalence (if is actually a strong deformation retract). If T is regular, then

CT has the G-homotopy type of a G-CW complex.

Corollary. If X is a G-space, there is a natural weak G-equivalence from C$ X to

X obtained by restricting t/ to G/{e}.

Let [X, Y]G denote the set of G-homotopy classes of maps from X to Y.

Theorem 2 (McClure). Let X be a G-space which is G-equivalent to a G-CW

complex, and let T be a regular 0G-space. Then there is a natural bijection

[X,CT]gS,[<!>X,T]oc.

2. Applications. We first consider classifying spaces for families. A family of

subgroups of G is a set closed under conjugation and subgroups. If § is a family and

A" is a G-space, we say X is ^-isotropic if every isotropy subgroup Gx for x E X is in

9r. Following torn Dieck [2, §7.2], we define a classifying space for *§ to be an

%-isotropic G-space P^such that for any A which is ÇF-isotropic, [ X, 77ÍF]G consists of

a unique element. We can easily construct B'S as follows. Let P be the GG-space in

which

P(G/77) = {*      UHE^
[0     if 77 G f.
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Then it is a direct corollary of Theorem 2 that CT is a classifying space for <5. In the

special case where f consists of the trivial subgroup {e} only, this turns out to be the

usual bar construction for EG.

Smith theory. Assume for the moment that G is a finite p-group. It is easy to

construct an Oc-space P in which P(G/{e}) = S" and TiG/G) is arbitrary (say

CP°°). Then CT is a homotopy sphere on which G acts with fixed point set

homotopic to CP00 (or whatever). This does not contradict Smith theory because CT

is always infinite dimensional.

G-connected covers. In ordinary homotopy theory, when we wish to pass to a

connected space from a general pointed space, we look at the basepoint component.

Equivariantly, we wish to do this simultaneously on all fixed point sets, which is

impossible. We can do it up to homotopy, though, as follows. Let A be a pointed

G-space with base point in XG. The system $A" then takes values in Top+ , the

category of based spaces. Define P0(A) to be the Oc-space given by the composite

0G -» Top+ -» Top+ , where R is restriction to basepoint components, and let

X0 = CT0(X). The natural transformation R -» id given by inclusion of the base-

point component induces an 0G-map P0( X) -* <PX, so we get a natural map

Dr>

A0 = CP0(A")-*C$A->A

which is, up to homotopy, inclusion of the basepoint component on each fixed point

set. The map P/tj is the weak G-equivalence of the corollary to Theorem 1.

Eilenberg-Mac Lane spaces. Let X be an GG-group, « an integer with n > 1. If

« > 1, we require X to be Abelian. An Eilenberg-Mac Lane G-space of type (X, n) is

a G-space X of the G-homotopy type of a G-CW complex such that, for each 77, XH

is a K(X(G/H), «), and the composite Oc -» Top -* Grps coincides with A. These

are the classifying spaces for Bredon cohomology; see [1,3]. Such G-spaces can be

constructed functorially on A as follows. Let B" be a functorial construction of

ordinary Eilenberg-Mac Lane spaces such as the iterated bar construction. Then the
X on

composite Og -» Grps -» Top is an 0G-space, and C(B" ° X) is the desired Eilen-

berg-Mac Lane G-space.

Postnikov towers. Equivariant Postnikov towers are just like ordinary Postnikov

towers except that they use the equivariant Eilenberg-Mac Lane spaces referred to

above. Using the obstruction theory arising from the use of the bar construction in

the definition of C, we can construct such Postnikov towers for nilpotent G-spaces;

the details are in §6. Postnikov towers have also been constructed by Triantafillou in

[6] by completely different methods in the case where G is a finite group.

3. Proof of Theorem 1. Let P be an GG-space. We must construct the G-space CT

and the natural map tj: (CT)h S T(G/H).

Let J: 0G -» Top be the covariant functor which assigns to G/77 its underlying

space and to a G-map its underlying map. (If we are considering pointed spaces,

attach a disjoint basepoint and use smash products in the geometric realization

below.) We may then form the bar complex B^(T, 0G, J); this is a simphcial space
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in which Bn(T, Oc, J) consists of (« + 2)-tuples (t; /,, f2,...,/„; c) where the/'s are

composable arrows in 0G, say /: G/77, -* G/77,_,, and t E T(G/H0), c E G/Hn.

The boundaries are given as follows:

d0(t; /,,...,/„; c) = (f*(t);f2,...,f„;c),

dn{t; /,,... ,/„;c) = (/;/„...,/„_,; (/J«(c)),

and 3, for 0 < i < « is given by composing the appropriate pair of/ 's. Degeneracies

are the insertion of identity maps in the appropriate spots. (This is a special case of

the general construction given in [5, §12].) The group G acts simplicially on

Bj(T, Og, J) through its action on the coset coordinate, and consequently the

geometric realization P(P, Og, J) is a G-space. We define

CT=B{T,Og,J).

We next require the homotopy equivalence tj: iCT)H -» P(G/77), natural in 77.

We have

iCT)" = B{T, 0G, Jf = B(T, Oc,Hom0c (G/77,-));

the second equality follows from the bijection (*) and the fact that G acts on the last

coordinate only. Now it is a general property of the bar construction that for any

topological category C, contravariant functor F: Q -* Top, and object A of Q, there

is a natural map

tj:P(P, e,Home(i4,-)) -» F(A)

which is a strong deformation retraction. This map is induced by a simphcial map

tlm:B,(F,e,H<me{A,-))-+F{A)„

where F(A)^ is the simphcial space all of whose components are F(A) and all of

whose face and degeneracy maps are the identity. In our case, tj+ is given by the

formula

v„(x;/„...,/„;/) = (/,» ••• °/„°/)*(*),

where / is an element of (G/Hn)H = Hom0 (G/77, G/Hn). The proof that tj is a

strong deformation retraction is a standard simphcial argument contained in [5].

D

4. Adjunction relations and the proof of Theorem 2. Let P be an 0G-space. Since

the space of 0G-endomorphisms of G/{e} is precisely G, it follows that P(G/{e}) is

a G-space, which we denote by DT. It is easy to see that D is left adjoint left inverse

to $, and the naturality of tj imphes that Dtj: CT -* TiG/{e}) = DT is a G-map. It

also follows, since $Z)tj = tj on $A, that tDtj: COA"-» A is a weak G-equivalence

and, consequently, a G-equivalence if A is G-equivalent to a G-CW complex. Note

also that 0, C, and D preserve homotopies. We can now exphcitly formulate the

bijection given in Theorem 2. Suppose /: X -» CT and s: <J>A" -» P are maps in the

appropriate categories. We define

<*(/) = tj°$/,       ß(s) = Cs o (Dvyx,
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and the claim is that a and ß axe inverse to each other on homotopy sets. (This proof

is derived from Jim McClure's original proof given in [4].) To see that aß(s) - s, we

examine the square

<t>Cs
OCOA      ->      <DCP

R i iv

$A -> P
s

Here the unlabeled arrow is tj or OtDtj; they coincide on O X. The square commutes

by naturahty of tj, showing

s -r¡ ° $(Cs ° (D-q)'X) = aß{s).

(We have also used the fact that C, D, and $ preserve homotopies.)

For the converse, we look at

C*/ Cr]
COA      ->      COCP     ->     CP

lílOi) IÍIDtj

A -» CP
/

The square commutes by naturahty of tDtj, so we get

ßa(f) = C(tj o $/) o (ZJt,)-1 = Ctj o (tDt,)"' ° /.

Since both Ctj and Dt] are homotopy equivalences, this shows ßa is a bijection. But

since aß = id, (/7a)2 = /7a, so ßa = id also.    D

5. Obstructions and (7-maps. In this section we work with pointed spaces only. Let

A and Y be G-spaces, /: X -» Y a G-map. The equivariant homotopy class [ / ]

determines an ordinary homotopy class [fH] E [XH, YH] for each 77 < G, and it is

natural to ask to what extent we can reverse the process: given classes [fH] E

[X", YH], is there a G-map / with /" ^ fH for all 77? If so, is it unique? In highly

favorable circumstances to be detailed below, the answer to both questions is yes.

Definition. A natural family is a set of homotopy classes [fH] G [XH, YH] such

that the squares

X"     t      Y"

en 18*

XK     -      YK

homotopy commute for all 0 E Hom0c(G/AT, G/77).

Clearly, the restrictions to fixed point sets from an equivariant homotopy class

form a natural family.

Theorem 3. Let X and Y be G-spaces with X G-equivalent to a G-CW complex.

Suppose further that, for each K and 77:

(a) [XK, YH] is a group, and
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(b) [XK, Q"YH] is trivial for n>l.

Then restriction to fixed point sets induces a bijection between equivariant homotopy

classes [f] G [ X, Y]G and natural families from 4>A to $T.

Corollary. If X is a KiX, «) and Y is a KiX', «), then

[A,y]GsNat(A,A'),

where Nat refers to the natural transformations from the functor X to the functor X'. In

particular, KiX, n)'s are unique up to G-homotopy type.

Proof of Theorem 3. Since X is G-equivalent to a G-CW complex, Dt\:

C<pA -* X is a G-equivalence. The bar construction filtration on C$A has 0th

filtration Vw ( XH A (G/77)+ ), and we have the following commutative diagram:

[X,Y]G        - X[X",Y"\
H

(Dr,)* im lili

[c$a, y]G V(A"A(G/77)+),y
H C,

Here p is restriction to fixed point sets, /'* is induced by inclusion of the 0th

filtration, and the unlabelled isomorphism arises from the adjunction

[A»A(G/77)+,y]cS[A",y»]

for each closed subgroup 77. Elements {[fH]} G XH[XH, YH] can be lifted along p

iff the corresponding lifting problem along i* can be solved; we attack the latter

problem one filtration at a time.

Suppose we have a G-map / from the (« — l)st filtration of C4>A to Y, and we

wish to extend to the «th filtration. This is equivalent to filling all the diagrams

XK AP+ A(G/77)+ A (3A") +     ->     XK A P+ A (G/77)+ A (A") +

3/

where P is any product

HomOc(G/77,,G/770) X • • • XHom0&(G/77„, G/77„_,)

in which 770 = K, 77„ = 77. Letting P( , ) denote the function space of basepoint

preserving maps, standard adjunctions yield an equivalent diagram

(3A") + ->(A")+

'\
F(P+,F(XK,Y»))

Now consider / as an element of P((3A")+ , F(P+, F(XK, YH))). This is the

middle term of the fibration with section

P(3A", F(P+,F(XK, YH))) - P((3A")+ , f(p+, f(Xk, Y")))

^F(P+,F(XK,Y"))
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where it is evaluation at the basepoint of 3A". Since A" is contractible, the diagram

fills iff / and iwf lie in the same component of the total space, which will be true iff

they h'e in the same component of the fiber over rrf due to the existence of the

section. Since [XK, YH] is assumed to have group structure, we may take difference

of components, giving us as obstruction a component of the fiber

P(3A", F(P+ , F(XK, Y"))) = F(P+ , F(XK, Û"   'y"));

that is, the obstruction is an element of [P+ , FiXK,Q"~lYH)]. Now if « > 1,

FiXK,Q"-]YH) is aspherical, since [XK,QkYH] = *   for k > 1. This shows that

[P+ , FiXK, Qn~xYH)] - *  for « > 1, so once we extend / to the first filtration, it

will automatically extend to all of C$ X.

When « = 1, P = iG/H)K and the problem is to fill the diagrams

(3/)+-> /+

F{{G/H)K+,F{XK,Y"))

Since [XK, Q,kYH] = * for k > 1 and [XK, Y"] has group structure, the projection

F{XK, YH) - 7r0F{XK, Y") = [XK, YH]

is a weak equivalence, and consequently so is

F{iG/H)l , F{XK, Y«)) - F{iG/H)K+ ,[XK, Y"]).

Since (37)+ -» 7+ is a cofibration, it follows that the above diagram fills iff the

derived diagram

(37)+-> 7+

K
f[(g/h)1 .lx\r«])

fills. An easy check then shows this to be equivalent to the homotopy commutativity

of the diagrams

X"     f"      YH

e*i le*

XK     -.      YK
ÍK

which is precisely the condition that / arise from a natural family. It follows that

every natural family extends to an equivariant homotopy class.

To see that this class is unique, suppose/and g are G-maps from A to Y such that

fH ~ gH fox each 77. This translates into a G-homotopy on the Oth filtration of C$A

which we wish to hft through the higher filtrations. Similar arguments now show that

the obstructions to lifting to the «th filtration lie in [P+ , FiXK, Q,"YH)], which is

trivial. Therefore, f -eg, and we are done.    D
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6. Postnikov towers for nilpotent G-spaces. In this section we use Theorem 3 to

construct Postnikov towers. First we fix terminology. Let A" be a G-space. Then

77„( A) is the composite

0G -» Top -» Grps;

7T,(X) is an 0G-group and 77„( A) (« > 2) is an abelian Oc-group with wx( A)-Oc-mod-

ule structure.

Definition. A G-space X is nilpotent if each tt„(X), n > 1, is nilpotent as an

GG-module over w,( A), i.e., there are 0G-submodules

{0}   = ?„,o( A) C 77„,,(A) C   • • •  C TTnJX) = 7J„(A)

such that the subquotients A . = 7J„,y+i(A)/w„ 7(A) are abelian with trivial W|( Ab-

action. This is equivalent to saying each XH is nilpotent in the usual sense with a

uniform bound on the order of nilpotence in each dimension.

Definition. A Postnikov tower for A is an inverse system of G-spaces ■ • • -» X2 -»

A, -» A0 = * in which each Xj+X -> Ay is the homotopy fiber of a G-map Xj -»

K(X, n) (where « is a monotone function of/) together with a weak equivalence

A^lirnA^..

Definition. A G-space A is G-connected if each fixed point set XH is nonempty

and connected.

Theorem 4. Let X be a nilpotent G-connected G-CW complex. Then X has a

Postnikov tower.

Proof. We can attach G-cells to A to form G-spaces XnJ such that

&(*), k<n,

1k(Xn,j)  -

0, k>n.

This can be done by induction over the orbit types, since attaching e" X G/H by

gluing along S""1 X G/77 affects only XK with (Tí ) < (77), and since tj„ /A) is a

system, the classes killed in the irniXK)'s by attaching e" X G/H will be among

those we wish to kill in any case. By induction on the attached cells, we have G-maps

Puj-Xn,j+\ -*xn,j-making

commutative, with the homotopy fiber Fpn j a KiAn ¡, «).

Next we examine the fiber sequence on fixed point sets:

K(Anj{G/H), n) - Xfj+^Xfj.
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Since 77,(XH) acts trivially on A„ j(G/H), irx(X"j) acts trivially as well, and we can

classify this fibration by a map

£?J:X?J-K(AUJ(G/H)tn + \)

which factors through the cone of p"j, where i"j is the canonical inclusion into the

cone:

CP?j

X»j        -.       K(Anj(G/H), n + l)
kH

Since iCp„j)H = Cip"j) and (by the homotopy excision theorem) Cp"j is (« + 1)-

connected, we may apply Theorem 3 and find that the &"-'s determine a unique

G-homotopy class from Cpn } to K(An Jf « + 1). Letting £„j represent this class, we

define

K        — k       o /
n,j n,j       n,j'

Now let Fkn j be the homotopy fiber of kn ¡. (See [7] for a proof that this space is

G-equivalent to a G-CW complex.) The composite

X„J+x^XnJ^K(An>J,n + l)

is G-nullhomotopic since kn ■ factors through CpHiy, so there is a canonical G-map

A„ -+, -» P^„7 which is a G-equivalence (check the fixed point sets) and which

makes the diagram

V7+1

commute.

We now construct a Postnikov tower for X by induction; suppose we have already

constructed G-spaces Yxo = * , Yxx,..., YnJ and G-maps k,m: Y!m -» K(AKm, I + 1)

such that y/m+1 is the fiber of klm, and G-equivalences Xi,m'- xi.m -\ ^i.m making

the diagram

Pi,.
vl,m + \

-»•A",
l,m

yl,m + \

l,m + \

i,m^kiAhm,l+l)
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commute. We now construct kn , and Y   + x using the diagram:

^KiAnJ, n + l)

kn,j

We define kn . as kn • ° xñj f°r any homotopy inverse xñj 0l X«j- We then define

y„ y+1 as the homotopy fiber; the remaining dotted arrow is the induced map on

fibers (which can be seen to be a G-equivalence by checking the fixed point sets) and

X„ J+x is then the indicated composite. It is now clear that X -* hm Ynj is a weak

G-equivalence, as desired.    D
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